From the collection of the

$Z n n$
 0 Dre inder
 v Jibrary
 t
 p

San Francisco, California 2008

H नि
\%

THE BELL SYSTEM TECHNICAL JOURNAL

A JOURNAL DEVOTED TO THE SCIENTIFIC AND ENGINEERING. ASPECTS OF ELECTRICAL COMMUNICATION

EDITORI.II. BO.IRD

I. J. Carty Banckoft Gherardi F. B. Jellett
E. B. Craft L. F. Morehousi: (). B. Blackilell.
II. I'. Charleswortil E. H. Colittts H. D. Arnold R. II. Kine-Editor I. O. Perrine:-Isst. Editor

VOLUME IV
1925

AMERICAN TELEPHONE AND TELEGRAPH COMPANY NEW YORK

$$
\begin{aligned}
& \text { Mோ 円ध } \\
& \text { ण யिः } \\
& \square
\end{aligned}
$$

The Bell Systerì Technical Journal

January, 1925

Engineering Cost Studies ${ }{ }^{\prime}$

By F. L. RHODES

NTRODCC TION

THII: subject ansignet to me in the "Notes Regarding the Prongram of the Conference" is "The Thenetical Principles of E:conomic htudies and Their Possible Application in C'ndergraduate Courses." With your permis-ion, I shall digress somewhat from a literat consideration of this tithe. I shall not undertake to derive formulae, to set up equations and to ohtain maxima and minima from them. The mathematies can realily be ohtained from available sources. On the other hand, I shall attempt to outline the fied for eronomic stuches in engineering work, using illustrations drawn from telephone engineering practice.

What is an engineering cont stuly? When you or I reach a decision to purchate a certain pair of shese, making a selection from an assurtment ranging in price from (suy) S.i to $\$ 15$, we have performed, conscionsly or unconsciously, some of the reasoning of an engincering cost study. . Tmong the factors influencing our decision will be the probable length of wervice life of different pairs, as well as the ability to extend this by an expenditure, to be made at some future time, for maintenance as represented by new soles and heels, which, perhaps, can be applied ecomomically to a moderately costly pair but nut so to the cheapest.

These two elements, depreciation and current maintenance, are facturs entering into engineering cost studies but they are not all of the factors. Whether we have the necessary capital in hand, or are obliged to hire or otherwise raise it, the annual cost of the capital must be taken inte consideration, and treatment of the matter of depreciation is incomplete withont consideration of salage value and cost of remoral.

Thus, unkes we purste our investigation into details that are not ordinarily considered when buying shoes, it is evident that our

[^0]homely illustration, while serving ty: weter our attention on certain important subjeets to be taken upinithis paper, falls short in respect of others that can mot be neglected in engineering cost studies. Broadly speaking, engineering cost studies deal with the comparatise anmual costs of alternative projects. Frequently they also involse comparisons of expenditures to be made at different times in the future. They are of value to industrial executises in assisting them (1) arrive at clecisions where several courses of action are open, but they are not the sole guides in arriving at decisions. No bard and fast formulate can take the place of judgment hased on experience. Formulae of this nature are properly used as guides to assist judgment.

The necessity for guidance from studies of this kind arises most freguently in a growing plant. The telephone plant always has been, and so far ats we can anticipate, will continue to be a rapidly growing thing.

This means that whenever an adelition is to be made, the question arises, how much capacity for growth is it most economical to provide for? As an ilhstration of this, consider with me the problem that arises when it becomes necessay to place somewhere an underground cable. Obsiously it would be uneconomical to construct an melerground concluit of one duct for this cable and next year or the year after to dig up the street and lay another duct for a second cable and ser on in piecemeal, hand-to-mouth fashion.

On the other hand, it would not be ecomomical to estimate the number of cables that would be required in a hundred years, even if we could foresee the needs so far ahead with any degree of certainty: and to place at the outset sufficient ducts to care for all the cables recpuired along that route in the next century, for in that event, the carrying charges on the idle ducts would prove much more expensive. in the long run, than would additions made at infrequent intermediate times. Somewhere between one year and one humbed years is the most economical period for which to provide duct capacity in advance. The determination of this period, based on suitable consuruction costs, the expected rate of growth in cable requirements, and other factors is one of the useful results obtained from an engineering cost study:
lomer our orgamization, practically all lypes of plamt and expipment are developed by the Central staff. These are standardized in a range of sizes sufficient to meet all the needs of the business.

The choice of standards and sizes to meet specific situations arising
in the fied is mate by the proper aftiongh of the asomiated operating compennies.

If a piere of apparatas or expipment, correctly designeal within itself, is installey in the wrong place, or if a wrong size is selected, lose will result.

Whestions of where to place plant and what size to employ, arot "hen to replate existing plant comstantly confromt the operating angineers in the beld. In the telephone business every major construction projeet is elescriber in what we term an "estimate" which is anthing more or less than a detaled design for the project, embotied in drawings and specilications, accompanied by a carefully prepared estimate of its cost. These estimates originate in the Plant Departments of the Associated Companies and are really the bids of the construction forces for performing the work. These estimates pass through the hands of the Chief Engincer of the Associated Company for his scrutiny and approwal before they proceed to the hisher officials of that company for final authorization. The Chief Engineer considers these estimates in their relation to the general plans of the Company with reference to the growth of the business and the plent. For many years the chief of the Department of which I am a member, Vice President General John J. Carty, occupied the post of Chief Engineer of the New York Telephone Company, the largest associated company of the Bell System. I have heard him sly that when, while occupying that position, an estimate for some specific piece of work came before him for review, he asked himself three questions regarding it:

1. Why do it at all?
2. Why do it now?
3. Why do it this way?

Rigorous proof sufficient to answer these three questions will justify the endorsement of any engineering project, and, furthermore, each equestion generally involves an engineering cost study.

Fuxdamentil Plans

Of all the engineering cost studies that are made in connection with the telephone industry, none is more far-reaching in its effect than those involved in what we term our "fundamental plans." In order to give a fair iflea of the importance of the work done under our fundamental plans, it will be necessary to deseribe brietly what a fundamental plan is.

In completed form a fundanental plan shows what the gencral lay-out of the telephone plant in a city is expected to be at some detinite time, usually from 15 to 20 years in the future. It shows:
(a) The number of central office districts that will be recpuired to provide the telephone service most economically, and the boundaries of these central office districts.
(1.) The number of subscribers' lines to be served by each central office.
(c) The proper location for the central office in each district to enable the service to be given most economically with regard to eosts of cable plant, land, buidings and other factors.
(d) The proper streets and alleys in which to buikl underground conduits in order to result in a comprehensive, consistent and economical distributing system reaching every city block to be served by undergromad cable.
(e) The most economical number of ducts 10 prowide in each conduit run as it is built.

These are all very delimite problems that confront the executives of our Issociated Companies when plant extensions are required. Our experience has shown that our fundamental plans reduce guessing to a minimum by utilizing the experience of years in studying questions of telephone growth in order to make careful forecasts on the best possible engineering basis. I few words as to how fundamental plans are mate mity not be out of place.

The basis of the fundamental plan is what we term a commereial sursey, which is a forecast of the future community showing the probable amount, distribution and character of the population and the probable market for various classes of telephone service.

Before making this forcolst, it is important to know what are the present conditions ats to population and use of the telephone service. To ascertain these facts a census of the community from a telephone point of view is made. Present telephone users are classified into:

Residence Telephones.
Business Telephones in Residence Ireas.
Telephones in Busincos. Section.
In analyang Residence tekphones all families are divided among those occupying:
(i) Private Residences.
(b) Two-family Ilouses.
(1) Tpatments.

 a it has been fomel that a chase relation evist betwext semt ant the clas of telephone service wael. Busimess telephome ate disided Entu - 20 or 30 different chases. In important factor in the forecast is the future peppulation of the city, both as a whole and hy seretions.

This insolves, in each particular problem, ans only sturly of the past growth of the city in question, but alse careful amel detailerl comparisoms with the growth history of other cities where comblitens hase been such that the exprience in those places is useful in making the prediction for the cit! being studied.

Having arrivel at forecosts, for certain future dates, as to the number of telephone users to be prowided for, where they will be heated. What charater of actice they will require, what time of dey they will call, and how frequently, and where they will call, it becomes a definite, although intricate enginerring problem to atermine the mest coonomical number, size and location of buiklings and switchboarels and the lexation and size of conduit runs. All of the promising combinations of future offices and districts as indicatel low experience and the gengraphical characteristics of the city, are lated out on working maps and the anmal rosts are ligured. The arrangement which gives the lowest equated ammal conts ower the pering of time for which the study is mate is, in general, the oncwhich is adoperl. Fundamental plans are reviewed every few years, particularly when some majar plant additon, for example, the opening of a new central office, comes up for comsideration. In this way we are constantly lowking ahead and following a coordinated plan; but this plan is not a rigid, fixed thing. It is morlified as frequently. as may be necessiry to meet the constantly changing requirements. In work of this kiml, future expenditures must be given greater or lens weight accortingly ats they are repuired to be made in the near future or at some more distant time. This is taken into account hey eruating luture expenditures in terms of their present worth; that is, the sum in hand, at the present time, which, at compound interent, will be just sulficient to prowide for the future expenditures when they are required.

- In interesting and typical annual cont problem which arias in comnection with fundamental plans is that of whtaining a proper erne
bakance hetween the circuits emplosed for subseribers loops and those emplosed in interolifee tronk lines. The larger the wire, the better will be the talk. But it will also be more expensive. The first step in solving this problem is to decide how good the transmission must be to afford salisfactory service to the telephone using public. Our present standards are a matter of growth; the accumulated results of tong and extensive experience. They are tive, working standards constantly being intelligently scrutinized and, when necessary, modified. I discussion of the values of the standards employed woukd unduly protong this paper. Therefore, let it suffice, at this lime, to state that the telephone offices in a large city, including its environs, may be disided into metropolitan offices and suburban offices; that is, the central lasiness offices separated from the suburban residential offices. Between subscribers in different districts suitable standards of transmission are decided upon.

Before describing this study further, reference must be made to the practical necessity for the standardization of construction materials. Subseribers' loops run in length from a few hundred feet to 3,4 or is mites. If we tried theoretically to make all talks exactly equal in loudness, we shoutd have as many different sizes of wire in our cables as there are different lengths of loop. To reduce the complexity, our cable conductors are of certain standard sizes, which experience hats shown are sufficiently close together to meet the needs of the buniness. These standard sizes, in American Wire Gauge, are Nos. 24 , $22,19,16,13$ and 10 ; the three latter not being uned in subseribers' focps.

Having adopted standards of transmission and standards of cable condelactor sizes, our problem is to obtain the standards of transmission with the standards of cable conductors in the most economical manner.

The method of doing this, in brief, is to figure out the ammat costs which would be incurred in doing it a number of different ways and to setect the way that gives the lowest ammal cost. In this kind of a study, which we call a "kwp and trunk" study; it has been conbenient to designate the subserihers' bops by their maximum circuit resistance. Adopting this form of designation, it may be assumed, first, that all of the subseribers' loops will have an aserage transmitting and receising efficiency as good or better than a 350 ohbm losp; ats a seond assumption, that they will be ats good or better than a fof-ohm loop; and, ats third and fourth assumptions, 150 and sof-rhm foops, respectively. In assuming, for example, a 3.50 oshm loop in
16. 2l-g.utge cable, it is, of course, hecensary that all subacriturs
 of this rextance shatl be put in No. 2!-guge or No. 19-getuge cable .s mal! be rexpired.

The (ransmisuion losers, buth transmitting and receiving, are then eomputed for the assumed lowps. The transmiseion losere in cemtral ottice apparatus are comstant and known. Subtracting the lowes in the ollises and in the substation loops for eath atsonmer grade of loop from the transmission standards, leaves the amount of transmisaion lose which can be allowed in the interottice trunk correnponding to each limiting grade of subscriber's loop. On the b, osis of thi allowable transmission loss in the tronks and knowing the distances between central offiees, we are enabled to fix the sia of conductor required in the trunks.

Konowing the grade of loops and ermess required for each of the above assmptions, we can then compute the otal annmal eharge of giving service according to that assumption. If the assumptions have bern wislly chosen it will usually work out that the first A-mmption, that is, a very high grade of subscriber's loop, will not be as economical as some others, flee to the relatively high cost of the subseriber: loups taken ats a whole. Neither will the last assumption, that is, a very low grate of sulseriber's loop, be the most economical, on acoount of the relatively high cost of the trunks. Somewhere between, however, there will be some asoumption which will show the smallest total annual charge.

To find more precisely the most economical arrangement, the variots values are ploteel with the assumptions as to subscribers' hopforming one set of ordinates and the total annal cost forming the wher. The point on the curve representing the lowest annual cost then indicates the proper grate of subscribers' loops to employ. In the case of the longer interoffice trunks, loading is, of course, employed. In the design of toll lines and toll switching trunks generally similar cost balancing methods are employed.

In many cases, the problem can be solved by the determination of what we term "the warranted anmal eharge" of transmisoion which move le efefined as the anmual cont of improwing the talking efticiency of the circuit in the cheapest way by a definite small amount. By means of studies of this kind, we whtain a plant closely approximating a balanced cost condition. That is, in such a plant, a dollat can be spent in improving transmission efficiency, no more effectively in one part than in another.

From what has aldealy been satel, it shouhl not be inferred that the sole application of engincering cont stulies is in connection with the problems arising in the operating hedd. The question whether or not a more efficient piece of apparatus at a higher cost is warranted enters into most of our development problems. The economies of the case lie at the root of our development work in all portions of the plant.

At this point I should like to call attention to the fact that our development work covers not only what are termed "transmission" matters, but also very important problems in switchboards, outside plant and other phases of the business.

The scrvice which we provide is a communication service, which involves important problems affecting the means for connecting and disconnecting the parties as well as those other important problems, to which your attention has been particularly directed, relating to the loudness and quality of the transmitted speech.

In cable design, particularly in the case of intercity cables and interoffice trunk cables, the average separation between wires in the cable alfects the electrostatic capacity of the circuits and there is a definite capacity which represents the most economical degree of concentration of the wires in the cross-section of the cable. The spacing and inductance of loading coils presents another problem in balancel costs. Wien in the case of wooten poles we make use of economic cost studies.

The length of life of a pole depends upon a variety of factors, the most important of which are the character of the timber; whether or not a preservative treatment is employed and, if so, the nature of the treatment; the local climatic and soil conditions and the original size of the pole.

The strength of a pole varies with the cube of the diameter of the sound wood at the weakest section. If the original size of the pole is only slightle more than the critical size at which replacement shoukd be made, the life of the pole will be very short, as decay will reduce the size at the ground line to the critical size within a few years. On the other hand, a probe of huge size at the ground line would have a sery long life before rotting sufficiently to reguire replacement, but the lirst eost of so stout a pole might readily be so great that its ammal cost woukl exceed that of a smaller and cheaper pole. In our specifications for poles we have constantly
(1) |rear in mind that the elimination of perlen contaming timlar

There have wow beeri placed before you several examples of proble foms occurring in the whelone indestry in the solution of which enginering cost stulies mesy he whimtegeonsy employel, and, probably, emough has beens said to make char the importanee of this form of economic amalysis.

Evildition

Let us now consider together the principal factors entering into allumb cost, and how, in the comese of our work, we evaluate them.

The several factors are these:

1. Const of money.
2. Tixes.
3. Insurance.
4. Depreciation.
5. Courent Mantenance.

1i. Administration.
7. Uperating Conts.

Cost of Money. The uperating companies of the Brell System whain the new money that they use in extensions to their plants from the sale of their capital stock and securities honds and notes. such a return must be paik the insestor, by the Company, as will induce a constant flow of new capital into the business. This steady intlux of new capital is required because the System can not decline to expand. It is obligated to meet the increasing neerls of the public it serves. Its need for new capital is a direet result of public demand for the service it renders. The ratcs for service which public utilitics may charge are regulated by the comminaions, but neither the commisuinns nor the utilities can fix the worth of mone? P Public utilities must pay the cost of money just as they must pay the cont of habor. poles and other material. No insestor can be forcorl to invest. If the rate is below what money is worth in the general money market, he will keer out. 'tility companies must bring their ollerings (o) at seneral money market and submit them, in ofen sompertition, with
the offerings of undertakings of every kind requiring capital. There are two ways of getting new money:

1. From investors willing to lend. These are the bond and note holders.
2. From investors willing to become partners in ownership. These are the stockholders.

Not only do stockholders expect a higher return than bond and note holders, but if the stockholders' earnings are insulficient, the bond investor will take his money to some safer market. Taking into account the ratio which must be prudently maintained between funde:l clelt and stock, a proper figure should be obtained ats representing the awerage annual cost of money. This figure should not be confused with the figure that represents a fair rate of return including a margin for surplus and contingencies.

Taves. Taxes are levied by various governmental bodies, municipal, county, state and federal, on many different bases. In some specific plant problems, taxes have to be computed to meet the conditions of the case at hand but, in general, it is sufficient to emplos a percentage charge for taxes based upon the average experience.

Insurance. In the case of buildings, and equipment comtained in buiklings, an annual cost item to cover insurance should be included.

Depreciation. Depreciation may be defined as the using up of property in service from all causes. These causes include:
(a) Wear and tear, not cowered by current repairs.
(b) Obsolescence.
(c) Inaderpuacy.
(1) R'ublic Requirements.
(e) Vixtraordinary Coasualties.

All telephone property, except land, is subject to deterioration, and the continued consumption of the investment is a part of the cost of the service which must be provided for by charges against carnings. Only a small portion of the plant actually wears out in service. Instances of this are the rotting of poles and the rusting of iron wire, a relatively small amount of which is used in the plant.

On the other hand, it has been the history of the telephone business that enormous amounts of plant have been taken out of service through mo defect in their physical condition but either because they had become obselete through the development of some more economical or efficient type of erfuipment, or because they had become inadeduate to serve the growing needs of the business.

 are the abomboment of pale line athe the ir replacement hater-
 of sections of makergromed eombluit dete to chatiges in the grate of streds or to the constrmetion of trimsit smbwass. Fixamples of extraorelimar! castalties are lires, sheet storms imb tornadoses.

The ammal charge for deprectation is ath amomet which, if enteren in operating expenses eath vear daring the service life of at mit of plant, woyld, at the end of that errviere life, vield a sume equal to the thtal depreciation of that unit; that is, its first cost in plater lese the net stbage obtatine at its removal. The comstmption of capital is a neceastry part of the cont of furnishing arvice athl must be prosvided for by charges against earnings during the life of the property. In arriving at this depreciation charge the lest thing we can da is (1) take our experience of years and look ower the whole station and apply our julgment to it. The value of this judgment depends on the experience, knwwledge, ability and integrity of the people who exerciar it.

The amount of this charge should be determined for each hroad class of plant and it depends upon the average service life and the net salvage value. Net salsage value is grose saluage value mimes cost of remosal, and takes into consideration both value for rense and junk value. For instamere the net salsage value of station apparatus is relatively high becamse a large part of the explipment can be rensed in another location. In other cases, such as iron wire, the net salvage value may be a minus quantity, as there is litele or nothing to offset the cost of remotal.

C"urrenl Maintenance Current maintenance ©harges comprise the cone of repairs, rearrangements amb changes neceraary to keep the plant in an efficient operating condition during it- servive life. In cost sudien, current maintename chargen shohld be derived from *eperience athl expresod, generally, on at whit of plant basis, at. for example, per pale, per mile of wire, per foot of cable, or per station, according to the kind of plant being considered. Cenerally speaking, they bear no direct relation to lirse cost of plate at other annual charges do.

For this reason, when comparing the ammal coss- of two or more plant units of different sizes or types an inoorreet reable would be
obtained if maintenance charges were expressed as a percentage of the lirst cast.

Howerer, for comparative cost studies of atorage plant, mantatned under aberage conditions, it is sometimes within the precision of the study 20 employ figures expressed as a percentage of the first cost, provided the figures were derived from the cost of maintaining aterage plant where aserage conditions were known to obtain.

Administration. In certain cost studies, a small allowance is usually marle to cover that portion of the salaries and expenses of the general officials of the Company which is fairly chargeable to the administration of the plant.

Operating Costs. In certain classes of engineering cost studies, comparisons may involve the situation where one type of plant costs intially more than an alternative type, but permits savings to be made in the daily operating labor which may or may not offset the additional first cost. In such cases, to obtain a true comparison, the operating labor costs under each plan must be combined with the total annual charges which are applied to the first costs of the respective plant quantities.

Prement Worths

Engineering cost studies frequently involve a balance between plant installed at the present time and plant installed at some future time. An example of this would be the comparison of a pole whose life was 10 be extended by attaching it 10 a stul) after (sisy) 15 years, with a stonter and more expensive pole installed at present or with a pole to which preservative treatment was applied prior wits installation.

In such cases it is not sufficient to compare annual costs which are to be incurred at different times without reducing them to a basis upon which they can properly be compared. If a given amount is required to be expended at some future time, it obsiously requires a smaller sum at present in hand os meet this obligation if the fixed time is far distant than if it is in the immerliate future.

Let us pieture ourselves at the end of the year 1921. If an annual charge of $\$ 1,000$ is to be paid each year for the jears beginning Jantuary 1,1925 and encling December 31,1929 , there will be required, to provide for these five $\$ 1,000$ patyments, the sum of $S t, 100$, in hand, assuming that interest is compounded annually at $\overline{7}$ per cent. On we other hand, if these live anmual payments of $\$ 1,000$ cach insteat
of begiming in [1!2.5 were to begin len years later, thot 19, it thes were to rum from Jommary 1. 193.5 to the end of 1939, wr hamble re quire, in haml, S2.10ish, that in, onlye alent half as muth.

For compare, "pon a hair lasis, "yperditures thot hate to be mate.
 "xample, tes reduce these diberent expenditure w their "I'reant Wiorths." or the "quisalent in equated or acemmulaterl ammal charsers.

S(MMAR)

Frem all that has been sad, it becomes ex ifent that, whenewer a specitie adelition is mate to a growing plant, we are, of a greater or les- extent, committing ouraelves to a detinite programme for relieving. reinforcing or replacing it at some future time in order most comomically to provide for the requirements of growth.

The underlying thought, which can not be overemphasizel, is so to plan the plant that, as far as practicable, it will serve for its full life, and require no wholesale changes involving the abandonment of substantial portions of the installation. While the design should le based upon the lest estimates of future growth that are obtainable, it must be recognized that the most carefully designed plant layouts employing the best possible extimates of growth, may not always meet the ultimate requirements of tlexibility. The chances of a comprehensive plan not fitting in with future development can, bowever, be reducel to a minimum by thoughtful intial planning.

Cencrally speaking, our distributing plant layout, once it is estab-li-hed, can not readily nor economically be materially changed. Consequently, if it is not suffiefently Rexible in the fumbamemals of its design to meet reatsonble future porsibilities, it may affect alversely the carrying out of proper and economical relief measures, or may require abnormally carly reconstruction or replacement. It is very desirable, therefore, dways in keep in mind, in any plamt layout work, the progrewive relief steps which are likely te lee required to meet the changing conditions affecting the service requirements. Whenever plant is moved, or taken out of service, property loss is realizerl. Certain expenditures for theer purpones represent the most economical way of condeting the bunines. But it in of the utmost importance that they should ahways be incurred along the line of maximum economy, which means that behind every plant
addition must be engineering cost studies to assist in furnishing the answers to the three questions:

Why do it at all?
Why do it now?
Why do it this way?
But it must always be borne in mind that these studies do not and can not, in themselves, constitute the sole criterion for determining what shoukl be done. They are, at the best, only an aid, guide and check to be utilized, within their limitations, in arriving at conclusions that must, in the last analysis, rest upon seasoncd judgment and experience.

Nevertheless, so great do we find the importance of these engineering cost studies in our work, and so great must be their importance in the engineering of any other kind of growing plant, that the question might be raised whether, in courses of engineering instruction, a few hours at least could not advantageously be devoted to acquainting the student with the nature and importance of these economic problems.

The Limitation of the Gain of Two-Way Telephone Repeaters by Impedance Irregularities

By GEORGE CRISSON

B
 (o) build and maintain the high grater cirenit- that are require I for monkern lomg dindate telephome tramsmission with repeators mans workers in this tielt hase attempted to deviae sume form of twe-way repeater which wotil be able to give de latge at gatin as desired withent -inging or poor quality due to irregularitios existing in the lines. They have thenght that if such a repeater conlel be comstrected it would permit the une of lines lew carefult buite del. therefore dheaper thath are at present repairex, and that fewer
 at each repeater.

I- at matter of face the erregularitie: in the lime hase a very impertant efleet and eontrol, to a great extent, the repeater gains which (an loe wed whenever a telephone circolt is arranged se as to be capsoble of tran-mitting in buth direetions ower a single pair of wire with con-tant efticienes:

It is the object of this paper to explain, in a ver! simple Wals, why this is true. Ta do this the phenomenom of electrical replection is tir-t made clear. Then a two-way repater system in intronducel and the effect- of reflection upon this system are explatined. Dher mentioning several of the types of repeaters which have leeth used succesfully, the paper conclutes with an explanation of the fallacien unterlying a number of schemes which have been preposed from time of time ly sarions inventors.

Whenever discomtinuties or irregularities exist in welephome circuts, retlection of a certain part of the speech wase takes platee at each irregularity. In order to apprectate why it is that irregularitios in two-wire telephone cirevits affect very greaty the amount of repeater gain which can be secured whenever two-way operation is desired, it is first necessary to ohtain a clear pieture of why it is that rethections take place at irregularities.

Fig. 1 reprements an infinite ideal ielephone line withont repeaters. If such a line is non-loaderl or continumsly harled each part of it
is exactly like every other part having the same length. If the line is loaded with coils then each loading section is exactly like every other loading section.

When a telephone transmitter or other signaling device A acts upon such a line it causes a wave to travel over the line away from

Fig. 1
the source. If the line includes resistance or other losses this wave gradually becomes smaller until it is too weak to be detected but no portion of the wave returns to the source after once leaving it.

If some portion of the line differs in its electrical makeup from other portions of the line it constitutes an irregularity and interferes with the passage of the wate.

Fig. 2 shows a line exactly like that of Fig. 1 except that an irregularity B has been introduced. This irregularity has been shown

Fig. 2
as a series resistance though any other departure from the regular electrical structure of the line would produce similar effects.

When a wave encounters such an irregularity, it splits into two parts one of which continues in the original direction of propagation along the line while the other is propagated in the opposite direction toward the source.

In order to understand this phemomemon, which is called reflection, imagine that a wase is traversing the line from left to right. Is it passes the point B a current tlows through the series impedance Which constitutes the irregularity and this callses a drop of potential through the impedance. Obviously, this changes the state of affairs as there is now a sudden alteration in the voltage across the line as the wate pases the irregularity whereas there is no such aleration without the irregularity:

Suppose that for the impedance element we substitute the output terminals of a generator which has a negligible impedance and arrange the generator so that it is excited by the wave traveling over the line but that the excitation is not affeeted by the woltage set up by the generator itself. Such an arrangement is shown in lig. 3. The
arrangement for ewiting the generator is suppored not to require .111 appreciable atmonnt of pewer or to constitute .tll irregularits. This generator then resemble the series impedatoe of 1 ig. 2 in that it
 sem as a Wase artives the generator beonmes ative and proxhers a

Fig. 3
voltage in series with the line. By proper wlonstment of the exciting mechanism of the generator the voltage across its output terminals can be made just equal to the disturbance produced by the impedance element at B in Fig. 2 and so exactly reproduce the dfects of the irregularity: In order to do this the generator might hawe to ahsorb) energy from the wase passing over the line instemb of giving it ont, hat it wouk establish the desired voltage relations.

Now as the gencrator has no appreciable imperlince the wase pasocthrough it without interference but the em.f. which it sets up whvionsly semds on wave in each direetion from the generatur.
()n the right of the irregularity will be fount one wave marle up of the original undi-urled wave eombined with that from the generator and traveling onward in the original direction. The combined Wave will usalally be smaller than the original wave though it might under some circumstances be larger and its shape might or might not be altered depentling upon the nature of the irregularity and the chatatere of the line.

Un the left of the irregularity will be fonmel the original wave trateling from left to right and the reflected wase trateling from right to left.

By a similar proxem of reasoning the refleetion camed by bridging an imperlance across the line at the point B catn be illustrated. In this case the output terminals of the genorator should be bridged acrosis the line and maxle of very high imperlance.

Iny departure from the resular structure of the line anch sto wecurat the junction of two lines of elifferent type- or where leatling coils
have the wrong inductance or are wrongly spaced causes reflections in the manner described above.

Idfil Repeater on an Ideal Line

Fig. I shows an ideal telephone circuit consisting of two sections of line L_{1} and L_{2} which are free from irregularities and are joined ly a repeater R. The remote ends of the line sections are connected to terminal apparatus A_{1} and A_{2} which have impedances which

Fig. 4
:mothly terminate the lines, that is, if either line had originally extonded to an infinite distance from the repeater and had been cut to connect it to the terminal apparatus, this apparatus would have the same impedance as the part of the infinite line which was cut off. The construction of the repeater R is limited only by the reguireneent that if an electric wave arrives at the repeater lerminals $T_{\text {, }}$ or T_{2} over either line a similar but larger wave is transmitted from the repeater over the other line. The gain of the repeater determines the relative sizes of the waves arriving at and departing from the repeater.

If now a wave is started at one end of the circuit, for example A_{1}, it traverses the line L_{1} and is absorbed or dissipated in the portion of the repeater connected to the terminal T_{1}. This wave acts upon the internal meehanism of the repeater in such a way as 10 send out a larger wave which traverses the line L_{2} and is completely dissipated in the terminal apparatus A_{2}.

Dobeal Reipeater on a Line Contaning; frregiclarities

Fig. $\overline{5}$ illustrates a line exactly like that of Fig. 4 , except that an irregularity B_{1} (or B_{2}) has been introduced into each section. If a

Fing. 5
wave leaves one terminal such ats A_{1}, it traterses the line L_{1} eventually arrising at the temmal T_{1} of the repeater R with a certain strength. This wase is amplified and transmitted into the line L_{2} which it
follow- until it cucounters the irregularity B_{2}. It B_{2} it is parti.tlls
 tine to the terminal I_{2} where it in dmathed. The rethereed wase pasach throngh the repeater, is amplitied athl trathstersen the line l_{-1} until it enownter: the irregularity β_{1} where it is again redected, whe phrt le ing propagated to the terminal d, where it is dis-ifutcel, while the other part returns to the repeater and repedts the cyde of amplitication and rethection. This ation continues indetintely the wave leing reelected alternately from the irregularities B_{1} and B_{2}

If the total gain in the round trip path is greater thatn the total lome the wate will be stronger on cath arrival at any point in the circuit thatl on the preceding trip and will continually increase in power until the power limits of the repeater or some other callse prevent- a further increase and a steady sing is established. If the gain is kes than the loss, the wave will become weaker with eath trip from B_{1} and B_{2} and back until it falls below the strength which can be detected.

Fividently, if the repeater gain is mate so great that at steady sing is c-ablibhed, satisfactory telephoning over the circuit will be impumible. Grious quality impairment may oecur, however, when the gain is not so great as this. Consequently, when irregularities are present in a line containing repeaters, the repeater gains are neressarily limited.

In the above illustration, it was assumed that two irregularitien were present. Sorious effects, however, due to the prohluction of echn effects which may be heard by the talker, may be produced by retbection from a single irregularity: Conseduently, a single irregularity in the circuit will aet a limitation on the repeater gain even though it could not catuse singing if a 2e-type repeater were used.

From the foregoing explanation, it is evident that the effeet of the reflections at the irregularities, which limits the repeater gatins, is not dependent upon any special properties of the telephone repeaters. These limitations will necessarily exist with any types of repeater Whatsoner which have the property of proxucing amplification in buth diections at the same time.

The discusaion will now be extender to show that mot only mas the lines with which a repeater is to work be smosth, if limitation of the gains is to be avieded, but also the repeaters must be designed to fit
 take- place if a 4 tif - or a lerialad impalance is inserted in a line. Thin retle tion will the plate whelher the impedance is inserted

 of thin rethe tions, wrimsts limit the gall which coukl be produced In the repeater. Vuw inartins an irregularit aljacent to a repeater - metums te the s.tme thing as -ubstatuting a line having a different mimalatnee for the line with which the repenter is desiened to function. bince ams chatse in the imperdince of a line connected to a repeater .11.A from the impedance with which the repeater is designed to worh is eqpit alent to incerting on irregularity adjwent to the repeater, it in avident that it is impossuble to construt as repeater system whose amplyatoon atl be convant in both directions and achose gain teill net be limuted by irre'ularithes in the lines and by any departure of the line impolathe from that for thith the repeater is designed.

IW0 forms of repeater circuit, the well known 21 and 29 19 pe eircuits, have been dewherel th the penint where they have lecome highle impertath and succoslal parts of the telephene plant. These
 Reprontere" ha Meass. Gherareli amd Jewete.' that mu further dearption will lae attompted here. It is sulficient to point out that in the raw of the 22 "fer repaler the necomar! impedance requiremont are mat hatending metwork which imitate closely the distoctenth impalater of the two asociated lines. Any departure of the line imperlance from the balue for which the network Was dexismal or ams irregularities in the line or terminal equip-
 almese In the est of the 21 Wpe vircnit the imperance require-
 "h..

 teme int the lum- thent the hetter direnits. The Inouster form of re-

Many different deviess diming to serane the pratiod expmitalent of two-way repater operation hy meaths of relay- mechatical of thermionic) controlled by the wice currents themathes have beat suggested. In these deviess the action of the relays is such that when transmission is pasing in one diection throngh a repeater, the tromsmision in the upposite dierection is either wholly or par tially bocked. Evidently the gain of stech a repeater at this is mot limited by impedance irregularities in the lines, since it is really a one-why device eluring the passage of speech currents.

Repaters eontrolled by voice operated devices will not be discusael here further in view of the faet that the principal objeet of this paper is to treat repeater systems which are truly two-way in their epperation.

Other Tipes of Replater That Hahe Been Preposed

Several of the arrangements that have been proposed by inventors who sought unsuecessfully to produce two-way repeaters not subject to limitation by line irregularities will now be described.

1. Repeaters Ineoleing Balance. I great many cireuits have been devised which involve the prinejple of balance. Theor always involve the same fundamental prineiple as the hybrid coil used in the repeaters now in commercial service though often the arrangement appears quite different. This principle is that the output energy of the amplifier working in one direction, hor example, the east bound amplifier, is divided into two parts, one of which is sent into the line east and the other into the corresponding network. The input terminals of the west bound amplifier are so connected that the effeet on them of the current entering the line cast is opposed by the effect of the current entering the network and consequently the impedances of the line and network must accurately balance each other to keep the output energy of one amplifier out of the input circuit of the other. Sometimes the balance is efferted by connecting the line and network into a common electrical cirenit and connecting the input terminals of the amplifier to two points of efput] potential in this circuit. In other arrangements two fluxes which depend upon the currents entering the line and network are balaneed desinst each other in the core of a special transformer so that a wincling connected to the input of the amplifier is not alfecterl.

Lsually the impedance of the network equals that of the lise, hut arrangements are possible and even hase certan whantages in
which the energy is not egtuatly divited loetween the line an t network and the imperlance of the network is either kreater then or less than that of the lime in a certain ratio.

Through emfamiliorits with the principle invelveal the imsentors *) obtainerl by uning a simple resi-b.ase is sulficient th weet all reguirements. None of there arramgements, however, can avoid the -fferts of departure of the line imperlate from the walues for which the network are de-signeal mor citn they better the performonce of the preant refeiter- in re-pect to the effects of imperdance departures. Isually suth circuita are inferior in same important rempert to the arrangements now in live.
2. Circuits using Rectifiers. In une type of circuit the insentors propme to use rectifiers to prevent the wutput energy of one amplifier

Fig. 6
Wting ugen the input circuit of the other. I -imple diagram illustrating the operation of thi selarme is given in Figg di. Rectitiers are plated in series with the input ont output circuits of both amplitiers otod peled in the direetions indiconed by the arrow beads which paint in the diection the rectitier in suppered on permit eurrent to pass. It is argued that the reetifier in the output circuit of each amplitier permita only corrents of one prolarity to enter the line and that the rectifier in the input circuit of the opposite amplitier is st poled that these sutput curront- cannot fas it into the input circoit ant, therefore, singing cabnot encur.

If a wase arrives, for example ower the line west, the pritive half Waven pans throngh the reetifiers 1 .an $1 \geq$ inco the ingut of the est foumd and the output of the weat 1 s, mul dmplitier re-pectively. The megotise half wate are suppreand ly the reetitiots. This is illu-trated lo lige 7 which -hom- the wate arriving over the line and 1.ig s wheh slow- the peat of the whe which colters the amplifiers.

That pertion whith reathen the whtput of the west batumb amplifier in lime while the prestion which reathen the ingut of the catst bexund
amplitier, is amplifieyl, and pasoed on through the rectitior is to the line east. If the , mplifier were completely dintortionlens athl, therefore, capable of amplifying direct currenta atm the rettifors perfect, thot i-, offering eron resistance to currents in one direction .and intinite renint-

Fig. 7

Fig 8
ance to currents in the opposite direction, the currents transmitted (1) the line east would have the wase shapes shown in Fig. s.

As it would be impracticable to make the amplifier amplify the direct-current component of the wase shown in Fig. S the amplitier would tend to send out a wave somewhat like that shown in Fig. 9,

Fig. 9
which is the wave of Fig. 8 with the direct component remowe.l. The rectifier 3 then suppresses the negative half waves, finally permitting the wave shown in Fig. 10 to pass to the line east. On account

Fig. 10
of the great distortion involved the quality of speech would be greatly impaired if, indeed, the speech would not be rendered unintelligible.

Asouming, however, that intelligible speech is possible in spite of this distortion, the rectifiers would not prevent singing. Suppose the repeater shown in Fig. 6 to be cut into the line shown in Fig. jat R and that waves are arriving from the line west. There are certain
line condition- which are patetitalls wertain to exish and which woukd
 the line east at the erminals of the repuater. catusing impulses ta reash the imput of the west homend amplitier. These impulaes will be amplineal and returned to the line weat where, if similar comelitions evist they will onee more amter the east buand amplitior. If the
 the 4 -tem will sing.

It is, therelore, wident that rettiters offer no chance for improving ofl the when of the preatht then of repeaters lecatase they caluse

Fig. 11
:crious distartion and do tent peront singing exept under certain spet ial ennditions the likely fole found meler practical conditions.

 In lhis ease all amplitiar i pros ided for cach direction of transmission. Thea dmplatere are -t de-ixned thot their amplifying pewer can be
 frim at - itable mource, the amplitier in ane direction being atrave when the wher is ibsetive. The frespenes of the cometrolling curromt is almar the .unlible ramge. In a bariation of this scheme a single amplitier is tesel which is peinteal first in cuse direction and then int the wher at a fremeney alowe the sutible range. It is argued that stue theme is amplitation in only one direction at any given instant the s? जtem c.anton sing.
limagine wheh a repeater to lx insered in the line at R in Fig. 5 ,
 the noture of the refater these Werm will le cout up into a series

 irregularity B_{2} athe part of their energy will return to the repoater. Wase to the fiet that a finite time is required for the puhto to pase from: K to B_{2} and tank, they are likely tor arise at the right moment to lime the .mplifier set for .mmplifisttion in the opposite direction. in which case they will gats throngh tow, ards . Fior a single irregularity, it would be posisible to select a frepuency such that the pulse would return when the repeater is set againat it, Jut this womld require a different frequency for each irregularits which is obviously impussible.

In case the line camnot transmit the high frequency pulses, their energy would he stored in the inductance or rapacity of the firm elements of the line L_{2} and returned to the amplitier when it is in condition to transmit from L_{2} to L_{1}. To awoid the latter objection it hats been proposed to employ low pass filters on the output site of each one-way amplitier to convert the high frequency pulses back into ordinary voice waves before passing them into the line. but this obviously defeats the object sought in using the high frequency control of the amplification hecatuse each amplifier now receives ordinary voice waves and gives out enlarged coples of them which are subject to the same reflections as if plain one-way amplifiers without the high frequency control hasl been used.

From these considerations it will readily be sem that repeater syotems depending upon high fregueney variation of the gas to avoid singing and the nece-sity for imperlance balanees are inherently unworkable.

Practises in Telephone Transmission Maintenance Work

By W. H. HARDEN

Abstract

 Whephone repeaters and carrier. leating metberls applicable th the kecal of e whange area plant are next dexeribal, the demerption including both thanu.at dind machise swithing syatems. The results actomplished in tall and lanal tramamisaton maintenane work are constered from the thatignent of the kinch of trenthe which can $\mid x$ e eliminaterl and the effeet wheh thewe 1 rombles have on service.

The methenls demorbet in the main Ixuly of the paper relate particularly the tosts of volume ctheritwe firtain other transmision matintenance

I
 prattioal applif.tions of methexh of measuring tramsmisuon
 athl :xperience under platht operating comelitions. The rapid growth
 tre - 1 ch sh ath allas them to be applied ons at harge scate in at sys tomatic and exomomical manmer therety providing for a quick peritulie check of the eflacione of the sarions type of circuits as they are that in sers ict.
 Ance work which in direeted primarily zowards insuring that the talking
 deasinel. There are, of conere, many elements which affect the talking

 dharateristic are la ing matataned in ateorelance with the proper htambarals. In the limal antily -is, lowewer, ath ewerall test of the trams-

 her vircuite, the koth which it should give. Tramemission lests,

In referring th tratamis-ion testing apporatis in this paper, four

[^1]

1 . 1 Transmisston Meqsuring Sel. This is .ul "e.ar Wablance" portable set sultable for lown transmianion tostinge only and designed primbrily for testing equipment amd circuits in the smaller centrol offices.

3 A Transmission Mcasuring Si This in a "meter balance " portable set suitable for both lexp and straightaw, transmisaion testing and designed primarily for lesting circuits and equipment in the larger central offices.

1. A Tronsmission Mensuring Sel. This is a "meter lablanee" sel suitable for both lowp and straightaway transmission testing athl designed for permanent installation at the larger toll oftices primarily. for testing toll circuits.
\because. I Gain Sel. This is at "meter balance" set designed for measuring amplitier gatns.

Certain other testing methods in addition to volume efticieney tests are also extensively haed in transmision maintenance work athel some of the more important of these are briefly discussed in - Ippendix A of this paper.
since the routine procedures in teating toll circuits uning the above apparatus differ considerably from those followed in the local or exchange area plant, the toll and local practices bave been considered spparately in the following diselossions:

Trancmision Testa on Toll Circuits

The importance of having available means for quickly checking the transmission efficiency of toll circuits and of economically mantalning the proper standird of transmission is evident when it is considered that in a plant such as that operated by the Bell system there are at the present time more than 20,000 toll circuits in service. The circuits making up this system are of various types and construction, depending on the scrvice requirements and length, and also upon certain other factors determined by engineering and economical design considerations.

From the standpoint of maintaining transmission elficiency betwent toll offices, the various yper of toll circuits can be divided into three general chasses: one, non-repeatered circuits, two, circuits equipped

[^2]with telephone repeaters athl three circuits equipped for carrier "peration. The latter two clasess are dike in many respects as far as the maintenance methonl- are concerned and both refuire somewhat more attention than the circuits not expipped with amplifying apparatus. The lensth amd mumber of repeaters involsed are also important factor- Which mast be taken acount of in tambem repeater and carrier circuit mantenance. Viory long tandem repeater circuits

Fig. 1 I lustraten of 1.1 Transmissien Mrasuring Set and 4.B Oscillator Installed in a Toll T'est Room
-nch, for example, as the long toll cable circuits described by Clark ${ }^{2}$ require -ferial matntename procelures similar in many respects to thane requirel in carricr matitenance.

The $1-1$ type of transmisaion measuring set getherally used for teating will circoits mats be considered ats a toll transmission test do.ak. I.ig. I slow - 1 picture of one of the latest maxdels together with an weillan for supplying the meaturing current, installed at a toll sttice for tace in romtine testing. The eet is prowided with
 with call circuits to twll uperators positions for use in ordering up dirent for twat. The elecerical mesuring circuit is designed so that teath mat! lre mate on two toll- circuits leoperel at the distant ent, or traightathet! wist whe wircuit the distant terminal of which termi-
 of the sille wpe.

 circtits between them of the three general daben mon-repe.tereal, repeatered and carrier. Othicen A and I) are ermippal with tralle miswime mesuring seta of the tope shemon in lige 1. I logical wathe

Fig. 2 Schematic Diagram of Typical Toll Cireuit Layout to Illustrate Cienoral Methos of Testing Son-Repeatered, Ropeatered and Carrier Ciremils
procedure for the arrangement in Fig. 2 is for olfices . I and 1) to test the non-repeatered circuits 1 to 1 and $1 / 1$ (o) $1: 3$ heving them lonped (wo at a time at the distant terminal offices 13 and Co . By "eriangn- $^{\text {a }}$ lation measurements" on any three circuits in each group, the equisalent of each individual circuit can lxe readily computet.

For the circuits is to ! extenting between offices i and I) equipped with telephone repeaters or carrier, straightaway measurements can be made in each direction with the two transmission measuring sets provided. Lomp tests conhl, of coures, alsers be made on the circuits from cither office A or 1 . but this woukl require cutting
the telephone repeaters out of one circuit or hating available a nonrepeatererl or mon-carrier circuit, since the gatins of the repeaters in the iwo diecetion: introluce variable factors in the owerall equivalents Which do mot permit triangulation computations to be made. The werall teath (i) the carrier circmits do not differ in any way from the tex - on repeaterex or non-repeaterel circuits, each carrier channel lxing tenterl as a separate circuit through the switchboards. The

Measuring Sels
measuring corrent is mexhbited and demoshlated in the same manner .s voice correman meler regular operating conelitions and the measured equisalem, therefore, indicates the werall transmission effeciency.

The map of Figg, 3 shows the locations in the Bell System of transmission meaturing sets of the general type described above. At a number of the larger whl eenters, such as New York amel Chicage. Where the bumber of toll circuits to be tested reepuire it, several transmission meatsoring sets atre installed. There are now in operation
 longer absl more important toll routes in the system. The shorter whl circnits taliating witt from the large whl emters ate also tested with these same sets. St the smatlere eftices where fived transmission mataring sets are wht warramed, the toll circuits which cannot be pirkeyl up by the larger flices are tested by portable transmission
 Holluce work.
 pregram is to have records of the detailed makenp of the whl cirmit which give both the circuic layout and the expipment sane i.atel with the circuits. Such a record is valuable, net only in giving the maintenance forces a pieture of the circuits and expipment which they dee

Fig. 4 sample of a Toll Circuit Layout Record Cord
testing, but it also furnishes a means for establishing the tramsmisuon standards to which they should work. When transmission teste indicate trouble, this record becomes of particular service in Jocating and clearing the calse.

Fig. I shows at sample of the lype of toll circuit dayout recorl card which has proven very satisfactory and is now generally used in the Bell System.

Telephone Repeater and Corrier Maintenance. Voice frexueney telephone repeaters were disensised in a paper by Messrs. Gherardi and Jewett ${ }^{3}$ and carrier systems in a paper by Messrs. Colpitts and Blackwell.' The various arrangements of amplifiers to prowicle for telephone repeater and for carrier operation as described in these papers make up integral parts of toll circuits and introduce chements
${ }^{3}$ Cherarli and Jewell, "Telephone Repeaters," Transactions of .1. 1. F. F... 1919. Vol. X.XV111, part 2, pps. 1287 to 1325.

- Colpitts and Blackwell, "Carrier Current Telephony and Telegraphy," Trunsactions nt A. I. E. E., 1921, Vol. XI., pps. 205 to 300.
in the circuits which hate (w) he given particular lacal attention in maintaining the werall tran-mis-ion cilicieney: Since both telephone repeotters and carrier conplo! the sime types of vacuum tubes with very similar arrangement- for power supply, the maintenance reguiements for the twa are muth the same. The chief items to fe oboersed in both corrior abd rephether mantenamee are that the

Fig. 5 Chemotii Diagram of a 22. Tipe Telephone Repuater Shewing Impotant I.ox al Transmiasion Maintenather Tests
kept as constant as po-ible, that these gains remain fatirly uniform within the range of freptencies involsed, and that conditions do not exist which will disturl, the encerall batance between the circuits and metworks sulticiently to cathee poor quality of transmission.

Consithering telephone repeater maintemate, Fig. is shows at shematio diagran of a 2! ther repoater and indicates the impentant test which are mate fexatly to insure that the epparatus is functioning in at atinfactory maturer as at part of at toll circuit. The numbers Applied to the different tents listed in the figure show approximately the points in the repeater circuit at which the tests are marle, the purpenes of the tents being evilent from their names.

When carrier oluration is applied for toll circuits, an additional tranminaion sintem is introlucal involsing the ure of currents of higher freguencies than thone in the wice range. from a main-

(1) Filament, Plate and Grid Battery Tests
© Vacuum Tube Activity Tests
(1) Channel Rectified Received Current Tests
(9) Modulator Output
(3) Modulator Band Filter Output
© Channel Loop Gain Tests
O 21 Circuit Balance Tests on Voice Frequency Circuits
Overall Tests of Complete Carrier System
(3) Tests of total Carrier Output Current into Toll Circuit.
(3) Tests of Carrier Current at Repeater Outputs and finally Rectified Received Current at Distant Terminal
(2) Overall Transmission Tests

Fig. 6 Shematic Diagram of a Carrier Telephone System Showing Important Transmission Maintenance Test, fur (arrar Refeaters. C.urrier Terminals and Overall
tenance - 1 andpoint thin mean- that certain additional temting methexts mast loe comploged whish will insure the proper gencration and transmistion of the earrier currents and that the modulation and demoxlalation of the wice fregmeney currents is accomplished without distortion or exces lase in werall tramsmis-ions.

To give a general pieture wi the more important features incolved in the trathmission mathenathe of carrier sy-mems, Fig, if shows a achematic diagram of a carrior livout hating one carrier repeater. The particular arrangement shemn is for the type 13 system described by Jowors. Colphits and Blackwell. although the same general maintenance con-iderations , pply w aty of the present systems. It will fe noted that three aceric- of tests ate reaplired, one for the carricer repeaters, ome for the carrier terminals and une for the system as a whole. The noture of theee sarions tests and the approsimate peoints in the carrier system where they are applied will be evelent from the nomes and numbers used in the ligure.

For both telephone repeaters and earrier systems, prowision is made in the regular tratink equipment an that the tests ean be very quickly applied lath as a rentine proposition and alat when required for trouble location.

The trambminson comelition- in the exchange areat plant are improstant mot only from the -tandpuint of insuring gexel lexal service but alon to insure gexel toll service, since the local plant forms the ferminals of toll connertions. The exchange or local phant offers a somewhat different transmission mantenanee problem than the toll phatt, particularls with re-peet to the rontine testing procedures
 will be exilent when it is comstered that in each rity and town a compleqe lelephese -3-tem in in operation which involies the use of
 three semeral t!pe of telephone switching eguipments; manual, patel mathine switching, amel stop-hy-step mathine switching, and in certain cition cembinitions of there apmpments. It is estimated that at the preatht time in the Bell hy stem there are in the meighbor-

 witige which ma! dirextly attere the tramsmision of speech.

The geoneral elame of awhenge ates circnits in looth manual and

statelpoint, are linted in Table 1. The oprenting features of mothmal wephone systems are generally well know do dre , den the featuren
 for many years. The panel mathine switching system which is a rehatively recent development was described in a pager by Mesors. Craft, Morelosuse and Charlesworth. ${ }^{5}$
T.1131.1: 1

C'ansification of Circuits in the Fixchange . Irea l'ant Important from a Fransmission Maintenance Standpoint
M.NEA. OFFHES

l.axal switchlobards	I. B. X. switchberarls	roll switchbratuls	Toll firsthareds
Cord circuits	Coret circuits	Corsl circuits	(ompusite set circuits
"perators" circuits	()perators' circuits	() perators' circhits.	Composite ringer circuits
Trunk circuits	Trunk circuits	Trunk circuits	Phantom ※ sim-
Mincl. circuits	Miscl. circuits	Miscl. circuits	Miscl. circuits

Suberilerse loops and sets
()perators' telephone sets

Macmine Siwitchint; Offices

Panct	Step by Step
1)istrict selentors	Connectors
Incoming selectors:	Toll selectors
Trunk circuit*	Trunk circuits
Miscl. circuits	Miscl. circuits

Subsecribers' hoops and sets
"perators" telephone sets for
Special service positions
theneral classes of exchange area circuits involving equipment other than contacts and wiring which affect telephone transmission.

While it may appear at first hand from the above discusion that tramsmission testing in the exchange plant is a complieated and expensive matter, this has not prowen to be the case. It has been found by experience that the systematic use of transmision measuring sets, following the tenting methods which hase been developed provides a means for periodically cherking transmission conditions with at relatively small amotut of tenting apparatts and with a small mantenatnce force. . Ill of the transmis-ion circuts exclusive of sul)seribers' lines in at $\$ \mathbf{1}, 000$-line eentral oftice, cither mantal or machine switching, cat, for example, be completely tested by two men in a

[^3]periex of trem (wo lo four werks, lise and one-half s-hour days per weck anamed) any trouble fomml being cleared as the testing work is done. The mantenance of the subecriters' lines is not included in this work since it is taken care of by wher methods as outlined later.

In order ton give a kenceral picture of the :application of transmission

I4g. 7 Illustration of a 3.1 Transmission Measuring Set Being Operated in a Wanual Itfice
 terminals of a circuit are abalahle is in cord circuits, a leop test through the cireuit is mate. In testing tronk circuits two trunks are lenged together at their distant termimats and a measurement mate on the lwa combined.

Transmiwion Tists on Mantal tixaliange Area Circuils. In contral whte. I'. 13. X. athl toll -witchhomds, the wod circuits and associated Operatore virenim are teatal la using a portable trasmission measur-

 -hown in fig. a kemerally laing emplosed lor this work. "perators sets are inspefed periextically and tramsmitter and rectiver efficiency terting methents are under dield trial which pron ide a means for testing there instruments in central offices. The miscellameons transmision circnits in an oftice are tested at the peints where they can be mone conveniently picked up. The teats on toll trat batd cirents are made at this board amd inwolse chied! lexp teats on the erguip)ment asenciated with the toll circuits in the oflice and texts on the toll line circuits between the toll testboard amd toll switchbord.

Transmission Tests on Sachine S.ikhing (ircuits. The transmin--ion circuits in panel machine switching systeme are identical to thene it mambal syatems, while these circuit- in sep-l)y-step systems are of a different design but esentially the sitme as lar as tramsmisaion lonses are concerned. Transmission tests on mathine switching circolits are similar to those on mannal circuits but involse special methorls for pieking up the circuits and hodling them while the measurements are made. The standard types of transmission measuring sets are Hsed in this work in conjunction with the regular testing equipment prosifed in the machine switehing ofties and the methons which have been developed offer a guick and eonsenient means for making the tests. In manual offiee the circuits terminate in jacks or plag- at -witehbards where they are reatily aceesoble. In matchine switehing syatems, provi-ion is mate for terminating the circolts in jacks at teat desk or frame where they ean be picked up hy patching cords and teoted ate comeniently at the correoponding types of circuits in mantual offices. Machine switching systems ofler an important aldantage in transmis-ion testing work, particularly in trunk testing, in that the cirentits to berect can the lowped athomatically by the tase of dials or selector te-a sets, therehy doing away with the necesoit! for hating someone at the distant oftice complete the loop \rightarrow mannally.

In patnel machine swithhing officen the circuits inwolving trans-mis-ion equipment corresponding torer circuts are the "district" and "incoming" selectors. These are teated heveling up the transmisaion measuring set at the district or incoming frames amel connecting the set to the teat jacks anaciated with the circuits. Teats on trumbis leetween manod and pancl machine stitching wfices where
|xith :y-teme are in operation in the sume eachange area are generally mate from the manual whice, the lempe leeing dialed from the A switchlatard, while trunk= between two machine switching offices are te:terl from the ontgeng end of the trinks.

Fig. shows at 3-1 tramsmiswion measuring set as used in a machine witching oifice read! for making tests on district selectors. To

1. ig. S - Illuatration of a 3. I Trammission Weasuring Sel, sel up, in a Pand Machine suitching 1 there for Tiating Wistriel wrectors
illa-trate the semeral methed of testing pabel makhine switching circuits, the upper diagran of ligg, ! shows the schenatic arrange-

 conneection mate to the outgening end of the trunks to office 13 through the teat jack at the tronhle elenk. A stamblard solecter test set used

[0] Apparatus in Transmission Circut
(1) Arrangement showing method of making overall Transmission Tests on Trunis between wo Dane: Machine Switching Offices

(2) A-ranzement showing method of makirg overall Transmis sion Tests on Trumits betwern Two Steo by Step Wohne Switching offices

Fig, 9 -Shematic Diagrams Showing Methols of Daking Transmission Tists on I Trunk- Between Pand Marhine Switching Oftices and (B) Between Stop by Step Machine Switching I)flices
matically forped together at office 13 by the use of the selector test set which functions to comnet the trunks to the two spare multiple. circuits previously cross-connected at office 13.

In step-hy-step machine switehing offices the circuit- involving transmission equipment corresponding to cord circuits are the contnectors. Each connector is provided with a test jack through which connection can be mate to a transmission measuring vet and the
 contain any equipanent wher than contats and wiring in the trans-
 nertors if it is denireal to check the wiphes comtacts and wiring. Toll electors which intohe equipment in the transmission circuit can alou be tested in the same manmer as connerfors. Trunks between mantud and mathine switching offices can be most conveniontly teated from the mannal offier, the trunk kops being established directly ly diding.

Tor illustrate the seneral methex of testing step-loy-step mathine switching circolts, the lower diagram of Jig. 9 shows the schematic circuit arrangement for teating trunks between two machine switching wffices. The tramsmis-ion medsuring set is lesated at office A in a penition so that it can le patched to the ontgoing trunk repeater test jacks and an arrangement for dialing and bolding is connected to the tranks thengh the measuring set. At office B the apparatus in one trank is divennetted and this trunk used ats a test trunk by crossconnecting it at the main distributing frame to a spare subscriber's multiple terminal. . Ill trunks in the group can then be tested by elialing ower them, from oftice A, the number of this spare terminal at office 13 which attomatically lorops them back over the test trunk.

Maintenance of Subscribers' Lines and Stations. The circuits making up sulseribers line from switchboard to instruments consist simply of pairs of conductors, almost always in cable, with the necessary protective devices. These can be checked by certain d-a. tests described in a rewent paper. ${ }^{6}$ Rifuipment is also prosided in lexal lese lramels for wee in making talking transmission tests between the station amd the lest lobards. Aceurate machine methods for detormining the eflicieney of transmitters and receivers have Ieen developed for testing new instruments and instruments returned frome service.

General Sheme of Testing Eishange Area Circuits. The plan I cing folloned in the Bell Sy:tem for systematically checking the tramsmission conditions of exchange areat circuts is to have all offices tuntad perirdically by men eqpipped with portable transmission meaturing sets when trad form olite to otice. It has leen found lye experiome that dfer ath dhice has once |reen testerl and any transmaston troulden climimated, it is only necessary thereafter to make fath-mission tiats ot infreptomt intervals, these subsequent tests

 trateling forse with a small atmonent of testing equipment. This reable in a ber wammical tramsmission testing pregram whle .11
 s.ttisfaterth.

Fig. It shows a typical tramsmission testing team layomt. The toan is equipped with an antomobile which proves an eeonomical means of transportation between offices and exchange areats and

Fig. Il- Illustration of a Typical Transmission Testing Team Layout
provides a convenient method for carrying the testing equipment. During transportation this equipment is packed in padded trunks which insures against injury. In this particular case the equipment includes, in addition to transmission testing sets and oscillators, other apparatus such as a wheatstone bridge, crosstalk set and moise measuring set so that other maintenance work may be done in connection with transmission testing whenever this is desired.

Restlets Accomplistif:

The results accomplished in transmission maintenance work can best be appreciated by considering the kinds of troubles which adversely affect transmission and which can be detected and eliminated hy routine testing methods. Consideration is first given to the general causes of troubles which are detrimental to both toll and local trall--
misunth, and latir the feature in this commection more particularly

The diflerent ra-me of eirentits kiven in Tahle I are mate up of bariou- combsations of the following individual parts:

1'las	
Jatks	
Kus	
\|le.t1 finl	
(i)rixens	
11 ring	
	1 ross-combetion
	Wutatle.
Tramsamither	
Revelues	

The almae parts are combined in wrious ways (o) matke up) the complete egreratime circuits such ds cord circuits, operators' circuits, trank eirntuts. ete. liath complete circuit cathes a delinite normal le in (1) wholume trathomisoion which mast be taken account of in de-igning the platht toret the varions service reguirements. If, bownter, atly of the parts sed are defective, if the wrong combinations of part are lacel, or if the installation work is mot correctly
 aftert the tramomisaton when the particular circuits involsed are emploned in an merall connedion.

Classifiation of common 9 ypes of 7 roubles. Au analysis of a large amome of transmisaion leating data has made it pussible 10 develope a delimite trouble chasification which is particularly helpful in tran-mianion matatenate work and which permits the most
 perience has shawn that the troubles found can be divided into 1 wo general elames. I troblben which ain be detected either bey simple d-e or atc. pats in connertion with the regular day-byeday main-
 Which coll he deterted mom reatlily by transmisaion measuring sets.

1 las 1
$11 /$
f srimml
m

[110~13
1:hetrinal thetects Imosrest Wiring

Hish Rersistance
I.0い Invulalion

If, in making tran-mionion twas in a rentral wifice a high per-

more rigid lecal maintename routine pating partioular . 1 temtion to the wpe of circuits in which the troubles are lenated. The percentage of Chase 13 trombles is tow ds a rule ats high as the (loss 1 troubles and experience has shown that when Clas B trombles are once eliminated by transmission lesting metherds only infreguent subserpuent teats are required to take care of dily additional trouble of this class which may get into the plant.

In determining what constitutes all exeess loss. the value of the tratsomission as well as the practical design and mandfacturing consielerations to meet operating limits are taken aroomt of. In exeess sain is also considered as a trouble on cirenits equipped with amplitiers. since this may produce poor quatity of tramsmission which is likely to be more detrimental to service than an exeess loss. The value of transmission based on economical design considerations varies, depending on the first cost and ammal charge of the particular types of circuits inwolsed. I gath of one TVE in the whllame is sencrally worth more, for example, than one in the local plant, since it crats more 10 prowide. In transmission maintename work the cost of making transmisson tests and clearing trouble is balanced against the value of the transmission gained for the purpose of estal)lishing (conomical transmission limits to work 10.

Specific Examples of Common Troubles Found and Their Effect on Transmission. Certain kinds of troubles which are detected by transmission measuring sets do not calbe excess losses which can be quantitatively measured. Such troubles are, however, readily detected hy "ear balance" pransmiswion measuring sets in that they catue noise or scratches and by the "meter balance" sets from thetuations of the needle of the indicating meter. The most common trouble of this kind is due to cutents or opens which may be caused by dirty connections, loose connections, improper key and relay adjustments, etc. While not causing a quantitative value of excess loss. this class of trouble is very detrimental to transmission and more serions in many instances than fixed excess losses. Indeterminate troubles of this nature are given an arbitrary excess loss value hased on experience.

Considering troubles which give delinite losses, the most common kinds are caused by electrical defects in equipment, incorrect wiring of equipment in circuits and wrong eypes of equipment. The other classes of troubles, such as crosses, high resistances, and low insulation, also generally give meaturable exces losses but these are not as common in the plant, since trombles of this nature are more likely to affect the signaling and operation of the circuits and are, therefore,
rliminated ht the rgular mantenthe work．Missing equipment
 adereds in other wat－
 they callec，ate kiven in the following t．Whe．

Tyが加（ircuit and liquipment

にetreating couls in cords，incoming trunk circuits，setect－ ors，toll connectors

Supersisury relins in ＂／＂corl circuits

Bridged ritardation coils or relays in toll cural circuits，com－ prosite sets，cummet． ors and step－by－atep ropeator
Reprating coils on lentloct telt switching Irunks
Inductoon coils in op－ ＇r．itors＇telephone sets

C．Itlse off Irouble	Ipproximate Exacess Transmission 1．oss ${ }^{7}$
1．lectrical delects benerally short cir－ cutcal turns	1.5 to 5.0 TU
Incortat wiring bien． erally reverseal wimi－ ings	2.1101 .3 .0110
1．letrical defects t？pen nun inductive winding	Weout 2.511
I leetrical defeets Been arall short circuiterl 1urIM－	1.1 to 5.0 TC

$\begin{array}{ll}\text { Wrang wipe of erpuip－} \\ \text { ment ineorrect wir－} \\ \text { ins．} \\ \text { I lectrical defects．In．} & 1.0104 .0 \mathrm{Tl} \\ \text { correst wring }\end{array}$

There are of course，man！other specilic typs：of troubles delecter by transmis－ion thsts which give delinite quantitative losses but the above will serne to illustrate the value of this testing work in climinat－ ing everon lesace in a telephame platre．

Mainenance leatures Petular to Telephone Repeaters and Carrier Systoms．The same elasilication of tombles dinctused abowe applies （1）reproters athl carrier stations．Amplifier equipment，bowever， empleys certain foature which are not common the the more simple Whphome circuits and some of the trombles which may wecur if the proper matutenane procture are ont followel will seriously affect
 prosieded with sperial testing equipment which is atways available for weve vither in rontine maintonate or in lowating and clearing amt｜roubles which mot exom in servire．Sutsmatic regulating devies are atsen prosideal wherever this is praticalale in order to
 mosinternater

[^4]The important elements in hoth repeaters and carriers which mos directly alfeet tramsmission or estlace service tronbles in other Was are a follows:

hament Batherie-	Pouchtmot
Phate Butteries	Filters
Cirnd Batteries	Transmission Equaliarm
	Signaling laguipment
Whaneming Equipucm	P'atching Irrangement

The cents omtlined in the matn hotly of the piper aim to insure that the above esemtial parts of repanter and carrier cirents ate fonctoning properly and that the equipment as a whole is giving the elesired results in overall tramsmission eflicieney.

Coverision

The above disetsaton of testing merhorls and the resalts accomplished indicate how a comprehensive and ecomomical transmision maintenance program can be applied in a telephone plant to check the volume efticiency of the circuits against the established standard. Consideration is continually being given to new testing methods and their applications in order that further improvements in service may. be effected and increased economies in testing taken advantage of.

APPENIDAK .

Transulssion Emfichexey Tests

Te-s of wolume efficiency often need (1) be supplemented by other methots of testing in transmission maintenance work. Transmission efficiency lonth as regards volume and quality may be seriously affeeter by moise or crosstalk, and tests for any conclitions of this kind are therefore important in maintenance work. Furthermore when efficiency tests show excess hoses or unsatisfactory circuit conditions other testing methods prove very valuable in locating the cause.

To illustrate this phase of transmission maintenance the principles of some of the more important testing methods are brielly described below. Two of the tests employ a method very similar to foop transmission testing while others employ the well known "null" method. A special method employing three winding transformers and amplifiers widely used to determine impedimee balance conditions between lines and networks is also describerl. Several methods which involve simply eurrent and voltage measurements have been mentioned in
this paper hut these are kenerally well known and therefore reguire no detailed dencriphion.

In the circult shown in lig 11, if a-c. pewer is supptied to a circuit kmown at the "disturbing" cirenit and tulalances exist hetween this circuit and a second kown as the "disturled" circuit, power will be tranferreal from one circuit the the other cansing erosstalk in the second. A definite power transmission lass therefore takes place between the two circuls which can be measured by a loop transmission tese similar to the elficieney leses described in the main body. of the papur. An adjustable shant called a "rrosstalk meter" cali-

Fig. 11-1) i, mam showing I'rinciphes of Crosatalk Measurements
brated in either $7 l^{\circ}$ or in crombalk units is sulstituted for the two rircuits. With the some poller supplied alternately to beth the "disturbing" circuit and the meter and with the atoding and recoiving end impertance conditions ats shown, the meter shumt is adjusted until, in the opsinion of the obserser, the amosyance produced by the tone in the reveiner is julged to lex equal for the two comelitions. The reating of the shamt if there was no distortion of the line crosslalk current- would then give the volume of crasstalk which conk I: © © testing. Ilowerer, thin felation only holds approximately in practise -ince the lime crombalk measureal is produced by various currents hasing dilleremt phate relations allal a rertain amount of distortion

 -rimutalk umit- rather thati Tl'

The common method of messuring noise in at trephome eironit is shown in the diagratm of ligg. I2. In this 1 est att attificial moise current prodaced by a generator of combtath pewer P^{\prime}. called a "noine standarel" is substituted for the line moise curtent. If the two mome currents were exactly alike as regards wase shape and the relative magnitude of the Frefuencies involved they would produce the some tone in the receiver and their volumes conld lee mode cutual by aldjustment of the noise shant. The power ratios, $P_{r} P^{\prime}$, as indicated

Measurements of Noise
Fig. 12- Diagram Showing Principles of Noise Measurements
ly the shunt, would then give a measure of the line noise in terms of the nonse standard. This condition, however, is not met with in practise due to differences in wave shape of the two noise currents. For this reason noise measurements are made by adjusting the noise shunt until the interfering effects of the moise on the line and from the shunt are julged to be the same for which condition the power supplied to the receiving network by the noise standard is not necessarily the same as that supplied by the line. The receiving end impedances howeser, are kept as nearly alike ats practicable to prevent reflection losses.

B.ansce TESI)

The testing arrangement of figg. 13 shows the principle of the 21 circuit balance test referred to in the main buly of the paper in connection with telephone repeater amd carrier maintenance. In this test the gain of an amplifier calibratted in $T L^{\top}$ is used to compensate for the loss through a three winding transformer or ontput coil of a tepphone repeater. If the impedances of the balancing network and line were exactly alike at all frequencies, i.e., $Z_{n}=Z_{L}$, and no other unbalances existed in the circuit none of the power -upplied by the amplifier to the input of the three-winding trans-
former would the transfered to the output, i.e., the power ratio $P_{s} P_{r}$ would le intinity. However, this ideal condition cannot be produced in practise so that there is always a finite power loss between the input and sutput of the transformer which can be measured approximately hey the gain of an amplifier calibrated in TU. An internal

Measurements of Impedance Balance Belween Lines and Networks (21-Circu" Tests on Te'ephone Depeaters and Carrier)

F12. 1; Minkram Showing I'rimpiples of 21 Circuir Balance Te-ls
path for currents which may proxluce "singing" or a sustained tone is rstablished if the gain of the amplifer $P_{r} P$: is greater than the loss $P_{1} P_{r}$ thromgh the threw-winding transformer. Is unbalances between network and line beeone greater the bos through the three-winding transformer heronne leos therely repuiting less gat in the amplifier to protuce a "singing" comdition. It shombl be noted in this connewton that 10 produce the condition described abose exactly, the corrent received around the "simging" path must be in phase with the starting current. In practian this comblition obtains sulficiently acturately as that the gatn of the amplifier required to produce "singing" gives atn apposimate measure of the impedance balance lnetweon line and network.

Diggram (at of 1 ig. 11 show - the whestatone bridge circuit for d-e. resistane meaburemonts. It is untheresory to deseribe the well known priseiples of thin heridee but mention is made of it here in view of it-impertance atal use in telephone mantenance work. It supplies an imbiaperable methol of mesturement for certain trouble locations, such an crossen and gromals and emborlies the fundamental principles of all mull tosts.

Whaktam (b) of Tig 11 gises a bridge circuit for measuring impedathes, the particular arrangenent shown being for measurements of

express inpedance in terms of its resistane componemt and equil alent inductance or capaty. In measuring an imperdare hating inductive reatance at any frequeney, f for eample, a halaner gives $R-R_{\text {r }}$ and $L-L_{x}$. It the frepuency f, the eflective resistance is given diectly loy value of K and the reactance low the relation, $2 \pi f L$.

(a) Direch Current Resistance

(b) Impedance having Induclive Reaclance

Mull Method of Measuring Resistance. Reactance and Impedance
Fig. It [iagrams Showing Principles of Vull Methods for Measuring Resistance, Reactance and Impelance

The impedance is the bectorial sum of these two or $\backslash R^{2}+(2 \pi f L)^{2}$. In maintenance work involsing impedance measurements as will be moted in the next testing method described, the effective resistance component and the equivalent inductance are generally ted direetly without combining.
j. Nedicrements of Line Impedince and Locition of Impeninote Irregularities

Fig. 15 shows a telephone cirenit connected to a bridge and terminated at its distant end in characteristi- impedance. If the circuit has approximately uniform impedance throughout its length the rexistance and equivalent indectance curves of this imperlance within a range of frequencies will be fairly smoth as indicated by it and (of the figure. The curves are not perfectly smonth since it is not practicable to construct the line for perfect impedance uniformity: If at some point in the ciretht an irregularity is present such as an omitted loading coil, an inserted length of line of different construction, etc., which changes the impedance, this will protuce a perionlie change in the resistance and inductance curves A and C such as shown by Curse B. Curse C will be changed in the sane way as Curve A but for simplitication this is not shown on the eliagratr.

The change in impedance in the cirenit reflects some of the current sent out back 10 the sending end where it add, wor statrate from
the sending corrent depending on the phase relations of the two currents at any partioular frequeney. Since impedance equals $E I$ its value changes os the value of I changes. This is made use of in line imperamee measuring work to give at loatton of impedance irregularities which may evist somewhere in the line.

-ig. 15 Dhagram amf Imperlane torses Showing Principles of tine Imperlance Weasurentonts by Sull Mathol and Iocation of Imperdance Irregularities

Referring to figg, $1 . j$, let d equal the distance in miles to an imperlance irregularity and f, one frequency at which the resistance compenelt of the impertance is a maximum. The next maximum foint will wrour at at frepueney f_{2} such that as the frequency has lean increased, one complete wate length is adeled in the distance traced be the rellewted current. Masimum points at f_{3}, f_{4}, ete., "etur in the same why as the frequency is increatsed. Considering the two b.llese f_{1}. Ind f_{2} let

> 1. whit! of vurrem in mikes per second
> II; wase length at freptreney f_{1}
> $\mathrm{II}_{\text {: }}$ = wore length at fequensy f_{2}
> \cdots - member of wave lemgtho in distance tatreled
la refletid, urient in $2 d$.

It frepuenty f_{1} then.

$$
\cdots \quad \begin{aligned}
& 2 \cdot d \\
& H_{1}
\end{aligned}
$$

and at f_{2}.

$$
\begin{gathered}
1+1 \quad \because d \\
H=
\end{gathered}
$$

aloo. at jo. $\mathrm{IF}_{1}=V^{\prime} j_{1}$
and at f_{2}. $\mathrm{H}_{2}=\mathrm{V}^{\prime} \mathrm{J}_{2}$

Subatituting alose

$$
\begin{aligned}
1 & =\frac{2 d!f_{1}}{1} \text { and } \\
x+1 & =\frac{2 d f_{2}}{1}
\end{aligned}
$$

Substating.

$$
1=\frac{2 d f_{2}}{1}-\frac{2 d f_{1}}{1} \text { or }
$$

$$
d=\frac{1}{2\left(f_{2}-f_{1}\right)}
$$

Which is the distance in miles from the sending cond of the circuit to the point of impedance irregularity. The velocity of propogation I' is not exactly constant within the entire frequency range but does not vary sufficiently to mitterially effect the accuracy of impedance trouble locations by this method.

Mutual Inductance in Wave Filters with an Introduction on Filter Design

By K. S. JOHNSON and T. E. SHEA

I.URT 1

l'rinciples of (iencralized l) tssymmetrical Netaiorks. We shatl consider first the impalanco athl propatgation characteristics of certain generalized networks. It can lxe shown that any passize network having ane pair of input and one puir of output lerminals may, at any frequency, he completely and cadequatily represented by an equitalent T or π net-

 10 Its Im,use Imperdinces
*oork.' The imperlance amb propagation characteristics of any such networt mats loe exprent in terms of its equis alent T or π network. These thatoweristics are deline lese (1) the image impedences, and (2) the Iransfor constant, the latter induling the attentution constant ${ }^{2}$ atel the phase constumt? In the case of a symmetrical network. the imbere impelate emel the mansfer emstant are, respectively, the aleratior impedanes (on , harateristic imprdancess and the propagatron constant cmplesed by (\quad maplell, Zotel, and uther. The terms insulat will lxe sulacepently wefined.

Com-aler the aliosmmetrical T wetwork of Fig. 1 . If the $3-4$ (trminals of the 7 metwork are conmeeterl to at imperlance $Z_{t_{2}}$, the

[^5]impalance lowhing into the 1 network ot the 1-2 terminals will be
$$
Z_{1}=\Pi_{1}+\frac{Z_{1}\left(Z_{1}+Z_{1}\right)}{Z_{c}+Z_{11}+Z_{I_{2}}}
$$
similarly, if the 1-2 terminala of the I network are commerted to an imperance $Z_{t_{1}}$, the impertance lexking into the 3 - 1 terminals of the T network will be
\[

$$
\begin{equation*}
Z_{3}=Z_{13}+\frac{Z_{1} \cdot\left(Z_{1}+Z_{L_{1}}\right)}{Z_{1}+Z_{1}+Z_{1_{1}}} \tag{2}
\end{equation*}
$$

\]

If $Z_{1} z_{2}$ is equal to the terminal impelance $Z_{i_{1}}$, and if, similarly, $Z_{3}+$ is equal to the terminal imperlance $Z_{l_{2}}$, the network will then be terminated in such a way that, at either junction ($t-2$ or $3-1$), the impedance in the two directions is the same. In other words, at each junction point, the impedonce lowking in one direction is the image of the imperance loxking in the opposite direction. Vinder these conditions $Z_{I_{1}}$ and $Z_{I_{2}}$ are called the image impedances of the T network. If equations (1) and (2) are solved explicitly for $Z_{I_{1}}$ and $Z_{l_{2}}$, the following expressions are obtained:

$$
\begin{align*}
& Z_{H_{1}}=\sqrt{\frac{\left(Z_{1}+Z_{C}\right)\left(Z_{1} Z_{B}+Z_{A} Z_{C}+Z_{B} Z_{C}\right)}{\left(Z_{B}+Z_{C}\right)}} \tag{3}\\
& Z_{I_{2}}=\sqrt{\left(Z_{B}+Z_{C}\right)\left(Z_{A} Z_{B}+Z_{A} Z_{C}+Z_{B} Z_{C}\right)} \tag{1}\\
& \left(Z_{A}+Z_{C}\right)
\end{align*}
$$

If $Z_{o c}$ is the imperlance losining into one emb of the network with the distant end open-circuited, and if Z_{s} is the corresponding impedance with the distant end short-circmiterl, it may be shown that the inage impedance at either end of the network is the geometric mean of $Z_{o c}$ and $Z_{s c}$. What is here termed the image impedance is, therefore, equivalent to what kennelly has called the surge impedunce. ${ }^{3}$

The propagation characteristics of a dissymmetrical network may be completely expressed in terms of the transfer constant. The transfer constant of any structure may be defined as one-half the natural logarithm of the vector ratin of the steady-state vector voltamperes entering and leaving the network when the latter is terminated in its image impedances. The ration is determined by divieling the value of the vector volt-amperes at the transmitting end of the network by the value of the vector volt-amperes at the receiving end.

[^6]The real part of the transfer constant, that is, the attentation constant, is expressed hy the above delimition in mapiers or hyperbolic radians and the imaginary part, that is, the phase constant, is exprensed in circular radions. The pratical unit of attemuation here

Fig. 2 Cencralized Symmetrical T Nelwork Connected to Impedances Equal to Its Image Impedances
used is the transmission unit ($1 T C=.11513$ napier). It can be demonstrated that the transfer constant, 0 , of the 7 network shown in 1 iig. 1 is

$$
\begin{align*}
& 0=\tanh \sqrt{ } \sqrt{Z_{s c}}=\tanh \quad \begin{array}{l}
\left(Z_{A} Z_{B}+Z_{A} Z_{C}+Z_{B} Z_{C}\right. \\
\left(Z_{A}+Z_{C}\right)\left(Z_{B}+Z_{C}\right)
\end{array} \tag{5}\\
&=\cosh ^{-1} \sqrt{\left(Z_{A}+Z_{C}\right)\left(Z_{B}+Z_{C}\right)} \\
& Z_{C}{ }^{2}
\end{align*}
$$

in which $Z_{o s}$ and $Z_{s c}$ are, as previously chefined, the open and shortcircuit imperlanes of the network. The ration $Z_{\text {sc }} Z_{o c}$ is the same at both ende of any fresive network.

Principles of Gencralized Symmetrical Netzorks. Consider now the impedance and prophgation characteristics of the generalized symmetrical seructure shewn in lig. 2. On account of the symmetry of the structure, the imatge imperlances at both ends are identical, and from equatien (3) or (1) their value may be shown to be

$$
\begin{equation*}
Z_{1}=1 Z_{1} Z_{2}\left(1+\frac{Z_{1}}{4 Z_{2}}\right) . \tag{6}
\end{equation*}
$$

In the case of a symmetrical 7^{\prime} structure, such as is shown in Fig. 2, the impedance $\%_{1}$ is called the mid-series image impedance. The signibeance of this twem will be eviclemt, if the series-shunt type of

- If II Vartin, "The Tranamission I nit and Telephone Transmission Reference Gbatm," Bell צvs Tehh. Jour., Juls, 1924. Jour. .1. I. I.. F.., Jol. 4.3, p, 504, 1924.
"Zoled, " J., "Theory and I Cesign of Unilorm and Composite Electric WaveFblers," Bell Syst. Tech. Jour., Jan., 192.3.
- Pructure shown in Figg. 3 in regated as male up of symumetrical T networks or sections, the junetions of whith oectur at the midforints of the series arms.

S川pane now that the strseture of Fig. 3 is romsiflemel to be mathe up of symmetrical π networks, or seetions, wath of which is represented

[Fig. 3 Ceneralized, Recurrent Series-Shunt Network

Fig. 4 Generalized Symmetrical π Network Connected to Imperlances Equal to Its Image Impedances
as in Fig. 4. By methods similar to those employed for the 7 network of Fig. 2 it can be shown ${ }^{5}$ that the image impedance of the generalized π network of Fig. 4 is given by

$$
Z_{I^{\prime}}=\sqrt{\frac{Z_{1} Z_{2}}{1+Z_{1}}} \begin{align*}
& 4 Z_{2} \tag{7}
\end{align*} .
$$

In this symmetrical structure the image impedance is called the midshunt image impedance.

The image transfer constant of either a T or at π symmetrical structure is ${ }^{3}$

$$
\begin{equation*}
\theta=A+j B=2 \sinh h^{-1} \sqrt{\frac{Z_{1}}{Z_{2}}}=\text { cosh } 1\left(1+\frac{Z_{1}}{2 Z_{2}}\right) . \tag{}
\end{equation*}
$$

In discu-sing the generalized networks of Figs. 1, 2 and 4 , it has lreen assumed that the networks were terminated in their respective image impedances. In practical cases, filters mothst te designed to work between imgetlances which are, in generat, not exactly erfual to their
image imperanere ot more thon one or a few frequencies. For a gemeralized struture, ath de that of lig. 1, operating Inetween a sendingsend impolance $\%$ and at retcisine-end impodance Z_{R}, the current in $\%_{R}$, for an wectromenise force weting in $\%_{5}$, is

Since $l: Z_{S}+Z_{R}$) in the current ($I_{R^{*}}$) which would dow if the generalized T network were not inserted in the circut, the ratio of the re"eviel current, with amb without the metwork in the circuit, may be evprewed loy the relition

$$
\begin{align*}
& \begin{array}{l}
I_{R} \\
I_{R^{\prime}}
\end{array}\left(\begin{array}{c}
Z_{s}+Z_{R} \\
1 \\
1 Z_{S} Z_{R}
\end{array}\right)\binom{11 Z_{I_{1}} Z_{S}}{Z_{I_{1}}+Z_{S}}\binom{1 / Z_{1} Z_{R}}{Z_{I_{2}}+Z_{R}} \tag{10}
\end{align*}
$$

In general, the electemonive foree dees not act through a simple adoling-ent impreflace \% hut through some complex circuit. The current ratio ($I_{\mathcal{R}} I_{R^{\prime \prime}}$) will, lowerer, le the same in cither calse. The primeiple umberlying this fact is known ats Therenin's Theorem. ${ }^{6}$

The ahoolute matgnitude of the curront ratio, $\left|I_{R} I_{R^{*}}\right|$, is a meatsure of the Iramemission loss calasel ley the introduction of the nework. The tran-mionon loso maly be cexpresed in terms of transmission thits $l\left({ }^{\prime}\right)$ le aid of the following relation

$$
\begin{equation*}
T U=20 \log _{10}\left|\frac{I_{R^{*}}}{I_{R}}\right\rangle \tag{11}
\end{equation*}
$$

 lirst thee factern of this exthtion are all of the same general type with the everetion that the lirst of the three is recipencal in nature
 focters atad determine the retletion losses which exist between the impelames innolsal. The fourth factor in the transfer factor and "ypurase the current ration whith cerre-ponds to the transfer con-

[^7]stant The las factor has lexa called the interation fator. The balue of the rethertion liwer is evilents af fanction simply of the ratio of the imprelames insolsed, while the almolate balue of the transfer f.ector is e ${ }^{-1}$ where 1 is the real partion of the transfer constant and hence is the attentation constant. The value of the interation factor is seen th tre unity either when $\%_{I_{z}}=Z_{R}$ or when $Z_{T_{t}}=Z_{s}$. It alos approaches unity if the value of θ is sulficiontly large.

In the cate of a symmetrical structure, such as is shown in Fig. 2. or ligg. $1, \%_{1}-\%_{2}-Z_{1}$ and equation (10) realuces to

$$
\begin{align*}
& \begin{array}{l}
I_{K} \\
I_{K}
\end{array}=\binom{\%_{s}+Z_{R}}{\sqrt{1 Z_{S} Z_{R}}}\binom{1 \overline{\Pi_{1} \%_{S}}}{\%_{1}+\%_{s}}\binom{11 Z_{I} Z_{R}}{\%_{1}+Z_{R}} \\
& \left.x^{-\theta} \times \frac{1}{1-\left(\frac{Z_{t}-Z_{R}}{Z_{1}+Z_{R}}\right)\binom{Z_{1}-Z_{S}}{Z_{1}+Z_{S}}}\right)^{-2 \theta} \tag{12}
\end{align*}
$$

If the structure is symmetrical, and if, furthermore, the sending-end impelance Z_{S} is erpual to the receiving-end imperlance Z_{R}, equation (12) becomes

$$
\begin{equation*}
\frac{I_{R}}{I_{R^{*}}}=\epsilon^{-\theta} \times \frac{1 Z_{1} Z_{R}}{\left(Z_{l}+Z_{R}\right)^{2}} \times \frac{1}{1-\binom{Z_{1}-Z_{R}}{Z_{1}+Z_{R}}^{2}-2 \theta} \tag{13}
\end{equation*}
$$

The proceding formulate make it possible to calculate rigoronsly the transmission loss caused by any network whose image impedances and transfer constant are both known. In the symmetrical case, if $Z_{I}=Z_{S}=Z_{R}$, the transmission loss is determined simply by the value of the attenuation constant. In general, in the attennation range of frequencies, the value of θ of a wave filter is relatively large and the interaction factor is substantially unity. Consequently, the transmission loss caused by any filter in its attenuation range is depentent practically only upon the value of the attemution constant and the retlection losses between Z_{S} and $Z_{l_{1}}, Z_{R}$ and $Z_{l_{2}}$, and Z_{S} and Z_{R}, respectively: Throughout most of the transmision range of a filter, its image impedances may be made vory closely equal to the terminating impedances so that the transmission losis cattered by the filter in this range is dependent simply upon its attemuation constant. In the intervening range, between the attentated and the non-attenuaterl bands, the transfer factor, the rellection factors and the interaction factor must all be taken into account. ${ }^{7}$
${ }^{7}$ Zobel, O. J., "Transmission Characteristics of 1:lectric Wave-Filters," Bell Sys. Tech. Jour., Oct., 1924.

Impedance and Propagation (Varacteristics of Von-Dissipative Fifters. If the merion and shmet impealances of the structures shown in Figs. '2 and 1 are pure reattancos, ats they would le in the case of a non-lisiphttive filtor, the ration of the quantity $Z_{1} \quad 1 Z_{2}$ must be either a prasitise or negative mameric. It ha leew shown by Camphell" and whers that the attemmation constant is zero, and that the structure freely transmits at all frexpuencies at which the ratio $Z_{1}+Z_{2}$ lies leetwern 11 and -1 . Therefore, by plotting values of the ratio $Z_{1}{ }^{\prime} \not Z_{2}$ it is pereihle (o) deternmine the attentation characteristic of any symmetrical structure as al function of frequency:

In the transmission range, the phase constant of the symmetrical structure shown in Fig. 2. or lig. I, is

$$
\begin{equation*}
B=2 \text { sin } \sqrt{\frac{-Z_{1}}{4 Z_{2}} .} \tag{14}
\end{equation*}
$$

Ifenee, the expresion for the image transfer constant of either of the stmmetrical structures shown in Fig. 2 or Fig. 4 is

$$
\begin{equation*}
u=0+j 2 \sin \sqrt{\frac{-Z_{2}}{4 Z_{2}}} \tag{15}
\end{equation*}
$$

In the attenuation region, Z_{1} IZ2 may le either negative or positive. If $\Pi_{1} \psi_{2}$ is negative and in greater in absolute magnitude than unity, the attenuation constant is

$$
\begin{equation*}
A=2 \text { cosh } \sqrt{-Z_{1}} \tag{16}
\end{equation*}
$$

and the phase constant, of the imaginary compenent of the image transfer constalli, is

$$
\begin{equation*}
B=(2 K-1) \pi \tag{17}
\end{equation*}
$$

where K is athy integer. Ifenee,

$$
\begin{equation*}
0=2 \cosh \sqrt{\frac{-Z_{1}}{1 Z_{2}}+j(2 K-1) \pi .} \tag{18}
\end{equation*}
$$

From "quation ($\$$), when Z_{1} 1 2 a in positise, the attenuation comstant is

$$
.1-2 \sinh 1 \begin{gather*}
Z_{1} \tag{19}\\
4 Z_{2}
\end{gather*}
$$

ame the phase combant B is zero. Itence,

$$
\begin{equation*}
\text { U- } 2 \sinh \sqrt{\frac{Z_{1}}{1 Z_{2}}+j 11 .} \tag{20}
\end{equation*}
$$

[^8] the phase comstant of a non-tissipative symmetrical filter seetion is always zero or at oxd multiple of $\pm \pi$.

The cuf-off frequencies, ly which are meant the this isional frequencion which separate the transmisaion batnds from the attemmation bathls, must aluays oneur when $Z_{1} 1 \%_{2}=0$ or when $\%_{1}$ t $\%_{2}-1$, sinere, for the transmission hamls, $Z_{1} 1 \%$ mast lie between 11 and -1 .

The gemeral formulae for the image imperlances of the symmetrical networks shown in Figs. 2and 1 are equations (ib) asd (7), resperetively. From these equations, the image imperlances are pure resistances in the tramsmission range of a non-diseiphative structure. In the atttenuation range, however, the image impedances are pure reactances; the mit-series image impedance is a reactance having the same sign as Z_{1}. While the mid-shont image impedance is a reactance having the same sign as Z_{2}. In these attennation bands, the image impedances (pure reatances) have positive or negative signs depending upon whether they are increasing or decreasing with frequency: The ureter of magnitude of the image impedances maty be found from Table 1 .
T.VBIE I

If the Value of Z_{1} is	Ind if the Value of $+Z_{z}$ is	Then the Mid-Series Image Impechance is	And the Mil-Shunt Image Imperlance is
\%ero	Zero	Z.ro	\%.ero
\%ero	Finite	Zero \dagger	Zero \dagger
Zero	Infinite	Finite \dagger	Finite \dagger
Finite	Zero	Finite**	Z.ro**
Finite	Finite	Zero* or Finite	Infinite * or tinite
f Finite	Infinite	Infinite \dagger	Infinite \dagger
Intinite	Zero	Infinite**	zero ***
Intinite	Finite	Infinite**	Finite**
Intinite	Intinite	Infinite	Infinite

[^9]Types of Non-Dissipalize Series-Shunl Sechons Mãing Not More Than One Transmission Band or More Than One Illenuation Band. since the series and shunt arms of a non-dissipative filter section may. each be composed of any combination of pure reactances, it is possible to have an infinite number of types of filter sections. However, it is sekforn desirable to employ filters having more than one transmission band or more than one atcenuation band. Lnter these conditions,
it is gencrally impracticable to employ mone than four reactance elements in either of the arms of a sertion. likewise, a total of six reactance element in lx,th the series and shat arms is the maximum that can be ecomomically empleyesl.

Type of two-terminal reatance medos has ing mot more than four elements, are listed in fig. is. In Fig. 6, the corre-pontling frequence-

$7 d$

8 d

I ig. 5 Two-Terminal Reactane Meshes Containing Not More Than Fiour Elements

tig. of Reatance-l requency "haracteriolics, of the Mrshes of Fig . 5 , Shown in Symbolie lorm
reat hater characteristic are reprenoled. Reactance tharderistios
 is a constant, indepentent of freptemer. Reatonce characteristics Nons. 3 amb 1 are similarly relatex if the frequencies of resonance and anti-reanalace coincide. bimilar relations exint between character-

reactance characteristic (No. jof lig. (i) and are, therefore, by proper
 correspemels th two reatenter meshes of ligg. is (ios, tis and tib) and the latter may, therefore, be considered expisalent. likewine, re-
 of Fig. if and are therefore protentially equisalent; alsu reatence

Fig. i Propagation Constant (Attenuation Constant and Phase Constant) Characteristics, Shown in Symbolic Form
meshes Nus. Aa, sh, se and sd of Fig. 5 are represented by reactance characteristic Nos. Sof Fig. Gand, consequently, may also be designed to be equivalent. The equivalence of the above reactance meshes has been discussed by Zobel ${ }^{3}$ and will be subsecpently treated at length. It is to be unelerstoxel that, for the sake of brevity, in what follows, meshes loss i, fi, 7 and s cower, respectively, all forms of

Sa, sh, so athd wh. I'sing thene reatetance combinations ${ }^{9}$ for the series and shmu arms, there are only a relatively small number of types of filter structures. All of these types of filter structures are

RESISTANCE

- - - - REACTANCE (POSITIVE (+)OR NEGATIVE $(-)$)

Fig 8 Val wories and Mid-Shume Image Impedance Characteristivs, Shown in Symbulic Form
linger in Thble 11, amd are ralled low pass, high pass, amel brend pass filters (hatins anly whe transmission hamel) and band climination

[^10]Tabutaton of t＇ie Propagation and Impedance Characteristics of Sirries－Siunt Hisue Filler Sectons Whach cin be farmel

filtera (hasing twopas-|hats and only (and attentation band). Their attemation conlatat and phace conllath daratheristics, with respect
 mid-shumt imase imperatuce chatateristios with respert to frequency are shown in ligg s. In Table 1 I , the ligure at the head of each column indicates the rattance mesh in lige is which is used for Z_{1} (series impedance) and the theure at the left of eatch row indicates the meat in lig. is which is used for Z_{2} (shume impedance). The ligures in the stputres of the table denote, realing from left to right, the propagation (hatateristics (attemation and phase), the midwrie image imperdance, and the mid-hunt image impedance, re--peotively, as hown in liges. 7 and s.

For evample, the filer corre-pending to the third column and to the fourth row $(3-4)$ has a serics arm componed of an inductance in series with d capbercity at indicated by me-h 3 of Fig. is, and has a shant arm componed of an inductance in parallel with a capacity, as designated her mesh I of Firg. .). The attemation constant and phase constant charateristics of this filter are shown symbolically: by diagram is of Fige $\overline{7}$, while the mid-series and mid-shont image impedances are imdicated, respertively, ly diagrams 13 and 14 of Figg. S. The symbolic mature of the diagrams lies in the fact that the alnecissate of eath diagram eower the frepuency range from zero (1) inlinity, and the ordinates of ligss 7 and seover the attenation constant and the impedance from zeno to intinity: For example, the structure cited hais an attemanion contatht characteristic (diagram
 tentation bands, the attentation conlatant laing infinite in one of theoll at zerof frequency, and in the other, at infinite frepueney. The phane constant of this structure is $-\pi$ ratians in the lower of the two .1ttomnation bands, increases from $-\pi / 1+\pi$ rations in the transmimanon hathel (pasing through zoros), amblis $+\pi$ ratian- throughont the "pper of the twa attemation hames. The mid-series image imperlatee (diagram 13 of Fïg. A) is at megative reactance in the fower of the two tranmionon bamb, decreasing from intinity, at zeres fre-

 ing from zero tw intinit!, in the upper of the two :tfemution bands. The milshumt image impulance characterintic (dliagram 14 of Fig. S) is reciprocal in thature, for this stracture, to the mid-serises image imperlatece chatactorintie: Thin type of filter alon possesses, in the

Wharateristies is ontside the seope of this paper even thought mony of the struetures linted in Tible 11 will show, if completely analyand. multi-hatel charateristics. Where 10 specific charateristies are listed in Table II, no low pass, high pats, single bath pats, or single band elimination characteristies are obtainable: with a filter aection limiterf to siv different reactance elements.

In Table II, it lerge number of the structures hate identically the sume typen of aftemation constant atal platse constant characteristies. For example, six of the seven low pass filter sections have attenation constant and phase constant characteristic No, 2 of Fig. 7. l.ikewise, siv of the high pasis structures have attemution constant and phase constant characteristic No. I. Aso, in Table II, band pass groups are to be found having respectively, the following propagation characterist ics common to each group : 6, 7, 8, 9, 10, 11 ame 12. Finally, ten of the edeven band elimination structures listed have propagation constant characteristic No. 11 .

Although six of the seven low pats wave filters have the same attemuation eonstant and phase constant characteristics, the various image imperlance characteristios differmtiate the structures among themselses. Similar differentiations exist in the high pass, band pass, and band elimination groups of structures. In each of the four types of filter sections howeser, all of those structures having the same series reactance meslies (that is, having the same series configuration of reatance elements) may be designed to have the same mid-series image imperlance characteristic and, similarly, all of those structures within each type laving the same shunt reactance meshes, or configuration of elements, may be designed to have the same mid-shunt image imperlance characteristic.

In view of the fact that some of the structures listed in Table II have the same attenuation and phase constants but have different imperlance characteristics, the question arises as to the relative virtues of the latter. Furthermore, since certain of the structures have the same mid-series or mid-shunt image impedances but have different propagation characteristics, it is possible to join together such structures and obtain a composite structure which has no internal reflection loseses, that is, one whose total tranfer constant is the stmen of the varions transfer constants of the individual sertions. In oriler to minimize reflection and interatetion losses in the transmis-ion range, it is generally desirable to use, at the terminals of the filter, sections whose image impedances closely simmate those of the terminal inperlances to which the filter is connected. The choice presented by
filter struture hating diflerent imperame characteristics lat the satme propagation characteristic is, therefore, of advantage. In the attenuation ronge this is atoo true where imperlance conditions are imponed at the terminals of the filter.

One chass of struetures which persess desirable image impedances and whose characteristios are readily determinet from simpler structures is the stecalled deriverl m-type. ${ }^{3}$ The simplest forms of derived

I is. 9 - Mad-series Liquisalent m-Type of Sertion
structure are shown in figs. ! and 10. The structure of Fig. 9 hat the same mit-uries image impeatance as that shown in Fig. 2 and the satue of this imperane is given bey equation (6). The structure of Fig. 10 has the same mid-sham image impedance as the π structure shown in Fig. 1 and the value of this imperlance is given by

Fig. It Mid Chunt Fiquivalent m-Type of Section
 anel the mid-shant imnge impelance in the two cases, the structures.
 lem derited m-小品 and the mud-shunt cquatalent derited m-type. The 1 ambl π atructuren of 1 igs. : and 1 atre called, respectively, the prototypes of the derived mostretturen of ligss ! and 111 . In a series-

the ratio $\left.\%_{1} 1 \%_{2}\right)_{m}$ of the series imperatace to four times the shant imperlatioe is

$$
\begin{equation*}
\binom{Z_{1}}{1 Z_{2}}_{m}=\frac{m^{2}\binom{Z_{1}}{1 Z_{2}}}{1+\left(1-m^{2}\right)\binom{Z_{1}}{1 Z_{2}}} . \tag{21}
\end{equation*}
$$

1-rom this expresion, when Z_{1} W2 of the prototype is 0 or -1 , the corre-pmoting value of $\left(Z_{1} 1 Z_{2}\right)_{m}$ for the derived m-type is also 0 or - 1. Hence, the derived type has the same cut-off freguencies and

Fig. 11 . Ittenuation Constant (in TV') of a Filter Section Expressed in Terms of the Katio of Itsicries Impedance to Four Times Its Shunt Imperlance (i.c., $Z_{1} / 4 Z_{2}=K / \Phi$)
therefore the same transmission and attenuation regions as its prototyp.

Impedance and Propagation Characteristics of Dissipative Filhers. It has been pointed out, in the case of non-dissipative structures, that the ration $Z_{1} Z_{2}$ is cither a positive or a negative numeric. If there is dissipation in the filter structure, that is, if the resistance associated with the reactance elements cannot be neglected, then the ratio
$Z_{1 / 4}+Z_{2}$ will non, in general, be a numeric but a vector. However, the general formula (A), still holds true with disipation. For determining the attomation constant and phase constant of a dissipative structure it is consenient to use two formulae which maly be derived from (8). These formulac are

$$
\begin{align*}
& A=\cosh ^{1}\left(K+\sqrt{\left.(K-1)^{2}+4 K \cos ^{2} \frac{\phi}{2}\right),}\right. \tag{22}\\
& B=\cos ^{1}\left(-K+1 K^{2}+2 K \cos \phi+1\right), \tag{23}
\end{align*}
$$

where

$$
\frac{Z_{1}}{4 Z_{2}}=\left|\begin{array}{c}
Z_{1} \\
4 Z_{2}
\end{array}\right| \quad \pm \phi \quad K _\phi .
$$

 When Impedame to four Timen 1s. Shum Imperlatice (1.e., $Z_{1} / \$ Z_{2} \quad K_{2}$, 中)

 dement is the abolate ratio, d, of its cffective resistamere to its reactance. In the cone of a coil, $d-R$ low while in the catee of a condenare $d=K(\omega)$. The rectipeocal ration $Q \frac{1}{d}=\frac{L \omega}{R}=\frac{1}{R(\omega}$ hats alan been willely used ats a measure of dissipation in reactance clements. The ratio d or \& will mot, in general, be constant over a wide freguency

Fig. 13-Typical Band Pass Wave Filter Section (Mid-Series Termination)
range. If the value is known at an important frequency in the transmission range, it may ordinarily be regarded to hold for the rest of the transmission range. The effeet of dissipation on the attenuation constant is most important in the transmission band, where the attenuation constant would be zero if there were no dissipation. Its effect is most prontounced in the neighborhocel of the cut-off frequencies where the transmission bands merge into attenuation bands.

In the attenuation bands, the general effect of dissipation is negligible. It largely controls, however, the value of the attentation constant at those frequencies at which infinite attenuation woukl eccur if there were no dissipation. The effect of dissipation upon the phase constant is most pronounced in the neighborhood of the cut-off frequencies where resistance rounds off the abrupt changes in phase which would otherwise occur (see Fig. [2).

Characterislics of a Typical Filler. In order to illustrate specilically the principles employed in filter design, consider as an example the band pass structure $3-3$ of Table 11 . This structure is illustrated in Fig. 13. It will be assumed that the dissipation in the coils cannot be neglected, but that the dissipation in the condensers is of negligible
magniturle. If R_{1} and R_{2} are the edfective resistances of the induetance dements L_{-1} and L_{2}, reppetively, the serios impedance, $\%_{2}$, of a seriesshant recurrent structure compused of sections of the type shown in Fig. 13 is

$$
Z_{1}=R_{1}+j\left(\omega L_{1}-\begin{array}{c}
1 \tag{2.1}\\
\omega C_{1}
\end{array}\right) .
$$

The impedance of the shont arm is

$$
\%_{2}=R_{2}+j\left(\omega L_{2}-\begin{array}{c}
1 \tag{25}\\
\omega \dot{C}_{2}
\end{array}\right) .
$$

In substituing for R_{1} its value L_{1} wil and for R_{2} its vilue $L_{\text {ased }}$, the ratio $\%_{1} 1 \%_{2}$ lecomas

$$
\begin{align*}
& Z_{1}=L_{1} 1-j d-\frac{1}{\omega^{\#} L_{1}\left(c_{1}\right.} \tag{26}\\
& 1 \%_{2}=1 / L_{2} \\
& 1-j d-\frac{1}{\omega^{2} L_{2} C_{2}}
\end{align*}
$$

$$
\begin{align*}
& Z_{1}=\left(C _ { 2 } \left(\omega^{2} L_{1}\left(C_{1}-1\right)\right.\right. \tag{27}\\
& 1 Z_{2}= \\
& I C_{1}\left(\omega^{2} L_{2} C_{2}-1\right)
\end{align*}
$$

Keferring to Table 11 , the strueture shown in ligg. IS has two dise tinct attemtation and phate charateristics. These are, respectively, characteristics Nis. 9 and 10 of Figg. 7. These two sets of characteristics arise from the fact that the shant arm mat be reson,me at a frepucney less thats, or greater than, the resonatht frexpency of the series arth. The two attombtion characterintis are interse with reyper to fregmenes. Wie hall, therefore, diactan only one of the two cates, namely, that in which the shme arm resonates at a freguency greater than the remonant freguency of the series arm that is, $L_{1} C_{1}$ is greater than $L_{\text {an }} \mathrm{C}_{2}$) The fregueney at which the shunt arm is reothant will be designated at 1 , due the the foet that in at non-disspative filter the attentation matatat is infinite at this puint. In other words.

$$
\begin{equation*}
f_{n}=\frac{1}{2-\pi V^{\prime} / \ln _{2} C_{2}} \tag{2N}
\end{equation*}
$$

It is exilent that the freftemes ot whish $\%$ is resomatht is a cut-off frepueney since $\%_{1}$, atal therefore $\%_{1} 1 \%_{2}$, is arer , th this peint. In in-pection of groplical emrio ${ }^{\text {in }}$ drawn for $\%_{1}$ and $\mid \%_{2}$, under the above

[^11] (f_{1}), th.1t i-
\[

$$
\begin{equation*}
f_{1}=\frac{1}{2-\pi \backslash l_{1} l_{i}} \tag{2!}
\end{equation*}
$$

\]

 quency (fis) i- tomel to le

$$
f_{2}=\begin{gather*}
1 \tag{30}\\
2 \pi
\end{gathered} \backslash \begin{gathered}
C_{2}+1 C_{1} \\
C_{1} C_{2}\left(L_{1}+1 L_{2}\right)
\end{gather*} .
$$

For these explicit relation, for f_{1}, f_{2} and $f_{\text {o }}$, equation (26) may be rewritten

$$
\begin{align*}
& Z_{1} \tag{31}\\
& I Z_{2}
\end{align*}=\binom{f_{1}}{f_{2}}^{2}\left[\binom{f_{5}}{f_{2}}^{2}-1\right]\left[(1-j d)\binom{f}{f_{1}}^{2}-1\right] \quad\left[1-\binom{f_{1}}{f_{2}}^{2}\right]\left[(1-j d)\binom{f}{f_{0}}^{2}-1\right] .
$$

When d is zero this equation becomes, for the non-dissipative case

$$
\begin{align*}
& Z_{1}=\left[1-\binom{f_{2}}{f_{2}}^{2}\right]\left[1-\binom{f_{1}}{f}^{2}\right] \tag{32}\\
& Z_{2}=\left[1-\binom{f_{1}}{f_{2}}^{2}\right]\left[\binom{f_{x}}{f}^{2}-1\right]
\end{align*}
$$

From the preceding formulae and Irom the curves shown in Figs. 11 and 12 , it is possible to read directly the attenuation constant and the phase constant for the structure shown in Fig. 13, at any frequency, provided the values of f_{1}, f_{2} and f_{8} are known. The formulae for the dissipative case are of nse manly throughout the transmission bands and near the frequency f_{0}. Flswhere, the formulae for $Z_{1}+Z_{2}$ for the non-dissipative seructure may be employed without undue crror. The preceding formulae have been derived in a direet manner, but nayy be obtained more simply hy considering the structure of Fig. 13 to be a derived form of the structure $3-2$ in Table 11.

In order to minimize reflection loss effects, it is, as a rule, desirable (0) terminate a filter in an imperlance equal to the image imperlance of the filter at the mid-frequency ${ }^{11}\left(f_{m}\right)$ or at some other important frequency. From equation ((1) and the values of Z_{1} and Z_{2}, the midseries image impedance ($Z_{\text {In }}$), at the mid-frequency in the non-dissipative case is

$$
\begin{equation*}
Z_{0}=\frac{1}{2}\left[\sqrt{L_{1}}+\frac{L_{1}}{C_{1}}+{ }_{C_{2}}^{C_{2}}-V_{C_{1}}^{L_{1}}+{ }_{1}^{L_{2}}{\stackrel{C}{C_{1}}}^{L_{2}}\right] . \tag{33}
\end{equation*}
$$

"Defined as the geometric mean of the twu cul-off frepuencies f_{1} and f_{z} : or f_{-} $=\sqrt{f_{1}} f_{2}$.

From formulare (6), (2!)), (341), and (33) the mid-series image impedance at ans frepuency is

$$
\begin{equation*}
\left.\%_{1} \quad \%_{0} 1-\frac{\left(\frac{f_{1}}{f_{m}}-f_{m}\right.}{\left(\frac{f_{2}}{f_{m}}-f_{m}\right.}\right)^{2} \tag{34}
\end{equation*}
$$

An inspertion of formula (31) indicates that the mid-series image impredance is symmetrical with respect to the mid-frequency, f_{m}.

In a similar way, the mid-shunt image impedance ($Z_{0}{ }^{\prime}$) at the midfrequency is

$$
\%_{0}^{\prime}=\frac{1 L_{1}}{\sqrt{C_{2}}\left(\begin{array}{l}
C_{2} \tag{35}\\
C_{1}
\end{array}+1\right)}-\sqrt{4 L_{2}} \sqrt{C_{1}\left(\begin{array}{l}
L_{1} \\
L_{2}
\end{array}+1\right)}
$$

and the mid-shunt impedance, $\left(\ell_{l}{ }^{\prime}\right)$, at any frepuency is

$$
\begin{array}{r}
Z_{i}^{\prime}=Z_{0}^{\prime} \tag{36}\\
\left.1-\binom{f}{f_{0}}^{2} \left\lvert\, \begin{array}{l}
f_{2} \\
f_{1} \\
f_{1}
\end{array}\right.\right)^{2} \sqrt\left[\left(f_{m}\right]{f}\right)^{2} \\
f_{2} \\
f_{1}
\end{array}-\binom{f}{f_{m}}^{2}
$$

It will he noted, that if the zalues of the inductances and resistances of a filter are multiplied by any factor and if all the ablues of the capacities are divided by the same factor, the transmission loss-frequency characteristic is not changed ${ }^{12}$ (neither are the cut-otf frequencies, nor the frequencies of infinite allentalion) but the image impedances are multiplied by this factor.

From the preceding formulae, explicit expressions may be derived for the values of L_{1}, C_{1}, L_{2}, andel C_{2}. Thatere expressions, which are given by Zobel, in a slighty different form, are as follows:

$$
\begin{align*}
& L_{1}=\frac{\%_{0} m}{\pi\left(f_{2}-f_{1}\right)}, \tag{37}\\
& C_{1}=\frac{f_{2}-f_{1}}{1 \pi f_{1} Z_{o} m^{2}} . \tag{38}\\
& I==\begin{array}{cc}
\%_{0} & 1-m^{2} \\
\pi\left(j_{2}-f_{1}\right) & I m^{\prime}
\end{array} . \tag{39}\\
& \left(\begin{array}{c}
\left(f_{2}-f_{1}\right) m \\
\left.\pi / \ldots(1)-f_{i} m^{2}\right)^{\prime}
\end{array}\right. \tag{.10}
\end{align*}
$$

[^12]"here
\[

$$
\begin{equation*}
m \quad 1-\frac{\binom{f_{2}}{f_{1}}^{2}-1}{\binom{f_{6}}{f_{1}}^{2}-1} \tag{11}
\end{equation*}
$$

\]

Is a mamerical example of the determination of the constants of a filter sertion of the type under consideration, isalme that the lower cut-off frequency: f_{1}, is 20,000 cycles, and that the upper cut-off frefueney, f_{2}, is 25,000 eyces and that the frepuency of infinite attent.tion, f_{∞} is 30,000 cyeles. Assume, furthermore, that the value of the mid-series image impedance, $Z_{\text {o }}$, at the mid-frequency is 600 ohms. Then from lormula (11), $m=. \overline{i t 2}$; hence from (37), $L_{1}=.025+$ henry; from (3S), $C_{1}=.00294 \times 10^{-6}$ farad; from (39) $L_{2}=.00 .7$ 万 henry and (rom (10) $C_{2}=.00186 \times 10^{-6}$ farad. Issuming $d=01$, the value of $Z_{\text {: }} 1 Z_{2}$ as given by formula (31) at $f_{m}(22,360$ cycles $)$ is found to be .30.5 1766°. I. Referring to formula (22), in which $K=.30 .5$ and $\phi=$ 176°. I, or to the curves of Fig. 11 , this value of $Z_{1} / 4 Z_{2}$ corresponds approximately to $.0+11$ napiers or . 36 TU . Similarly, from equation (23), or from the curves of Fig. 12, this value of $Z_{1} 1 Z_{2}$ gives 1.15) radians, or 15^{-}, for the phase constant. At zero frequency, the vilue of $Z_{1}+Z_{2}$ is. from equation (31), . 42.0°, which corresponds to 1.36 napiers or to $11.5 T U$. Likewise, at infinite frequency, the value of $Z_{1}+Z_{2}$ is 1.230°, which corresponds to an attenuation loss of 1.97 napiers or to 16.6 TU . From the curves of Fig. 12, the phase constant is zero hoth at zero and at infinite frequency.

Composile Wace Fillers. It has previously been pointed out that certain groups of the structures listed in Table II have the same midseries or mid-shunt image imperlance characteristics but that the various structures in such a group may have different attenuation and phase constant characteristics.

If a bilter is composed of any number of symmetrical or dissymmetrical sections, so joined together that the image impedances at the junction points of the sections are identical, the attenuation and phase constant characteristics of the composite structure so formed. are equal to the sum of the respective characteristics of the individual nections. Furthermore, the image impedances of the composite tilter will be determined by the intage imperlances of the accessible end- of the terminating sections. The desirability of forming such composite filters arises from the fact that a better disposition of attenuation and phase can be obtained by employing, in one composite structure, a number of different types of the characteristics shown in Fig. 7.

The dissymmetrical networks ardinarily employed in composite stuctures are usually l. type networks cath of which may le regarded as one-half the corresponding symmerical $\%$ or π network. Generalizel forms of such networks are shown in Figs 14.A, B, and C. By joining two of these hatfesections, such ats are shown in Figs. 14 B

Fig. 14-Gemeralized series-Shum Structure Wivite.I Into Suceessive Ilalf-Sections (L-Type)
and C, we may form the full T section shown in Fig. 2. Similarly, loy joining the two half-sections illastrated in Figs. 11.1 and B, the full π section of Figg. I reanlts. The tramsfer constant, $\theta_{1_{2}}$, of a halfsection, such as is shown in liges 11.1, B, or (\upharpoonright, is one-half the transfer constant of the corre-pomeling full section, that is.

$$
\theta_{1}=\stackrel{\theta}{\cdot 1}=\sinh ^{1} \quad \begin{align*}
& \frac{Z_{1}}{1} \tag{+2}\\
& 1 \zeta_{2}
\end{align*}
$$

Hence, the attrnuation constant and phase constant of a half-section are, respectively, one-lulf the attenuetion constant and phase constant of afull section. An important relationship between the half-section and the full sertion, which makes it eomsenient to we half-sections in composite wate filter strmetures, is that the inage impedances, $Z_{l_{2}}$, and $Z_{l_{2}}$, of anty halfesection are explal repectively to the midseries and the midshant image impedames of the corresponding full rections.

I typical exthuple of the method of forming a composite low pass wate filter is given in ligg. 1 i , where three half-sections of different types amb one fall wertion are combined into a composite liter. The designations below the diagrams in Fig. 15.1 refer to the number of full eections and to the ration $f_{5} f_{6}$. In a practical filter, the various shomt condensers ame serien coils are combinetas illustrated in Fig. lisB

The componite nature of the attemation characteristie of the file of F ig. 15 B is illustrated in Fig . 16 , on a mon-tissipative basis. In

Fig. 15.1

Fig. 15 B
Typical (Non-Dissipative) Composite Low Pass IVave Filter and Its Component Sections and Half-Sections

Fig. 16 -Attenuation Characteristic of the Composite L.ow Pass Wave Filter of Fig. 15

Fig. 1.513 , the image imperlance, $\%_{1}$, at the $1-2$ terminals has characteristic No. 2 of ligg. s, while the image impedance, $Z_{l_{2} \text {, }}$ at the 3-1 terminals hats chatateterintic No. I of ligg. 8.

Electrically Equizalent Nitatorks. Reference has been made to the fact that any passiar mitwork hating one pair of input terminals and one pair of outpul terminals may be adcquately represented, at any frequency, by an equizalent T or a network. In general, this representation is a mathematical one and the arms of the T or π network cannot be represented, at all frecuencies, by physically rcalizable impedances.

Furthermore, any conculed netacork, containing no impressed clectromotive forces, and having. I accessible terminals is alatays capable of mathematical representation, at a single frequcncy, by a network hazing not more than $N(. N-1) 2$ impedances, which impedances are determinable from the aolage and current conditions at the accessible terminals. For network having three or more terminals, this arbitrary mesh of imperlanero may pemaen at mumber of variant configurations. It is also true that the equivalener of the arbitrary mesh to the concealed network holds, at any single frempency, for any and all sets of external or terminal comditions, and that the magnitudes of the impedances of the arbitrary me-h are determinable, at will, on the assumption of the most convenient set of terminal conditions for each individual case. Familiar instances are the impedance equations derivable under various short-circuit and open-circuit conditions.

In specific cases, which are of particular interest, one network may be shown to be capable of representation, as far as externat circuit conditions are concerned, by another network which is physically realizable, and the latter may be substituted for the former, indiscriminately, in any rircuit without consequent altcration, at any frequency, in the circuit condttons external to the interchanged networks.

Equivalent meshes having $t w o$ accessible terminals and employ-
 discusued by 0 . 1 Kolnel ${ }^{13}$ In filter design, (wo-terminal meshes are of importance only in thome cases where the imperlances are essomtially. reactances. lïgs. $17.1,13,\left(^{(}\right.$.and 1) illustrate the physical confegrations which reatance mehe employing mot more than four elements may take. Wie are wot gemerally interented in meshes having more than four eloments for pratical reasms which have previously been disemasel. Wheneter any of the remetance meshes shozen in Fig. 18 vicur, wer may, wath proper design, substitute for it an equialent mesh
"he Appendix III of Bibliugraphy 13.
of the assoctated lype or typers. Rigoronis eynisalence exints, men aith dissipation, when the ratio of resistance to reatathere, (d), is the stme for all coils and the ration of resistame: to reatance (d d^{\prime}) is the stame for all comensers.

Fig. 17 (iroups of Equivalent Two-Terminal Reactance Meshes

The relations which the equivalent meshes of Fig. 17 must wherve are as follows:
17.1

$$
\begin{equation*}
\left\{C_{2}=C_{A}+C_{B}, \quad C_{1}=\frac{C_{B}}{C_{1}}\left(C_{A}+C_{B}\right), L_{1}=\frac{L_{A}}{\left(1+\frac{C_{B}}{C_{1}}\right)^{2}},\right. \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
C_{A}=\frac{C_{2}^{2}}{C_{1}+C_{2}} \cdot C_{B}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}, L_{1}=L_{1}\left(1+\frac{C_{1}}{C_{2}}\right)^{2}, \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
L_{A_{1}}=\frac{L_{A B}^{2}}{L_{A}+L_{B}}, C_{1}=C_{1}\left(1+\frac{L_{1}}{L_{B}}\right)^{2}, L_{2}=\frac{L_{A}-L_{B}}{L_{A}+L_{B}} \tag{45}
\end{equation*}
$$

17B

$$
L_{-1}=\frac{L_{2}}{L_{1}}\left(L_{1}+L_{2}\right), C_{1}=\frac{C_{1}}{\left(1+\frac{L_{2}}{L_{1}}\right)^{2}}, L_{B}=L_{1}+L_{2},
$$

$$
\begin{align*}
& L_{1}=\frac{L_{B}^{B}}{L_{-1}}\left(L_{-1}+L_{B}\right)=L_{-11}\left(1+\begin{array}{c}
C_{i 1} \\
C_{1}
\end{array}\right)^{2} \\
&=\frac{L_{R} L_{S}\left(L_{R}+L_{S}\right)\left(C_{R}+\left(C_{S}\right)^{2}\right.}{\left(L_{R}\left(C_{R}-L_{S} C_{1}\right)^{2}\right.} \tag{17}
\end{align*}
$$

$$
\begin{equation*}
L_{2}=L_{A}+L_{B}=L_{\mathrm{v}}=L_{R}+L_{S}, \tag{48}
\end{equation*}
$$

$$
\begin{align*}
& C_{i}=\frac{C_{1}}{\left(1+\frac{L_{R}}{L_{-1}}\right)^{2}}=\frac{C_{i}}{C_{1}+(i)}=\frac{1 I_{R}\left(C_{K}-L_{C i}\left(C_{3}\right)^{2}\right.}{\left(L_{R}+L_{K}\right)^{2}\left(C_{R}+C_{i}\right)} . \tag{49}\\
& C_{2}=C_{B}=\frac{C_{1} C_{i}}{C_{i}+C_{i 1}}=\frac{C_{R} C_{i}}{C_{R}+C_{i}} \tag{50}\\
& L_{A 1}=\frac{L_{2}{ }^{2}}{L_{1}+L_{2}} \cdot L_{B}=\frac{L_{1} L_{2}}{L_{1}+L_{2}} \cdot C_{B}=C_{2}, \tag{51}\\
& C_{11}=C_{1}\left(1+\begin{array}{l}
L_{-1} \\
I_{-2}
\end{array}\right)^{?}, L_{11}=\frac{L_{-1}}{\left(1+\begin{array}{l}
C_{2} \\
C_{1}
\end{array}\right)^{2}} \tag{52}\\
& \left.L_{1}=L_{22}, C_{1}=C_{1}+C_{2}, C_{11}=C_{C_{1}}^{C_{1}} C_{1}+C_{2}\right), \tag{53}\\
& C_{1}=\frac{K+1}{K_{2}^{2}-1 L_{2}^{2} C_{1} C_{2} K} \\
& \text { Where } K=\left(L_{1} C_{1}+L_{2} C_{1}+L_{2} C_{2}\right)^{2}-L_{1} C_{1} L_{2} C_{2},(5.4) \tag{5t}
\end{align*}
$$

$$
\begin{align*}
& i_{2}=i_{1}+C_{B}=i_{1}-i_{R}+i_{i} . \tag{56}
\end{align*}
$$

$$
\begin{align*}
& C_{1}{C_{2}}_{C_{1}}+C_{2} C_{B}=C_{C_{1}} C_{1}+C_{3}, L_{-B}=l_{2} \text {. } \tag{60}\\
& L_{.1}=L_{.1}\left(1+\begin{array}{l}
i_{1} \\
C_{1}
\end{array}\right)^{\prime \prime}, C_{11}=\frac{i_{1}}{\left(1+\begin{array}{l}
l_{21} \\
l_{11}
\end{array}\right)} \tag{61}\\
& C_{1}=C_{2,} L_{-1}-L_{1}+L_{2} L_{11} \frac{L_{2}}{L_{1}}\left(L_{21}+L_{2 n}\right),
\end{align*}
$$

For example, the two meshes in ligy 17.1 will be mpivatent if
$c_{i}=.009 \mathrm{mif}$.
$C_{2}=.001 \mathrm{mf}$.
$L_{1} \quad .001 \mathrm{~h}$.
C_{8} - hom mind
$C_{1}=.01001 \mathrm{mf}$.
$L_{1}-1(M) h_{1}$.
and the (wo mese in ligy 1713 will le equivatent if
$L_{1}=.002 \mathrm{~h}$.
$C_{1}=0.0 .5 \mathrm{mf}$.
$L_{2}=.00 \mathrm{sh}$.
$l_{.1}=.1110 \mathrm{~h}$.
$C_{A}=.001 \mathrm{mf}$.
$L_{\text {B }}=.010 \mathrm{~h}$.

Nos, the four meshen of ligs 176 will tre expuivalent if
$L_{\mathcal{K}}=001 \mathrm{~h} . \quad L_{S}=.002 \mathrm{~h} . \quad C_{R}=.001 \mathrm{mf} . \quad C_{S}=.002 \mathrm{mf}$.

$L_{.1}=.001 \mathrm{~h} . \quad L_{B}=.002 \mathrm{~h} . \quad C_{1}=.0003 \mathrm{mf} . \quad C_{B}=.000$ нitio mf
$L_{\mathrm{H}}=.003 \mathrm{~h} . \quad L_{\mathrm{H}}=.000$ (titi $\mathrm{h} . \quad C_{\mathrm{t}}=.0101 \mathrm{mf} . \quad C_{\mathrm{H}}=.002 \mathrm{mf}$.
and the four meshen of Fig. 171) will be equivalent if
$L_{R}=.001 \mathrm{~h} . \quad L_{S S}=.001 \mathrm{~h} . \quad C_{R}=.001 \mathrm{mf} . \quad C_{S}=.0102 \mathrm{mf}$.
$L_{1}=.0000 .50 .5 \mathrm{~h}, L_{2}=.0000 \mathrm{~h} . \quad C_{1}=.021 \mathrm{mf} . \quad C_{2}=.0003 \mathrm{mf}$.
$L_{.1}=.00+5 \mathrm{~h} . \quad L_{B}=0000.5 \mathrm{~h} . \quad C_{.1}=.0003333 \mathrm{mf} . \quad C_{B}=.00267 \mathrm{mf}$.
$L_{\mathrm{V}}=.000 .5 .5 \mathrm{~h} . \quad L_{\mathrm{W}}=.00 .5 \mathrm{~h} . \quad C_{\mathrm{V}}=.003 \mathrm{mf} . \quad C_{\mathrm{W}}=.0002 .4 \mathrm{mf}$.
It is then evident that the following reactance meshes of tig. is
 and id; and sa, sb, Ac, and \&d. Hence, the following lifter sections

Fig. 18-Equivalent T and π Generalized Net works
referred to in Table If have, for the same impedance and propagation characterintics, a number of variant forms of physical configuration. $1-6,6-2,3-5,(i-1,2-6, i-3,1-5,1-i, 3-1 i, j-1, i-1,1-5$,

If the equivalent mose having three acessible terminals the mest common are the familiar T and π networks. The general relationships which must be ofserved for the equisalence of T or π net-
works are due to kiennelly it and for their generalized form, as illustrated in ligg. 1s, are as follow:

$$
\begin{align*}
& Z_{A}=\frac{Z_{A}{ }^{\prime} Z_{B}{ }^{\prime}}{Z_{A}{ }^{\prime}+Z_{B}{ }^{\prime}+Z_{C}{ }^{\prime \prime}} \quad Z_{B}=Z_{A}{ }^{\prime}+Z_{B}{ }^{\prime} Z_{C}{ }^{\prime}+Z_{C}{ }^{\prime} \quad Z_{C}=\frac{Z_{A}{ }^{\prime} Z_{C}{ }^{\prime}}{Z_{A}{ }^{\prime}+Z_{B}{ }^{\prime}+Z_{C}{ }^{\prime \prime}} \tag{65}\\
& Z_{A}{ }^{\prime}=Z_{1}+Z_{C}+\frac{Z_{1} Z_{C}}{Z_{B}}, Z_{B}^{\prime}=Z_{A}+Z_{B}+\frac{Z_{1} Z_{B}}{Z_{C}}, Z_{C}^{\prime}=Z_{B}+Z_{C}+\frac{Z_{B} Z_{C}}{Z_{A}} . \tag{66}
\end{align*}
$$

We shall discuss here only two of the principal reactance meshes of the T and π form, namely, those employing solely inductances and

Fig. 19 Equivalent T and π Inductance Networks and Equivalent T and π Capacity Networks
soldy capacities. It is lole understoxd that wherever an inductance or a capatcity mesh of any of the following types occurs, its variant network may tre substitutel for it without change in the electrical characteristics of the circuit exclating thase conditions within the ment or its variotht. Figg. 19 illustrates equitalent T and π wetworks of inductane and copsocity. ${ }^{15}$ The fommatar relating the inductance and captority melnes of lige 19 are as follows:

${ }^{14}$ Ketmells. A. I..., "The Japmivalenere of Triangles aml Three-Pbinteal Stars in

is Here meshes are rigorenaly muivalent, even when resistance is present if the ration d^{\prime} is the same for all of the infurtances and if che ration d^{\prime} is the same for all of the capucitios.

$$
\begin{equation*}
i_{C}=C_{A}^{\prime}+C_{C^{\prime}}^{\prime}+\frac{C_{A^{\prime}} \dot{C}^{\prime} \dot{C}^{\prime}}{C_{B}^{\prime}} . \tag{70}
\end{equation*}
$$

(c)

Fig. 2n-Typical Examples of Equivalent Filters Involving the Interchange of Three-Terminal Cetworks of Inductances or of Capacities

A few examples of the variant filter structures which may arise, due to the existence of equivalent three terminal meshes of capacity
and inductance, are illustrated in Fig. 20, in which Figs. 20.1, B, and C represent either individual seetions or portions of composite filters and Fig. 20I) represents a composite filter. Whon exuivalent reactance meshes occur entircly within a filter or within a section of a filter, the filter or the eection will hate the same cut-off frequencies and frequencies of infinite atteration and the same attenuation, phase, and image impelance characteristics, whichever equivalent

Fig 21-Generalized Forms of Equivalent Series-Shum, Bridged-T, and"Lattice Type Fifter Structures
form of mesh is substituted for an existing me:h. When equivalent meshes are interchanged in either recurrent or composite filters the substitution is generally made after the series-shunt structure is designed and after it hat leen found that the substitusion will effect ecomomies. The bree terminal mehes refermel to oceur, in general, in mbalamed filter structures. For halanced filter circuits, corresponding mentes will he found for cach of the equicalent networks by the procen of dividing expmlly the series imperlance letween the two suries lines of the fileer.

While the diseltsion in this paser is hased primepally on the soriesshumt structure there are (wo other important types of structures which will be mentimed. "Thes are the so-called lattice ${ }^{5}$ type struc-
ture amb the bridged-T type structure. Typical series-shunt, hridged- T. and hattice type structures are illestrated in ligg. $2 \mathrm{~B} A, \mathrm{~B}$ and C°. respectisely. The three circuits shown are chectrically equisalent, except for balanoe between the series arms, if the following relations hold:

$$
\begin{array}{ll}
Z_{, 1}=\left(1+\begin{array}{c}
1 \\
1 K
\end{array}\right) Z_{1}, & Z_{B 3}=(1+2 K) Z_{1}, \quad Z_{C}=Z_{2}, \\
Z_{1}^{\prime}=Z_{1}, & Z_{2}^{\prime}=\left(\begin{array}{l}
1 \\
1
\end{array}+\right) Z_{1}+Z_{2} . \tag{72}
\end{array}
$$

In the previous discussion of equivalent networks no reference has been made to networks comtaining mutual inductance, many of which are of particular interest and importance. These will be now discussed in detail.

P:ART II

Wine Filters Ising Mutuil INol ctance

Before considering the equivalent meshes which may be formed by the use of mutual inductance between pairs of coils, and the types of wave filters which may be bhtained by the use of these equivalent meshes, it will be necessary to define certain general terms.

The self impedence between any two terminals of an electrical network is the vector ratio of an applied e.m.f. to the resultant current entering the network when all other accessible terminals are free from external connections.

The mulual impedance of any network, having one pair of input terminals and one pair of output terminals, is the zector ralio of the e.m.f. produced at the output terminals of the network, on open circuit, to the current flowing into the network at the input terminals. Since mutual imperance is a vector ratio, it may have either of two signs, depending on the assumed directions of the input current and the output voltage. The sign of the mutual impedance is, in general, identified hy its effect in increasing or decreasing the vector imperlance of the meshes in which it exists. It is usually convenient, in this case, to consider either a simple series or a simple parallel mesh of two self impedances between which the mutual impedance acts. For the purpose of determining the sign of the muttal impeclance, we shatl confine our discussion to a simple series combination. Consecpuently, the mutual impedance will be called cither series ading or series opposing.

When a mutual imperlance, $Z_{3,}$, acts between two self impedances Z_{1} and Z_{2}, (1% ig. 22) connected in series in such a way as to increase vectorially the impedance of the combination, $i t$ is called a series aiding
mutual impedance. Similarly, when a mutual impedance atts in such a way as to decrease ecctorially the impedance of such a combination,

Fig. 22-Mulual Impedance Aving Between Two Sulf Impedance; Connecte I
it is called a series opposing mutual impedance. Fior example, if the onal imperdanee, $\%$, of the combination shown in Fig. 2.2 is

$$
\begin{equation*}
\% \quad \frac{1}{1}=\frac{\left(I Z_{1}+I Z_{M}\right)+\left(I Z_{2}+I Z_{M}\right)}{I}=Z_{1}+Z_{2}+2 Z_{M} \tag{7;3}
\end{equation*}
$$

the mutual imperlance is series atieling. On the other hand, if the total imperlance, Z, uf the combination is

$$
\begin{equation*}
Z \quad l^{\prime}=\frac{\left(I Z_{1}+I Z_{M}\right)+\left(I Z_{2}+I Z_{M}\right)}{I}=Z_{1}+Z_{2}-2 Z_{M} \tag{74}
\end{equation*}
$$

the mutal impedance is arries upposinge
Transformer Representation. If, in Fig. 22, Z, repreetnts the self impedance of one winding of a transformer and $\neq 2$ the self impedance

Fig. $23 \quad T$ Notwork Comtaming Two Self tmperlances, Ifaving Mut (w, I Impertance Belween Them
of its other winding, the series imperdance of the two windings (between terminals 1 and 3 in lïg. 23), as gisen by equations (73) and (71), will determine whether the mutual imperdanee, Za, is series abling or series opposing

The mutual impedance between the two windings may be represelted by an equisalent network of self imperlances commected
 Fig. こl mas hate varions conligerstions. The extuis.tent $\%$ form is

Fig. If Equivalem Network Representation of the Structure Shown in Fig. 23
the two-winding transformer of Fig. 23 maty itelf be completely repreerneyl hy a single 7 network as indicated in Fig. 26. The theory of the equisalemt 7 metwork representation of a transformer has been

Fig. $25-T$ Vetwork Representation of the Seructure of Fig. 24
discussed by (i. A. ('amphell, ${ }^{1} 11$. L. Casper ${ }^{6}$ and others. In general, the sell and mutual impedances of a tramsormer will be complex quantities. The arms of its equivalent T network will contain resist-

1.is. 20 T Network of Self Impe-fances Equisalent to the Structure of Fig. 2.3
ance and inductance eomponents which maty be either positive or negatise. Hewwer, in the catee of a transformer having no dissipation, i.e.. no $d-c$. resintance, no eddy current and no hysteresis
(osses) the arms of its equivalent T network are composed simply of positive or negative inductances. Of the three inductances involved, at least two of them must be positive while the third may be either positive or megative.

From Fig. 25 , it is evident that (wo wintings or coils, together with their mutaial impedance, may be represented by an equivalent network which affords a transfor of energy from one winding to the other. This erguivalent network may; with limitations, contain positive or negative inductances.

While the two-winding transformer of Fig. 23 has been represented by an equivalent 7 network in Fig. 26, the equivalent network may alternatively be of π form (Fig. 27) insteatl of T form, through the

Fig. 27 - Network of Self Impedances Equivalent to the Structure of Fig. 23
general relationships for 7 or π networks previousty stated. When no dissipation exists in the transformer, either equivalent network will have at leas two positise inductances while the third inductance may be either positive or negative.

From the principles previously ontlined in l'art I, for the equivalence of certain electrical meshes and for their substitution for one another in any circuit, it is ohvions that when two coils, with mutual imperdance between them, exist in a circuit, in the manmer shown in Fig. 23, either of the meshers shown in lig. 26 or 27 may be substituted for them or vice verst. The representation of the mutat impedance, $Z_{s,}$, by an equivalent network (Fig. 25) make it possible to represent the transformer of ligg. 23 by a T or π network containing only self imperances. This affords a great simplification in the analysis of fifter circuits containing pairs of coils having mutual impedance between them in that it permits suth circolts to be reduced to an "quivalent series-shment (or lattice or bridged-T) type strtucture. Conserpently, the methots of design which have been built up for the series-shment and kindred type structures may be directly applied to the solution of circuits containing such pairs of coils.

Izo-Termenal liquizalent Meshes. I list of equivaleot two-terminal reactance meshes, due to Zolel, has beers given in ligg. 17. All of the meshes in ligs 1713, (and 1) contain two imblactance dements. Mutalal inductance may exist between aly two inductive dements without changing fundamentally the nature of the reactance meshes. This means that when muthal inductance exists between two coils in

Fig. 28 -Equivalent Two-Terminal Reactance Networks, Only One of Which Contains Mutual Inductance
any of these meshes, the mesh may be designed to be electrically equisalent to, and consequently can be substituted for, a corresponding mesh of the same type having no mutual inductance.

For example, consider the mesh shown in Fig. 28.1 which is potentially equivalent to the first reactance mesh of Fig. 17C and, consequently, to the other three reactance meshes of the same figure. The inductance elements $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$, together with the mutual inductance M acting between them, may be represented by an equivalent T network, as previously stated. The reactance mesh formed by $L_{1}{ }^{\prime}, L_{2}{ }^{\prime}$, and M, together with its equivalent T and π forms, is shown in Fig. 29. By means of the relations given in Figs. 29A and B, it is posibible to derive, from the structure of Fig. 2SA, the equivalent structure shown in Fig. 2ヶiB. Likewise, from formulae (45) and (46) for the equivalence of the two structures of Fig. 17B, the mesh of Fig. 2sC can be obtained from that of Fig. 2sB. Furthermore, if the two inductances shown in series in Fig. 2.5C are merged, it is again possible, by means of the conversion formulae for the two meshes of

Fig. 17B, to determine the constants of the mesh shown in Fig. 28D from the known bahes of the constants of the structure of Fig. 2SC.

The relations which must exist if the structure of Fig. 2s1) is to be equivalent to the structure shown in Fig. 2x. A , or vice versa, are given by the following relations

$$
\begin{align*}
& C_{2}=C_{2}^{\prime}, L_{1}=\frac{L_{2}^{\prime}\left(L_{1}^{\prime} L_{2}^{\prime}-M M^{2}\right)}{\left(L_{2}^{\prime} \pm M\right)^{2}}, \tag{75}\\
& L_{2}=L_{2}{ }^{\prime}, \quad C_{1}=C_{1}^{\prime}\left(\frac{L_{2} 2^{\prime} \pm M}{L_{z^{\prime}}}\right)^{2} . \tag{76}
\end{align*}
$$

The upper and lower of the atornative signs, in the preceding equations, correspond requectively to acries aiding and opposing connections. The equivalence of these four-clement meshes makes it possible

Fig. 29 Equivalem Three-Terminal Inductance Networks

Fig. 30 Viquivalem Two-Torminal Reactance Networks, Only Whe of Which tontains. Mutual Inductance
to derise at once, the relations which monst exist between certain eqnivalent thre-element meshes involving matual inductance. For
 the threretoment mesh of Figg 30. 1 and the formulate given abose are then applicalole for the equivaleme of the structures of Figs. 30.1 and 13.

In the same way thit the meshes illustrated in figg. 28 were shown (6) In prometially equivalent to each other, it is possible to prove that
the meshe of lige 31 are potemtially equis.alent. The exthivalence
 relations given in Figs. 29.1 dat 13 . The equisalence of the meth
 for the explis aleme of the lirst abel last struturen of Fig. FI). Fïn-

Fig. 31 Equivalent Two-Terminal Reactance Networks, Only One of Whish Contains Mutual Inductance
ally, the equivalence of the mesh of lig. 311) to that of Jig. 31C is controlle loy the relations for the equivalence of the first two structures of Fig. 171).

The formulate relating the constants of the structure shown in Fig. 31D to the corresponding constants of the structure shown in lig. 31. A are as follows:

$$
\begin{equation*}
L_{1} 1^{\prime}=L_{1}\left(1+\frac{C_{1}}{C_{2}}\right)^{2}, L_{B}^{\prime}=L_{2}, C_{1}^{\prime}=\frac{C_{2}^{2}}{C_{1}+C_{2}}, C_{B}=\frac{C_{1} C_{2}}{C_{1}+C_{2}^{\prime}} \tag{76}
\end{equation*}
$$

in which-

$$
\begin{equation*}
C_{1}=\frac{C_{A} C_{B}\left(C_{1}+C_{B}\right) L_{1} 1^{2}}{\left[C_{A}\left(L_{1} \pm M\right) \pm M C_{B}\right]^{*}} C_{2}=C_{1}+C_{B} \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{1}=\frac{\left[C_{A}\left(L_{A 1} \pm M\right) \pm M C_{B}\right]^{2}}{\left(C_{A}+C_{B}\right)^{2} L_{A}}, L_{2}=\frac{L_{1} L_{-B}-M^{2}}{L_{A 1}} \tag{79}
\end{equation*}
$$

The upper and kwer of the alternative signs, in the precerling equations correspond, respectively, to series aiding and opposing connections.

The equivalence of these four-terminal meshes makes it possible (0) derive the relations which must exist for corresponding equivatent three-element meshes, with and without mutual inductance. For example, if in lig. 31A, the capacity C_{A} in of infinite value, the mesh reduces to that shown in Fig. 32.1 and the formulae giten above are applicable for the equivalence of the neshes of Figs. 32.1 and B .

The remaining meshes of Figs. 17C and D have similar potential equivalence (o meshes of the same fumlamental type but having mutual inductance between the rempective pairs of coils.

Three-Terminal Equiatent Meshes. Three terminal meshes containing mutual inductance will now be discussed. It has been shown

Fig. 32-Equivalent Fwo-Terminal Reaclance Vetworks, Only One of Which Contains Mutual Inductance
that two coils, with mutual inductance between them (Fig. 29.), are equivalent to certain T and π structures containing only tangible inductances (Figs, 2! 13 ami (${ }^{\circ}$). Referring to Fig. 2913, it is seen that two coils, with series opposing mutual inductance between them (corresponding to the upper alternative signs in Fig. 2913), are equivalent to a T network having three pesitive inductance arms, provided the mutual inductance $I /$ is less than $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$. The values of these arms are respectively, $L_{1}^{\prime}-M, L_{2}^{\prime}-M$, and M. If,$I /$ is larger than $L_{1}{ }^{\prime}$, one arm of the erpuivalent T network is a negative inductance while the other two arms are positive inductances. Similarly, if M is larger than $L_{2}{ }^{\prime}$, a different arm of the T network will be a negative inductance while the two rematining arms will be positive inductances. It is physically impossible for the value of M to be greater than both $L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$. Hence, it is imponible for more than one arm of the T network, shown in lig. 2913, to be a negative inductance.

When two coils have suries atiding motual inductance between them (the lower of the alternative signs in Fig 2elB) they are equitalent to a 7 network in which two of the arms consist of positive inductances viz., $L_{1}{ }^{\prime}+M$ and $L_{-2}{ }^{\prime}+M$, while the thirt arm consists of a negative inductince of the value - M.

Whenerer, in an equivalent 1 network, one of the arms is a positive (or nesettive) inductance, at correporthing am of the π network will
 case of the equisalent T network, the eqpivalent π network shown in Fig. 2!e moty consist of three positive inductances or two positive inductances and one negotive inductance, elepending upon the sign athel magnituele of.I.

It is interesting to note that, in Fig. 29.9B, point D is in reality a concealed terminal, i.e., it cannot be regateled as playsically accessible. There are, therefore, only three acessible terminals to the equivalent

(A)

(B)

Fig. 33-Equivalent T Networks of Inductance
T network. In the π network shown in Fig. 29C there is no such concealed point. There are, however, as in the preceding case, three accessible terminals A, B and C.

When the mutual inductance, M, is equal to either one of the self inductances, $L_{1}{ }^{\prime}$ (or $L_{2}{ }^{\prime}$), and the windings are connected in series opposing, the equivalent T and π networks of the transformer coalesce to the same L type network. For example, if $L_{1}{ }^{\prime}=M$ in Fig. 29) \backslash both the T and the π networks of Figs. 29 B and C resolve into an L network whose vertical arm has the value M and whose horizontal arm is $L_{2}{ }^{\prime}-M$.

A problem of practical importance is the equivalence of T and π meshes, containing three coils with mutual inductance between all of the elements, to similar T and π meshes containing no mutual inductance. The T networks of Fig. 33 are potentially equivalent. The formulate governing their equisalence are

$$
\begin{align*}
& L_{1}=L_{1}+M_{12}+M_{13}-M_{23}, \tag{80}\\
& L_{B}=L_{2}+M_{12}-M_{13}+M_{23} \tag{81}\\
& L_{C}=L_{23}-M_{12}+M_{13}+M_{23} . \tag{S2}
\end{align*}
$$

In the above formulae, the signs correspond to the case of a series aiding mutual inductance between all the pairs of coils. When the
mutual induetance lexween any two coils changes sign, the signs ate companying that mutual influctance in the aloove formulace are reverseed.

Fig. 34 Equivalent π Networks of Inductance

Similarly, the π networks of Fig 31 are also potentially equiatent The formulae governing their equisalence are

$$
\begin{align*}
& L_{A}{ }^{\prime}=\frac{L_{x} L_{y}+L_{x} L_{z}+L_{y y} L_{z s}}{L_{2 y}}, \tag{B3}\\
& L_{-3}^{\prime}=\frac{L_{x} L_{y}+L_{x x} L_{z}+L_{y y} L_{z}}{L_{z}}, \tag{84}\\
& L_{C^{\prime}}{ }^{\prime}=\frac{L_{x} L_{y y}+L_{x} L_{z}+L_{y y} L_{z z}}{L_{x}}, \tag{85}
\end{align*}
$$

in which

$$
\begin{align*}
& L_{-x}=\frac{L_{A}{ }^{\prime \prime} L_{-B}{ }^{\prime \prime}}{L_{A} A^{\prime \prime}+L_{A B}^{\prime \prime}+L_{, C}{ }^{\prime \prime}} \mp M_{12}^{\prime} \tag{86}\\
& L_{y}=\frac{L_{-B^{\prime \prime}} L_{C} C^{\prime \prime}}{L_{-A}{ }^{\prime \prime}+I_{-B B^{\prime \prime}}+L_{C} C^{\prime \prime} \mp M_{2: 1}^{\prime},} \tag{Si}\\
& L_{z a}=\frac{J_{-1}{ }^{\prime \prime} L_{0}{ }^{\prime \prime}}{L_{-1}{ }^{\prime \prime}+L_{-B}{ }^{\prime \prime}+L_{C}{ }^{\prime \prime} \mp M_{1: 1}^{\prime},} \tag{is}
\end{align*}
$$

where

$$
\begin{align*}
I_{A 1}^{\prime \prime} & =L_{1}^{\prime} \pm M_{12}^{\prime} \pm M_{13}^{\prime} \tag{59}\\
L_{A_{3}^{\prime \prime}}^{\prime \prime} & =I_{2}^{\prime} \pm M_{12}^{\prime} \pm I_{23}^{\prime} \tag{30}\\
L_{C}^{\prime \prime} & =L_{3^{\prime}}^{\prime} \pm M_{21}^{\prime} \pm M_{23}^{\prime} . \tag{91}
\end{align*}
$$

As in the preeceting case, the upper of the two signs oreurs with the series aiding muthal inductance between all the pairs of coils. When the mutual inductance between any two coils changes sign, the signs accompanying that mutual influetance in the abose formulae are reverseel.

At least two of the three inductances (in Fig. 33B or in Fig. 34B) will always the position in sign while the third inductance may be
 indurtate between eath of them and having only three acessible terminals offer mon seater pomibilites than do two coils having mutnal inductance between them and having three berminals. In both ease's the structure is equisalent to a T or π mesh comprosed of three self

Fig. 35-Equivalent Filter Sections, With and Without Mutual Inductance
inductances, at least two of which must be positive. With specific relations between the varions self aml mutnal inductances, it is possible for the three coils with mutual inductance between each of them to be equivalent (as in the case of two coils with mutual inductance) simply to an L, network composed of two positive relf inductances.

Since either two or three coils with mutual inductance between them are, in general, equivalent, at all frequencies, to a T or π net-
work compred of three self inductances, it is possible io sulstitute the one type of mesh for the other in any kind of a circuit without affecting the currents or voltages external to the meshes involved. This substitution is alwats physially pomible provided none of the arms of the equis alent 7 or π networks is a negative inductance.

The structures shown in Fig . 3.5 are illustratise of the power of equivalent networks ats touls for the solution of filter structures containing mutual inductance. The equivalence of the structure shown in Fig. 3.53 to that of Fig. 35.1 is evilem from the equivalence of two coils (Figg. 2!) with mutual induetance ($\left(M_{12}\right)$ between them to three incluctances, $L_{A,}, L_{B}$ and L_{C} without mutual inductance. Likewise,

Fig. 36 B.alateed and C'nbalanced Forms of a Filter Section, Containing Mutual Inductance
the equisalence of the structure shown in Fig. 35C to that of Fig. 3 Bis is obtainable by successive mesh substitutions. The equisalence of the structures shown in Figg. 3.5 D) and E to that of Fig. 3.5 C are also obtamable from erpivalences previously referred to. If the propagation amd impertance characteristios of either of the structures of Fig. 3.0 or 1) are known, then the other structures shown in Fig. 35 will hate the same charactoristies. Furthermore, if the values of the constants of any one of these structures are known, the constants of atry of the other structures are rearlily obtainable by means of tramformation formulare.

In a large mumber of wase litters, the structures are malalanced; that is, all wf the merion impelanes are placed in one of the two line wiren while the remating wire is a short circuit. Ordinarity, the whenet in using such all unbalancerl structure is to minmize the mumber of elements rentired in the series arms. It should be moted, howerer, (lig. Bii) that in case an inductance element enters into
bexh serics arms, it catl be replacel, in symmetrical structures, by two erpal windings of a single coil having motual inductance letweon thett and of sthth s.allee that the series a a ling induetance of these two conls is expala to the testal inductance repuired in the correopomeling mablatieed structure. For example, the structures shown in ligs. 36.1 and 13 are chererically equivalent to each other, that is, they hose the some image imperlance and transfor emstant.

Typers of Sections ()btainable Ithose Eyuizalent Series-Shunt Sertions Contain .io liegative Inductances. It hats previonsly been stated that an intinite momber of types uf series-shmet filter sections may be hade. if no limitations are placed on the complexity of their reactance arms. It hats also been stated. howerer, that for tilters employing omly one transmission or she attentation band. the maximum mumber of clements which can ordinarily be used economically per section is six. I similar limitation exists when mutual inductance is emplosed, in that sections can selfom be economically used whose prototype structures contain more than siv reactance elements.

Inasmuch as by the equialences which hase been discused, many wrient forms of a section may exist, which forms are reducible to the same series-shunt prototype, an effort only to list and discuss the p:ootype sections will be made. The prototype to which any given section then reduces will readily be found by the application of the foregoing principles. A few examples will later serve to make this clear.

In censidering the prototype sections which exist when mutual incluctance is present in a filter section, we shall first list the reactance meshes of which mutual influtance may form a part. Referring to Fig. 5 , an inspection of the equivalences so far discussed will show that the following meshes may be partly or wholly composed of mutual inductance:

$$
1,3,1,5(a \text { and } b), 7(a \text { and } b), \text { and } 8(a \text { and } b)
$$

Consequently, a large number of the sections listed in Table If and furmed from the reactance meshes of Fig. 5 may represent not only actual sections containing no mutual inductance, but also equiealent protolypes of sections containing mutual inductance. Sections conteining muthal inductance whithonly the series arm or the shmet arm. respectively, are not included in this disenssion since such armsmay be readily reducel to equivalent arms, without mutual incluetances by the substitution of equivalent twoterminal meshes. The prototypes which are moler disussion are listed below:

Loti pass
High pass
$1-3 . i-3$
$1-1,1-5$

Band pass
$3-1,1-1,3-3,1-1,1-5,5-1,3-7,3-5, s-1,1-8,5-4$. $5-5$, and $\overline{-}-3$.

Sections corresponding to the equivalent series-shunt prototypes listed will hatwe the same impedance and propagation characteristics as the protetype, and maty be used indiseriminately in place of the prototype. Consequently, when a setion has been reduced to any of the above prototypes, its tarious characteristics may be found from Table 11 and Fign. 7 and s.

As an example of structure which hawe muthal inductance and which are equivalent to structures listed abowe, consider the section

Fig. 37 Low l'ass liftor Section Containing Two Coils, Maving Mutual Inductan.e Aeting Between Them, and a Condenser Shunted From Their Junction Point
shown in Figg. 37 . This section contains two coils having mutual inductance, and a condenser shunted from their junction point. The thre-terminal mest formed by the two coils $L L^{2}$ and $L^{\prime 2} 2$, logether with their series upposing mutual infuctance M, may be represented, as in Figg. 29B, by its copuivatent T mesh. The resulting equivalent section is that shown in ligg. 3s. The structure of Fig. 3s, having a series reactance mesh corresponding to . Co .1 of Fig. is, and a shunt

 Section of Jig. 37
reactame ment correspomding to No. 3 of Fig. is is that listed as $1-3$ in Table 11 and in the athowe list. Consequently, it has propagation characteristic No. 2 of lig. 7 , and mid-series image impedance characteristic No. 1 of Fi ig. s . The section of Fig. 37 may, consequently, Ix joined at either end to any strmeture having a mid-series image imperance characteristic such as that designatted as character-
istic So. I of Fig. s. The section of lig. 37 is men sapable of mict-

Similarly, the section shown in ligy 39) is erpuis, bent the the seriesshumt structure of lig. 10. If the (ramsformer mesh in fig. 39, formeyl by $2 L_{2}, ~ I /$ and $2 L_{2}$ be replaced by its eqpuisalent π mesh, astuming ares "pposing windinge the structume of lig. 10 resuhts.

Fig. 39 Buml lass Fiber Section Containing Mula.1) Inductance

Fig, f1 Filter Section, Containing No Mutual Inductance, liquivalent to the Section of Fig. 39

This structure is listed as batm patso aretion $1-1$ in Table 11 and has propagation charateristic No. 7 of Fig. 7 , and midshumt image impedance characteristic No. 11 of Fig. s. Comsequently, the section of Fig. 39 may be joined effeciently to any filter section of Table II hating the mil-shunt image impertance characteristic No. 11 of Fig. sor to any section containing mutual inductance and having the same mil-shant image imperlance characteristic. The section of Fig. 39 is mat capable of mill-series termination, since point $\%$ of inductive dement $1-3$ of Fig. 40 is not physically accessible.

Fig. 41 Examples of Filter Sections Comaining, Mutual Inductance
Three further examples of the substitutions which have been discussed are reprememted in Figs. 41.1, 13, and C. By means of substitutions these strmetures are evidently expuivalent to series-shunt sections $1-1$ (mid-slunt terminated), 1-4, (mid-shunt terminaterl). and $3-7$ (mid-aries terminated), respectively, and they have the characteristics detailed in Table II. The above examples represent only a few of the many variant forms of structures which may be constructed by meatns of the various equisalences heretofore discussed.

Types of Sections Obtainable I'hose Series-Shunt Equiralent Sections Contain Negatiec Inductances. It has already lieen pointed out that the following meshes of Fig. 5) may be at least partly composed of mutual inductances:- Nos. $1,3,4,5 a, ~ j b, 7 a, 7 b, s a$ and $s b$. When

7'0

7 'b

lig. 42 Two-Terminal Reactance Meshes of Four or Less Elements, Containing Negative Inductance and Viffectively Realizable Within Filter Sections
the comnertion of the coils is such that the mutual inductance effectively results in producing a negative arm in the mesh in which the mutual inductance exists, the me:ses may be shown as illustrated in Fig. 42. The reactance-frefuency characteristics of these arms are given in Fig. 43. It is to be moted that two general forms of reactance characteristics exist for arms $\overline{5} a^{\prime}$ and $\overline{5} b^{\prime}$ and that one form of reactance characteristic

Fig. 43 Reachance-Frequency Characteristics of the Meshes of Fig. 42 Shown in Symbolic Form
is common th the two reatance arms. This duality of characteristic arises from the fact that the arms each contain two inductances, one positive and one negotive, and that the general shape of the reactance characteristic is determined by the pretominanee of either the positive or the megative inductance. The charseteristic which is peculiar In arm 'so' occurs when the negotive inductance of this arm is smaller than the positive incluctance, likewise, the characteristic pectular to arm 5b ecturs when the negative inductance of this arm is larger
than the pasitive indactance. The chatateristie which is common to both arms iea' and is b^{\prime} corresponds 10 the aleernalive comblitions regarding the relative magntudes of the uegative and positive inductances and the two arms $\bar{\sigma} a^{\prime}$ and δb^{\prime} are pelentially equivalent under these conditions. By means of feasible combinations of the reactance arms of Figss $\overline{5}$ and 42, there can be physically constructed a limited number of prototype wate filter seetions having no more than one transmission or one attemation band. Such sertions involving not mure than a total of six reactance dements in the series and shont arms-are listed in Table III.
T.IBLE HII

Tubulation of the Propugation and Impelance Characteristics of Series-Shunt Wave Fitter Sections which can be Formed from the Reactunce Meshes of Figs. 5 and +2

SERIES ARMI

$\begin{aligned} & \overline{2} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		1	3	5.1	7a or ib
	$1{ }^{\prime}$	No Pats IBand	1713.	21-22.	Double Band l'ass
	3^{\prime}	15-1.	1613 *	L.ow-and- Band Pass	Double Band Pass
	5'a	$1616 *$	$\begin{aligned} & 1717 \\ & 18 \\ & 18 \\ & 19 \\ & 13 \end{aligned}$	$\begin{aligned} & 16-22= \\ & 2022 . \\ & 2122 . \\ & 2222 . \\ & 3222 . \end{aligned}$	More Than Six Elements
	I'a or i'b	l.ow-andBand Pass	$\begin{aligned} & 1617= \\ & 2013= \end{aligned}$	More Than six Elements	More Than Six Elements
$\begin{aligned} & \bar{z} \\ & \underset{y}{x} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			SERIES ARM		
		1^{\prime}	t^{\prime}	$5{ }^{\prime}$	$8^{\prime} \mathrm{a}$ or $\mathrm{R}^{\prime} \mathrm{b}$
	1	No Pass Band	$25 *-9$	$\begin{aligned} & 24 \cdot-16 \\ & 26 \cdot-16 \end{aligned}$	High-and. Band Pass
	4	$23 \cdot-14$	$26-14$	$23: 19$ $27: 14$ $28 \cdot 14$	$\begin{aligned} & 26 * 19 \\ & 31 * 14 \end{aligned}$
	51,	$24 \cdot 24$	High-and- Band l'ass	$\begin{aligned} & 24=37 \\ & 26=24 \\ & 29=21 \\ & 31=21 \\ & 31=24 \end{aligned}$	Nore Than Six Elements
	8a or 81)	Double Band Pass	Jouble Band Jass	More Than Six Elements	More Than Six Elements

The representation of the characteristic: of the structures of Table III is similar to the stheme of Table II. The ligures at the top and side (for example $1-3^{\prime}$) indicate respectively, we series and shunt reactance meshes of lige in and 42 which form the promotype seetions.

IFig. fl I'ropagation (ennshant Ithentatiom and lhase Constant) Characteristics of 1 ilter settons containing Negative Imbuctances, Shown in Symbolic Form

The ligures in the correponding hax (for example, 15-1-*) inclicate
 dmal milostion image imperbace No. I of lïg. S. The symbal * indicater, when incotert in the secomel or third position, that the
 (ions, re-pretively.

It will In betad that moly one low pass prototype section ($1-3^{\prime}$) is given in the talde, evelusive of sperial conen of hand filter structures.
 pasc charateristie in that the attenuation constant is finite at all frequencies. Tha phase whateristie simulates, in a genteral way, that of the twa chement lew phes biter face propagation charaterintio An. 1 of Fies \boldsymbol{T}) but the phase shift in the tratmission batel is, in general, differemt Since the strememe has mideseries imsge imperlatee charatoristic No. I it moty be joinel elficiently (i.e.. whome reflection losses) (10 sertions of the $1-2$ and $1-3$ types.
similarly, high pass prototype section $I^{\prime}-1$ has a unigue high patsis attentation charaterintic in that the attentation constath is finite at all freguencies. The phase charateristie is, in gemeral, similar (1) that of the two element high pass filter 2-1 exeept for the salues of the plase constant in the transmission batal. The section may be joinel efticiently at mil-shmet to sections of the $2-1$ and $1-1$ types since it has the same mil-shme image chatateristic (No. 9).

The dtemation characteristics of the band pass prototypes listed in Table 111 will, in general. differ from the attentation characteristics of strueture listed in Tible 11 . However, many of them differ only in minor respects and conld hase been represemed islentically in the symbolic fashon of Fig. 7 . Inasmuch as such structures will not, howerer, have exactly the same attenabtion chatateristics for given cut-ofi frepuencies and frequencies of infinite attentation, differem symbels or diagrams have leen employed to represent them.

Certain characteristics are worthy of comment becatse they are not obtainable, even approximately, in structures not having negative inchetance. For example. propagation characteristics Nos. 16 and 26 Fig. 111 are babl pass filter characteristis having finite attemation at all freptuencies. Characteristios No. 22 and No. 29 are unigue in that there exist two frepuemeres of infinite attemation, located on one side of the pats band. Tlee attemation constant is, in general. finte at zern and at infinite frequencies. (Chararteristics 19 and 28 are special cases of Niss. 22 and 29, respertively, and have two frequencies of infinte attenuation on one side of the pasis bathd. In the case of 19, the attentation is infinite at zero frefuency and at a freptuey betwen zern and the lower cut-off frowency. Characteristic 2n has inlinite attentuation at intmite fretueney and also at a frequency le tween the upper cut-off frepuency and infinite frequency. Characteristios Niss. is and 27 hate conlluent band characteristics and have only one frequency of intinite attentation, located either att zero frequency or at infinite frepuency. Fïnally, characteristics Nos. 20 and 31 are contluent characterinties in each of which one fre-
quency of influte attennation ocars and the attenuation is finite at zero freptency and infinite frefuenes:

As a general rule the phase shift characteristies shown in Fig. $4 t$ are similar to the corresponeling characteristics shown in Fig. 7. The phase characteristics of the former, within the pass bands are, in general, however, of a distinctly different character than those of the latter even though the phase constant at the cut-off frequency and the mid-frequency may le the same. Phase characteristics 21 and 24 (Fig. 44) are of special interest, howeser, in that while they belong to the peak type sections, the phase is of the same sign throughout the entire frequency range. . Also phase characteristics 22, 29, 30 and 32 have a unique property, for band pass structures, in that the phase undergenes a change in sign within one attentation band.

In regarel to the impedance characteristics, it is noted from Table III that no notel impelance charucteristics are obtained in structures having negative indutances as compared to the structures not hating negative inductances. This is a valuable property of the prototype structures listed in Table Ill as it permits composite filters to be readily formed utilizing looth the sections of Tables 11 and $111 .^{16}$

Characteristics of a Typical Filler. In order to illustrate the derivation of design formulae for a specific prototype having negative inductances, consider as an example the band pass structure $3-3^{\prime}$ of Table 111. We shall negleet the effect of dissipation on the characteristics of the structure, as the treatment of dissipation has been previously outlined. The prototype rited is illustrated in Fig. 4id. Two

Fig. 15 I'rototype bection tiottaining Negative Inductance, and Two of Its Physically Realizable Forms
methouts of physically obtatining such a prototype are illustrated in Figs. 1.13 and C°. In this structure the series imperlance $\%_{1}$ is

$$
\begin{equation*}
Z_{1}=j\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right) \tag{92}
\end{equation*}
$$

[^13]The imperlume of the shunt , orm is

$$
\begin{equation*}
\%_{3} \quad-j\left(\omega L_{2}+\frac{1}{\omega\left(\dot{C}_{2}\right.}\right) . \tag{!3}
\end{equation*}
$$

The ratio, $Z_{1} 1 K_{2}$, which comtrols the attemation aml phase constants, per section, of the structure is

$$
\frac{\Pi_{1}}{4 Z_{2}}=\frac{j\left(\omega L_{1}-\begin{array}{c}
1 \tag{!1}\\
\omega C_{1}
\end{array}\right)}{-j\left(\omega L_{2}+\frac{4}{\omega C_{2}}\right)}=\frac{C_{2}}{4 C_{1}} \frac{1-L_{1} C_{1} \omega^{2}}{1+L_{2} C_{2} \omega^{2}}
$$

From the impedance characteristics of reactance meshes 3 and 3^{\prime}, as illustrated in ligs. 6 and 43 , and the combined reactance character-

Fig. 46-Reactance-Frequency Characteristics of the Series and Shunt Arms of the Prototype Section of Fig. 45-A
istics of Fig. 40 for $Z_{1}, 4 Z_{2}$ and $-4 Z_{2}$, it will be noted that the lower cut-off frequency; f_{1}, is that at which $Z_{1}=0$. Hence,

$$
\begin{equation*}
f_{1}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}} \tag{95}
\end{equation*}
$$

Similarly, the upper cut-off frequency is that at which $Z_{1}=-4 Z_{2}$ or $j \omega L_{1}-j, \omega C_{1}=j\left|\omega L_{2}+j\right| \omega C_{2}$. From this relationship, the upper cutoff frequency is

$$
\begin{equation*}
f_{2}=\frac{1}{2 \pi} \sqrt{\frac{C_{2}+4 C_{1}}{C_{1} C_{2}\left(L_{1}-4 L_{2}\right)} .} \tag{96}
\end{equation*}
$$

Let f, be assumed as the frequency where Z_{2} is a minimum, that is, where $\omega^{2} L_{2} C_{2}=1$. We may then write

$$
\begin{equation*}
f_{n}=\frac{1}{2 \pi \sqrt{ } L_{2} C_{2}} \tag{97}
\end{equation*}
$$

Substituting the aluve values of f_{1}, f_{2} and f, in formula (!9) we obtain for $Z_{1} 4 Z_{2}$

$$
\begin{equation*}
\frac{\%_{-1}}{1 \%_{2}}=\frac{1-\left(\frac{f}{f_{1}}\right)^{2}\left(\frac{f_{2}}{f_{r}}\right)^{2}+1}{1+\binom{f}{f_{r}}^{2}\binom{f_{2}}{f_{1}}^{2}-1} \tag{98}
\end{equation*}
$$

From this last expression the athemation and phase characteristics may te ploted from formulae (22) and (23) or from Figs. 11 and 12. The attenuation and phase contamt chateceristics are shown symbolically as characteristic 16 of liig. 41. This structure has unusual attenuation properties which hase alrendy been disenssed.

From erpation (6) and the values of Z_{1} and Z_{2}, in (92) and (933). the mid-series image impedance ($\%$), at the mid-frequency, is

$$
Z_{o}=\frac{1}{2}\left[\sqrt{L_{2}} \begin{array}{l}
I_{1}+L_{1} \tag{99}\\
C_{2}
\end{array}-\sqrt{L_{1}} V_{C_{2}}-C_{C_{1}} \quad\right] .
$$

Since the mid-serico image imperance, at any frequency, is the same as that of filter seetion 3-3, we hate:

Where f_{m} is the mind-frectuentey ($f_{m}=1 f_{1}, f_{2}$), ats before.
The prototspe is mor capable of mid-shant termination, bence, its hypothetieal mirl-shmm impedane charateristic will tot be derived.

From the preceding formulac, explicit expressions may be derived for the valuen of L_{1}, C_{1}, L_{2} and $C_{?}$

$$
\begin{align*}
& L_{1}=\begin{array}{c}
Z_{1} m^{\prime} \\
\pi\left(f_{2}-f_{1}\right)^{\prime}
\end{array} \tag{101}\\
& C_{1}=\begin{array}{c}
f_{2}-f_{1} \\
1 \pi I_{1} I_{1} \ldots^{\prime \prime}
\end{array} \tag{102}\\
& L_{2}-\begin{array}{cc}
-\%_{0} & 1-m^{\prime 2} \\
\pi\left(j_{2}-f_{1}\right) & 1 m^{\prime}
\end{array} \tag{10:3}\\
& \text { C. }_{2}=\begin{array}{c}
\left(f_{2}-f_{1}\right) m^{\prime} \\
\pi Z \omega\left(l_{2}{ }^{2}-f_{1}{ }^{2} m^{\prime \prime}=\right.
\end{array} \tag{10.I}\\
& m^{\prime}-1+\frac{\binom{f_{2}}{f_{1}}^{2}-1}{\binom{f_{r}}{f_{1}}^{2}+1} \tag{j}
\end{align*}
$$

S. at momerical ex.muple of the shlation of the protetype diactasex
 Prepuenes f_{1} is 2lloth cyeles ame thit the -
 of atemtation .and phase constant curves which this sertion may
 that the walue of the mid-series image imperdance $\%$.. .t the mil-fre-
 henries, $C_{1}=.01015 \% \times 10^{6}$ farads, $L_{2}=.00152$ hemries and $C_{2}=.01 \mathrm{~s} \mid \times$ (1) : farats. The structure with the numerical values of induetane amb capacity for this specitic example is shown in Fig. 17.

B

Fig. 47 - Aumerical Example of Equivatent Filter Sections Containing Negative Inductance

1f, for the T mesh inductances in Fig. 47 A , we substitute a transformer me-h having the values shown in Fig . 17 B , the mesh of the latter figure is electrically "quivalent to the prototype structure and is an "xample of the method of employing the structure. Similarly, Fig. $\mathbf{7 7 C}^{\circ}$ illustrates the substitution of another type of three clement mesh for the coil mesh of the prototype structure of 1 ig . 17 A and is another example of the manner in which the prototype may be physically expremed.

The structure of Fig. $17 B$ represents a similar case to that of 15.1 . Howerer, as the mutual inductance is here series opposing, the proto-
type series-shunt expixalent stracture is shown in Fig. 4613 and contains no negative inductances. It will be found that the values chasen corre-pond to the numerical example of the structure $3-3$ following equation 41 .

Fig. 48 -Numerical Example of a Filter Section Containing No Negative Inductance

APPENOIN

 Typlal Fileter streitires

It has leen stated that the formation of recurrent and composite wave filters is dependent upon the maintenance of equal image impedance characteristics (of the sections or half-sections joined) at each junction point throughonit the filter.

I general method of ascertatining the conditions for the equality. of image imperlance characteristics will be demonstrated by illustratons from typical pairs of sections.

Ilustration . Vo. 1 Vegative Inductance in Shunt Arm of One Structure. Convider the filter sections listed as 3 \& (confluent structure) in Table II, and $3 J^{\prime}$ in Table 111 . It will be shown that, uneler proper conditions, their mid-series image impedance characteristics maty lx made equal at all frequencies. (Byy reference to the abowe tables, luth rections have miel-series impertance characteristic No. 13 of lig. S).

From equation (i)

$$
\begin{equation*}
\%_{1}^{2} \quad \%_{1} \%_{1}+\frac{\%_{1}^{2}}{1} \tag{106}
\end{equation*}
$$

In lig. 1! , let

$$
\begin{equation*}
Z_{1} \quad Z_{1,1}+Z_{11}-j \omega l_{11}+\frac{1}{j \omega C_{i}} \tag{107}
\end{equation*}
$$

$$
\begin{array}{ll}
& Z_{1}^{\prime} \quad K_{1} Z_{1.1}+K_{A} Z_{1 n}, \\
\text { and } & Z_{2}^{\prime} \tag{1010}\\
-K_{1} Z_{11} .
\end{array}
$$

where $K_{1} L_{1}^{\prime}, L_{1}, K_{B}^{\prime} C_{1} C_{1}^{\prime}$ and $K_{C} \quad L_{Q^{\prime}} L_{1}$.
From (lOti)

$$
\begin{equation*}
Z_{l}^{2}=R+\frac{Z_{1}^{2}}{1} \tag{111}
\end{equation*}
$$

in which

$$
R \xlongequal{L_{2}}, \begin{align*}
& I_{1} \tag{112}\\
& C_{1}
\end{align*} \xlongequal[C_{3}]{ }
$$

Fig. 49- Two Structures Having Equal Mid-Series Image Impedance, One of Which Contains a Negative Inductance in Its Shunt Arm

From (107) and (111)

$$
\begin{equation*}
Z_{I}^{2}=R^{2}+1\left(Z_{1 A}+Z_{1 B}\right)^{2}=1 \quad+Z_{1 A}^{2}+\left(1+K^{-} 2\right) R^{2}+1 \quad \mid Z_{1 B}^{2} \tag{113}
\end{equation*}
$$

where $K=Z_{1 A} Z_{1 B} R^{2}=L_{1} L_{2}=C_{2} C_{1}$.
Now from (106) and (108)

$$
\begin{gather*}
\left(Z_{l}^{\prime}\right)^{2}=Z_{1}^{\prime} Z_{2}^{\prime}+\frac{\left(Z_{1}^{\prime}\right)^{2}}{1}=\left(\frac{K_{A}^{2}}{4}-K_{1} K_{C}\right) Z_{I A}^{2}+ \\
\left(\begin{array}{c}
\frac{K_{1}^{\prime}}{2} K_{B} \\
2
\end{array} K_{B}^{\prime} K_{C}\right) \kappa R^{2}+\frac{K_{13}^{2}}{4} Z_{i B}^{\prime} . \tag{11.5}
\end{gather*}
$$

Since, by postulation, in Fig. 49. $Z_{1}=Z_{1}{ }^{\prime}$, we may equate the corfticlients of (113) and (11.5). This gives

$$
\begin{align*}
& \frac{1}{1}=\frac{K_{A}^{2}}{1}-K_{A} K_{C} \tag{116}\\
& 1+\frac{K}{2}=\left(\frac{K_{A} K_{B}}{2}-K_{B} K_{C}\right) K^{2} . \tag{117}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{4}=\frac{K_{B}^{2}}{4} \tag{118}
\end{equation*}
$$

$$
\begin{array}{lll}
\text { Wheme } & K_{i s} & \begin{array}{l}
C_{1} \\
C_{1}^{\prime}
\end{array}, \\
\text { and } & K_{i} & L_{1}{ }^{\prime}=\frac{L_{1}{ }^{\prime} C_{1}^{\prime}}{L_{1}}=\frac{f_{1} m^{2}}{L_{1}{ }^{2}}-f_{1} \tag{120}\\
f_{1}
\end{array}
$$

Where f_{1} and f_{2} are the lower and upper cuteoff frepuesties, respecLively, and $f_{M} \quad 1 f_{1} f_{2}$ of the structures of 1 ig. 49.

From (116) and (120)

$$
\begin{equation*}
K_{1} \quad \frac{L_{2}^{\prime}}{L_{1}}=\frac{1}{1}\left(K_{A}-\frac{1}{K_{A}}\right)=\frac{1}{4}\left(\frac{f_{2}}{f_{1}}-\frac{f_{1}}{f_{2}}\right) . \tag{121}
\end{equation*}
$$

Therefore, when the relationshijs leetween the constants of the two structures of Fig. f! sattisfy equations (119), (120) and (121), the structure will hate the same mid-series image impedance characteristics. Explicit relations for the values of $C_{1}{ }^{\prime}, L_{1}{ }^{\prime}$ and $L_{2}{ }^{\prime}$ may be obtained from equations (1191), (120) and (I21) as follows:

$$
\begin{align*}
& \check{C}^{\prime}=\check{C}_{1}, \tag{122}\\
& L_{1}^{\prime}=I_{-1} \frac{f_{2}}{f_{1}^{\prime}} \tag{123}\\
& L_{2}^{\prime}=\frac{L_{1}}{4}\left(\frac{f_{2}}{f_{1}}-\frac{f_{1}}{f_{2}}\right) . \tag{124}
\end{align*}
$$

Conseguenty, if the comstants and cut-off freguencies of a contluent structure are known, the constante of a structure of the 31^{\prime} form hatwing an ifentical mid-series image impetance charateristic eat be derived from egnations (122), (123) and (121).

Illustrution .Vo. 2. Vegatice Induclance in Siries Arm of One Strature. (insider nest the lilter reetions listed as 31 (conllame srowture) in Table 11 and 1 ' 1 in Table III. It will be shown that, umber proper comblitions. their midshant image imperlance charac-teri-tir may be mate equal at all frepuencies. (By reference to the
 Ao. 11 of F゙ig. \rightarrow)

1 10ヶH ©

$$
\begin{equation*}
y_{1}^{n} \quad Y_{1} H_{2}+\frac{1_{2} z}{1} \text {, } \tag{125}
\end{equation*}
$$

where

$$
\Gamma_{1}=1 Z_{1}, Y_{2}=1 Z_{2} \text { and } I_{i}-1 Z_{1} \text {. }
$$

In ling ill. let
. 11 ll

$$
\begin{align*}
& I_{2} I_{21}+I_{: n} \frac{1}{j \omega L_{2}}+j \omega C_{2} . \tag{1}\\
& I_{2}^{\prime} K_{1} I_{21}+K_{B} I_{2 B} \tag{127}\\
& \Gamma_{1}^{\prime}=-K_{C} \Gamma_{21}, \tag{128}
\end{align*}
$$

Fig. 50 Two Structures Having Equal Mid- Shunt Image Impedances, One of Which Contains a Negative Inductance in Its Series. Ira
where

$$
\begin{equation*}
K_{1} \quad L_{2} L_{2}{ }_{2}^{\prime}, K_{B} \quad C_{2}^{\prime} C_{2} \text { and } K_{C} \quad L_{2} L_{1}^{\prime} . \tag{12!9}
\end{equation*}
$$

From (12.)

$$
\begin{equation*}
r_{l^{2}}^{2}-\sigma_{i}^{2}+\frac{Y_{2}^{2}}{l} \tag{130}
\end{equation*}
$$

in which

$$
\begin{equation*}
G \quad \bar{C}_{1} \quad \overline{C_{2}} \backslash \overline{\bar{L}_{2}} \tag{1;1}
\end{equation*}
$$

From (120) and (130)

$$
\left.\Gamma_{I^{2}}^{2}=G^{2}+1 \mid \Gamma_{2.1}+\Gamma_{2 B}\right)^{2}=1+I_{3}^{2}+\left(1+K^{2} 2\right) G^{2}+1 \quad I_{2 B}^{2} \quad(132)
$$

where

$$
\begin{equation*}
K \quad I_{2,1} \zeta_{2 B} G^{2}=L_{1} \cdot L_{2}=C_{2} C_{1} . \tag{133}
\end{equation*}
$$

Now from (12.5) and (127)

$$
\begin{gather*}
\left(I_{I}^{\prime}\right)^{2}=I_{1}^{\prime} \Gamma_{2}^{\prime}+\frac{\left(\Gamma_{2}^{\prime}\right)^{2}}{4}=\left(\frac{K_{1}^{2}}{4}-K_{1}^{\prime} K_{C}\right) Y_{2 A}^{2}+ \\
\left(\begin{array}{c}
K_{1}^{\prime} K_{B}^{\prime} \\
2
\end{array}-K_{B}^{\prime} K_{C}\right) K G^{2}+\frac{K_{B}^{2}}{4} I_{2 B}^{2} \tag{131}
\end{gather*}
$$

Since, by postulation, in Fig. .at, $\mathrm{F}_{\ell}=\mathrm{V}^{\prime} \ell^{\prime}$, we may equate the coelficlients of (132) and (131). This gives

$$
\begin{align*}
& \frac{1}{1}=\frac{K_{1}}{1}-K_{1} K_{C}, \tag{135}\\
& 1+\frac{K}{2}=\left(\begin{array}{c}
K_{1} K_{B} \\
2
\end{array}-K_{B} K_{C}\right) K, \tag{136}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{4}=\frac{K_{k}^{2}}{4} . \tag{137}
\end{equation*}
$$

Whence $K_{B}=\frac{C_{2}^{\prime}}{C_{3}}=1$
and

$$
\begin{equation*}
K_{1}=\frac{L_{2}}{L_{2}{ }^{\prime}}=\frac{L_{2} C_{2}}{L_{2}{ }^{\prime} C_{3}{ }^{\prime}}=\frac{f_{2}{ }^{2}}{f_{3}{ }^{2}}=\frac{f_{2}}{f_{1}} \tag{138}
\end{equation*}
$$

where f_{1} and f_{2} are the lower and upper cut-off frequencies, respectively, and f_{M} is the mean frequency $\left(\backslash f_{1} f_{2}\right)$ of the structures of Fig. 50.

From (135) and (139)

$$
K_{C} \cdot \frac{L_{2}}{L_{1}{ }^{\prime}}=\frac{1}{4}\left(K_{11}-\frac{1}{K_{11}}\right)=\frac{1}{4}\left(\begin{array}{l}
f_{2} \tag{140}\\
f_{1}
\end{array}-\frac{f_{1}}{f_{2}}\right) .
$$

Therefore, when the relationships between the constants of the two structures of Fig. 50 satisfy equations (135), (139) and (140), the structures will hase the same mid-shunt image impedance characteristics. Explicit relations for the values of $C_{2}{ }^{\prime}, L_{2}{ }^{\prime}$ and $L_{1}{ }^{\prime}$ may be obtained from equations (138), (139) and (140) as follows:

$$
\left.\begin{array}{l}
C_{2}^{\prime}=C_{2}, \\
L_{2}^{\prime}=L_{2} f_{f_{2}}^{\prime} \\
L_{1}^{\prime}=\frac{1 L_{2}}{\left(f_{2}-f_{1}\right.}\left(f_{1}\right. \tag{143}
\end{array}\right) .
$$

Therefore, if the constants and cut-off frequencies of a confluent structure are known, the constants of a structure of the $1^{\prime}-4$ form having an identical mid-shomt image impedance characteristic can be derived from equations (111), (112) and (143).

13131.10;RAPH1

1. Thivenin, M1. L.." Sur un Nouve:an Théoremed'Electricite Dynamique," Comples Rendus, Vol. 97, pp. 15) 161 (1883).
2. Kemaelly, A. F.," The Eiquivelence of Triangles and Three-Pointed Stars in Cunducting Networks," Flectrical Horld and Eingineer, New Vork, Vol. XXXU: [1), +13-311, 20pt, 16, 1899.
3. (amplull, (;. . ., "("immlal ()seillations," Trans. A. I. E. E., Vol. 犬XX, I'art II, 1p, 87.3 ($\theta(1)$ (1011.
4. (Ample:II, 1; A., 11. S. P.tlents Nom: $1,227,113$ and $1,227,114$ 1917).
5. (iherardi, B. and Jewett, I: 13., "Teleqhone Repeaters," Trans, A. I. E. E., 1919.

6 Wagner, K W., Irah. fur Eilektrotechnik, Vol. 8, p, 0111919 ; E., T. Z., Aug. 7, 1919.

7．Vin der Bijl，II．T．，＂Thermionic Vicutum V＇ulxes，＂Puhlished 1220.
8．Vierce，G：W．，＂Electric Oxillations aml Flectric W＇aves，＂I＇ublisherl，1920）．
O．Colpitts，ほ．II．and Blackwell，1）．B．，＂（arrier Current lelephony and Teleg． raphy，＂Trans．．1．I．E．F．，Feh．，1921．
10．Clement，L．M．，Ryan，ド．M．，and Martin，U．K゙．，＂The Tvalon－lons ．Angeles Radio Toll Circuit，＂Proc．I．R．E．，May，1） 21.
11．Fetcher，II．，＂The Nitture of Speceh and Its Interpretation，＂Jour．Franklin Inst．，June， 1922.
12．Camphell，（i．A．，＂Physical Theory of the lilectric Wave－lilter，＂Bell Sys．Tech． Jour．，Sox：，1922．
13．Zohel，O．J．，＂Theory and Design of Uniform and Composite Electric Wive－ Filters，＂Bell Sys．Tech．Jour．，Jan．，192．3．
14．Rose，A．F．，＂Practical Application of Carrier Telephone and Telegraph in the Bell System，＂Bell Sys．Tech．Jour．，April， 1923.
15．Hartley，R．V．1．．．＂Relation of Carrier and Side－Bands in Radio Transmission，＂ Bell Sys．Tech．Jour．，April， 1923.
16．Bown，C．D．，Englund，C．R．，and Friis，11．T．，＂Radio Transmission Measure－ ments，＂Proc．I．R．E．，April， 1923.
17．Peters，L．．J．，＂Theory of Electric Wave Filters Built up of Coupled Circuit Vlements，＂Jour．A．I．E．E．，May， 1923.
18．Demarest，C．S．，＂Telephone Equipment for Long Cable Circuits，＂Bell Sys． Tech．Jour．，July， 1923.
19．Nichols，11．W＂．and Espenschied，L．，＂Radio Eixtension of the Telephone System to Ships at Sea，＂Bell Sys．Tech．Jour．，July， 1923.
20．Carson，J．R．and Zobel，O．J．，＂Transient Oscillations in Electric Wave＂ Filters，＂Bell Sys．Tech．Jour．，July， 1223.
21．Arnold，H．D．and Espenschied，La，＂Transatlantic Rarlio Telephony，＂Bell Sys．Tech．Jour．，Oct．， 1923.
22．Best，F．Il．，＂Measuring Methorls for Maintaining the Transmission Vifficiency of Telephone Circuits，＂Jour．A．I．E．E．，Feh．， 1924.
23．Casper，W．E．．，＂Telephone Transformers，＂Jour．A．I．E．E．，Mareh， 1924.
It Slaughter，N．H．and Wolfe，W．V．，＂Carrier Telephony on Power Lines，＂ Jour．．I．I．E．E．，April，1924．
25．Foster，R．M．，＂A Reactance Theorem，＂Bell Sys．Tech，Jour．，April， 1924.
26．Martin，W．H．，＂The Transmission Unit and Telephone Transmission Refer． ence Sy＇stem，＂＇Bell Sys．Tech．Jour．，July， 1924.
27．Zobel，O．J．，＂Transmission Characteristics of Electric Wave－Filters，＂Bell Sys．Tech．Jour．，Oct．， 1924.

Some Contemporary Advances in Physics VI Electricity in Gases

By KARL K. DARROW

1. INTRU日t(TVOX

TIIE physicind of a quartor of a century ago, who devoted themselves to the study of deetricity in gases, were happily inspired; for among the myrial of intriatte and obscure phenomena which they obsersed there are some few of ath extreme simplicity, in which the gualities of the individual atoms of matter and electricity are manifest; in alnalying these they entered upon the path that led most directly to the deeper understanding of nature which is superseding the physies of the nimeteenth rentury, and the physies of toxlay is fomeled upon their efforts. The electron was perceived for the first time in the comese of olmervations on the electric discharge in rarefied gases, and other experiments in the same fied established the atom in stience ats a real and definite object. The discovers of the atom is commonly credited to the chemists; yet fifteen years have not passed since students of chemistry were being warned by a famous teather that "atom" and "molecule" are figurative words, not on any account (o) be taken literally! The laws of chemical combination were hed insufficient on prose that atoms hate any real existence; though dements may always combine with one amother in unchanging proportions, this does not prowe amything alout the weights of the atoms, or their sizes, or their qualities, or even that all the atoms of an element hatse the same weight, or exen that there are any atoms at all. Now that we are past the nexesty for this cattion, and can combt atoms, and measure their masses, ant infer something about their structure, and estimate how dome bogether they can approach, and know what happens to them when they strike one another or are struck by dectrons; now that we can fill in the picture of the atom with som.my and so diverse details, we are indebted for this progress chielly to the men who gathered the data and male the theories concerning the conduction of electricity in gases. Many will remember how in the years before the great war this liell of research seemed the most wital part of physics, the mone inspired with a sense of new life and swift ads,mae: now others share with it the contre of the stage, but they wom their places dhedly leceltase of the light it shed upon them.

It secom stramge that the then of eleetricity in getses should hate prosed easier to interpere that the thow of electricity in metals, which in appearance in ertainly ly far the simpler. One applies the terminals
 di-mbutc- iteelf with a tuiform gratient along the wire and . courent How- scombls down it. Sor rigomaly is the eursent propartion.al to the whage between the end- of the wire, ower very wille ranges of woltage ame current, that we reg.est the ratio .ss ant cosential eonstant of the wire; and we regarel the ration of petemtial-gratient Celectric liek) (o) earrent density an ath essemtial chatreteristic of the metal,
 themeries of combetion in metals at theorien of metallic resistance. If all seeme exacelingly simple, and yet in the foregoing article of this series 1 have - lewn how all the altempts 10 interpere it hase gene in bain. Wuch more complex in sppearence is the diocharge through a gats. One applien the terminats of a batters to a pait of electrodes focing one another in the open atir, and perhaps mothing happens, or -1) minnte a current flows that the most delicate of instruments is demanded to deteet it amd then when the battery-voltage is very slightly. raised, there may be an explesion with a blaze of light, dissociating the gots and corroling the eloctrodes, and draining off the available electricity in a moment. Or if one of the electrodes is acutely pointed there may be glows and luminous sheaths around it or tentacles of bluish light ramifying from it far and wide through the air. Or the discharge maty rise to the heat of incandescence, ind the gas and the electroles shine with a blinding radiance, the brightest light that ran lee kindled on the earth. Or if the electrodes are enclosed in a tube containing a rarefied gas or vapor, the gas flares up into an extraordinary pattern of light and shade, lucent vividly-colored clouds floating lectween regions glowing feebly or obseure; and ats the gat is gradually. pumped away, the pattern ehanges and fates, at staight beam of electrons manifests itself by a luminous column traversing the tube. the glass wall- Hash out in a green fluosescence, and finally all becomes extinct. Is for that even gradient, and that constant proportion |eetween rurront and field strength distinguishing the metals, we cannot fund them here. There is mosthen thing ats the resistance of a gas; we had better forget the word, we camont attach any physical meaning to the ratio of current and voltage.

I must not give the impression that all these manifold forms of the Wectric dincharge is gates atre umberstoxt. Certain of the simplest of them have been clarifeel, and ats a result still simpler ones hase been realizel and comprehended in their turns, and so on down to the simplea of all, which is the discharge across a vacumm. This -rund- somewhat like a paradox and so it would have seemed thirty or forty years ago, when electricity was thought to be inseparable
from matter, and the only known discharges across gases were the discharges in which the gas plays an indispensable role. It is important to note the manner of this evolution, for much of the history of molern physies is dominated ly it. We should not be nearly so far advanced as we are, had we not learned two things: how to reduce the amment of gas in a tube until an electron can lly clear across it with searely any chance of meeting an atom, and how to persuade an electron to emerge from a metal otherwise than by starting a discharge in a gas over its surface. W'e who are so familiar with the idea of electrons beriling out of a hot wire, or drisen out of a cold metal plate liy light shining upom it, or fired as projectiles out of exploding atoms, find it difficult to imagine the confusion which of necessity prevailed when all these processes were unknown. In the early stages of researeh into the discharge in gases, it was made clear that of each self-maintaining discharge a stream of electrons flowing out of the negative electrode is an essential part; the electron-strean maintains the gas-discharge, and reciprocally the gas-discharge maintains the electron-stream. The latest stage commenced when it was made possible to produce and maintain such an electron-stream independently of any gas-diselharge, and deal with it at will.

Let me then begin the exposition with this idea, which so many years of research were required to render acceptable: the idea of a stream of electrons emerging from a metal wire or a metal plate, at a constant rate which is not influenced by the presence or absence of gas in the space surrombling the metal. The reader may think cither of thermionic electrons flowing spontaneonsly out of a bot wire, or of photo-clectrons llying out of a metal plate upon which ultraviolet light is shining. ${ }^{1}$

Gis, ani Thile Einototirs with the Atoms

Conceive a semper of electrons, a megative electrode or cathode, which is cuckerel in a tube. If the tube is highly wacuated, the

[^14]electrons enter the bownum fredy; wectricity has no horror of a saetum, dily more than nature generally. still there is something which suggests the harror rucui of the scientints lefore (i, lilew) for the electrons which are alrealy partway across the wacmum tend, by their electrostatic repulaion, to push back their followern which are just emerging from the metal. This is the space-charge wfect, which has beeme fanons since the audion became almost as common an object as the incandescent hamp in the American home. I hall presently have to write down the equations describing this effect; for the time being we may ignore it, so long as the electron-stream is not more profuse than a photoelectric current generally is. The electrons of these scanty discharges enter into the vacuum and pass over without hindrance.

At this peint it is advisable to saly what is meant by a "racumm." scientists are growing more exigent year hy year in their use of this term: thirty or forty years ago people spoke of "vacuum tules" meaning tubes so full of gas that they would transmit a big current with a resplendent luminous display; but this self-contradicting usage has trecome quite intolerable. At the present day the least density of gas, or the highest vacuum, commonly attained corresponds to a gaspressure alout 10^{-11} as great as the pressure antrdensity of the atmosphere. This means that there are aloout 10^{-8} molecules in a cubic centimetre of the "'acuum," which may make the name sound ab-uril. But the practical criterion for a vacuum is not whet her the remaining atoms seem many or few, but whether they are numerous enough (1) affect the passage of a discharge; and as an electron shooting acruss a tube 10 cm . wide and evacuated to this degree has 999990 chances out of a million of getting elear across without encountering a molecule, the tube is vacuous enough for any sensible definition.

Next we will imagine that a gas is introluced intu the tube, in quantity sufficient so that each electron going from cathorle toward anorle will collide on the average with one or possibly tworn atoms on its way. It is best to begin by thinking of one of the noble gases, of which helium, argon and neon are the ones in common use; or of the vapour of a metal, mercury vapour being much the easiest of these to work with: for their atoms behave in a simpler and clearer manner toward the electrons than do the molecules of the commonest gases, particularly the oxygen molecules which are so numerous in air. In fact the practice of using the moble gases and the metal vapours that is to say; the monatomic gases-wherever possible in these researches ought really to le regarded as one of the great advances of the lat few years; our predecessors would certainly have learned more about the dis-
charge in gase than they ever did, if they had not stadied it in air ninely times wit of a hundred, and in wher distemic gases most of the wher ten.
L.et us - suppose that the tulde contans helinm of the extremely small density I hate just defined. Then so long as the kinetie energy of an dewton doses not exced 19.7.5 wols, is will reloumd from any helimm atom which it strikes, like a very small perferaly clasic ball rebounding from a very large one. We might conecive the contents of the tube (for this purpore and only for this purpose!) ats a thest of immense isory puthbatls foathing languidly alout, with at blizzard of equally. datice gelfballs or marble darting bhrough the interspaces and occasomatly striking and bouncing off from one of the pushbatls. If the collisions between eferems and atoms are perfecty dastic, as I have said without giving evidence, the ehecom will lowe an extremely small part of its kinctit chergy at cath collision, owing to the great disparity in mase es a fraction varsing from zero up to not more than . $0000.3{ }^{-1}$ deperding on the direction of rebound.

This was verifed in at pretty experiment ly \mathfrak{K}. T. (ompton and J. M. Benade: who milizel a certatin effect* which electrons proxluce when they have kine is energy eveeding 19.7 .5 volts at the moment of a collision with a helimm atom. For example, when the pressure of helium was 1.31 mm . and the efretrons were drawn from a cathode to all anote (1.26 i .5 cm. away, a volage-rlifierence of 20.25 (phas an unknown correction) was refuired to probluce this effeet: when the ande was $0 .!10 \mathrm{~cm}$. from the eathole the rerpired voltage-difference was 23.15 (plas the same correction). The extrat vols were spent in replacing the energy last by the electrons in the collisions with helium atoms wer the extra fi .3 mm . ; they amombed to an average of . 000 : of the electron : ancrgy lost in cach collision, excellently in agrecment with the asolmption.

Von as for the transit of the electron-stream from catherle w anowe, the helime atoms will smply thin it dewn bey intercepting sume of the chertons amb turning their course lackwards or aside. The greater the manler of atoms in the path, the greater the pros-
 an the ges in tox slemer than I hatse -pecilied, thi propertion increases As :at expenemtial function of the mumber of atoms letween cathorle dad anose, whe ther this nomber be incrased by introducing more gith or los moning the anowe farther awoy from the athote. If

${ }^{3}$ The propertion inerenw- more slowts when there are alreads an many atoms between atmene and athente that an wey trom is likely to strike two or more on its way actoss.
 apart, and there are P 'helimm atom- in a cubic cemtimete of the gas

 trons which are intercepted before they reath the amole is

$$
\begin{equation*}
د . V \lambda_{0}=1-i \quad P^{2} d \tag{1}
\end{equation*}
$$

and the mamber of electrons reaching the corresponding area on the ande in a seconel, $V_{0}-\Delta \lambda$, conforms to the equation:

$$
\begin{equation*}
\log _{e}\left(x_{0}-\lambda V^{*}\right)=-.1 I^{2} d+\text { const } . \tag{2}
\end{equation*}
$$

The coelficient it is a constant to be interpreted as the effertise crosssectional area of the helium atom relatively to an oncoming dectronthat is, the atem behawes towards the electron like an sbatale presenting the impenetrable area . 1 io it.

In the experiments performed to verify thend dsertions and determine the value of .1 , the simple geometricifl arrangement which 1 have described is gencrally modified mone way or another for greater accuracy or consenience. Nayer approached most nearly to the simple arrangement; in his apparatus (Fig. 1) the electrons

Fig, 1-Apparatus for determining the percentage of electrons which gu across a g.ts of variable thickness without interception. (Mayer, Annaten der Physik)
which emerge from the hot filament at G, pas through the two slits in front of $i t$, ant then go down the long tube oo the anode K, which is drawn backward step by step. The logarithmic curses of current versus distance for sarious pressures of aitrogen (Fig. '2) are straight. Unfortunately the current also diminishew as the distance is increased when the nitrogen is pumped out altogether; this is attributed partly
to residual vapors and partly to the electrons striking the walls of the tube. The other curves are corrected for this effect, and then A is calcutated. For helium it is $25.10^{-16} \mathrm{~cm}^{2}$; the salues obtained by modifications of the methord agree well. ${ }^{4}$

The helium atoms therefore behave as so many minute and yet appreciable obstacles to the passage of the electron-stream, so long as the electrons are not moving so rapidly that their energies of motion do not surpass 19.75 volts. Electrons as slow as these bounce off from the atoms which they strike. When, howeter, an electron possessing kinctic energy greater than 191.75 volts strikes a helium atom,

Iig. 2 Curves illustrating the interception of electrons by nitrogen molecules which they strike. (Mayer, innalen der Physik)
it is liable to lose 195.75 volts of its energy to the atom, retaining only the remainder. This energy does not become kinetic energy of the atom, a process which would be ibcompatible with conservation of momentum; neither is the atom broken up; it receises the quota of energy into its internal economy; where some kind of a domestic change ocours with which we are not concerned for the moment, except in that it furnishes an exceedingly accurate indirect way of calculating the exact amount of encrgy taken from the electron. The atom is said to be put into an "excited" or sometimes into a "meta-

[^15]stable" state, and the energy whids it takes np, mensured in volts, is called its resonamie-potential. The electron is left with only the difference between its initial energy and the 19.75 volts which it surrendered.

This loss of energy in a so-called "itrelastic" collinion catu be dem-

Fig. 3 - Curve displaying resonance-protentials of mercury. (Einsporn, ZS.f. Physik)
onstrated by inserting a third electrode into the path of the electrons, charged negatively to just such a degree that an electron retaining its full intial speed can overcome the repulsion of the electrode and win through to it, while an electron which has lost a quantity of its kinetic energy in an inelastic collision cannot quite "make the grade." When the energy of the electrons streaming into the helium
is rained just past 19.75 volts there in a sudten falling-off in the number of electrons arriving at the third electrode. The curve in Fig. 3, ohtained by limsporn, shows the current into such an electerele in mercury-wapor rising and falling again and again as the voltage paseses through the values which are integer multiples of 4.9 volts, the least resonamerepotential of mercury. Helium hats a second resonance-potemtial, at 20.15 volts; nem has $t w=$ at 16.6 .5 and 18.45 volts respectively; argen three, at $11.55,13.11$ and 14.0 volts; ${ }^{5}$ mercury two, at 1.9 and 6.7 volts. It is almost certain that in each case these are only the most conspicuous among many; but the lowest mentioned is the lowest of all.

Up to this point we find the gas acting as a mere inert obstruction 10) the discharge; every collision of an electron with an atom interrupts the progress of the electron toward the anode and to that extent imperes the discharge. L'ast the resomance-patential the same action continues, although the interruption is doubtess less severe when the electron is deprived of part of its energy of forward motion than when it is flong backward with its motion reversed in direction and its energy intact. It the resonance-potential, the gat does begin (1) assist the discharge in an indirect Way. Dtoms which are put into an "excited state" by a blow from an electron revert of themselver to the normal state, some time later: in so eloing they emit ratiation, some of which falls upon the cathode; some of this is absorbed in the cathore metal, and expels electrons which go along with the mantaned electron-strean as extra members of it . Thus the gat helpsin increasing and maintaning the elischarge; this effect is of great theoretical importance, and I will return to it later; but in these attual circumstances it is not very prominemt.

The really powerful cooperation of the gas in the diseharge commences when the clectrons are given so great an energy that they disrupt the atoms which they strike, leatring off an electron from each and leaving a positively-charged residue, an ion which wanders back lowarts the cathote while the newly-feed electron and its liberator go on ahearl towards the anote. The onse of this ionization may bedetected by inserting a third electroxde into the gas, it being charged negatively to such a degree that no electeons catn reach it, but only pesitive ions: or bey the increase in the current between cathode and anode, for the current incerase very suddenly and very rapilly when the enersy of the primary electens is rated past the threshode value, the ionizing-potential of the gas: 21.5 volts for helium, 21.5 for neon, 15.3 for argon, 10.1 for mercury. Comsider for example the

[^16]precipitate tuparel rash of the curremt-saltage carse in Fig. A, from the work of 1 .as is athel 1 ietucher. ${ }^{6}$

It this pront I will digress to apeak very brielly of the sutceseion of events which occurs when the electron-stream is muth denser than

Fig. 4 Onset of ionization in mereury vapor at 10.4 volts (preceded thy subsidiary. efferts at 4.9 volts and 6.7 volts; see foot note ${ }^{5}$). (1) wis and (ioucher)

We have hitherto imagined. So bong as the energy of the electrons does not attan the resonance-potential of the gas, there is no reason to expect any nowel effects: the collisions will be perfectly elastic, just as when the electrons were few. But when the atoms are thrown into the "excited state" hy impacts, there will be oecasional cases of an atom being strack twiee by electrons in stach qutick stacession that at the moment of the second blow, it is still in the excited state provoked by the lirs. Now, much less energy is regutired to ionize an atom when it is in the excited state than when it is momal; consequently when the electrons are so abundant that these pairs of

[^17]nearly-simulaneons collisions happen often, ionization will begin at the resonance-potential. In a profuse electron-stream, the threshold potential for ionization is the lowest resonance-potential. Another feature of the profuse discharge is, that when ionization does commence the current leaps up much more suddenly and violently than it does in the scanty discharge. This is because the electron-current is depressed at first by the space-charge effect, the repellence which the electrons crossing the gap exert against the electrons which are on the verge of starting; when positive ions first appear in the gap, they cancel the action of a great number of the traversing electrons, and the flow of electrons from the cathode to anode is immensely increased. I shall speak of this more extensively further on.

We return to the case of the feeble electron-stream. We have considered various things which an electron may do to a helium atom which it strikes-bouncing off harmlessly, or putting the atom into an excited state, or ionizing it; we have mentioned that each of the two latter actions commences at a critical value of energy, at the socalled resonance or ionizing potential, respectively; we have considered the effect of each of these actions upon the discharge. Have we listed all the possible interactions between atoms of matter and atoms of electricity, when electrons flow across helium? and if we knew all the resonance potentials and all the ionizing potentials ${ }^{7}$ of helium, could we predict all the features of all electrical discharges in pure helium, whether in rarefied gats or in dense, whether the elec-tron-stream be scanty or profuse? This is the general belief; whether justified, it is impossible to saly. We evidently need another Maxwell or another IBoltzmann, somebody exceedingly skilful in statistical reasoning, able to take the information we can provide about the possibility or the probability of various kinds of impacts, and deduce the state of affairs in the mixture of atoms, ions and electrons without getting hopelessly entangled in the frightful maze of equations into which his very first steps would certainly lead him. While awaiting him we have to content ourselves with our successes in interpreting the flow of electrons through very rarefied helium and the other noble gases and the metal vapors; and as for the discharges in denser gases
'I have simplified this passage somewhal so as not to retard the exposition. We know that an electron may "excite" a helium atom if its energy exceeds 19.75 volts, but this dees not prove that it must do sn; it is more reasunable to suppose that it has a certain chatice of exetting the atom, zero when its energy is less than 19.75 volts, but greater than zero, and a certain function of its energy; when the latter exceeds 19.75 vults. We shoukd know these functions for all the resonance-potentials and for the ioniaing-putential; independent experiments to determine them have been performed, and no doubls will be multiplied.
we hase to take the experimental data ats we lind them, and analyze them as best we may, not with (ong great ans expeetation of penetrating to the properties of the ultimate atoms; and yet, as we shall see, the an, ilysis does in certain cases penetrate menpectedly far.

3. Tile Flow uf Eitectrons Acruss Dense Air, Nitrogien, Hydrogen and Similar Gases

The celebrated serie's of researches hy Professor Townsend of Osford and hy his pupils, commenced in 1902 and continuing through the present, relate chiefly to such gases as hydrogen, nitrogen, oxygen and the familiar mixture of the last two which we breathe; and chiefly to these gases at densities much greater than we have hitherto con-sidered-densities corresponding to such pressures as a thousandth or a hundredth of an atmosphere, therefore so great that an electron crossing over from a cathode to an anode a few centimetres away must collide with scores or hundreds of atoms. If a stream of electrons is poured into perfectly pure helium of such a density, we must not look for a sudden onset of ionization when the voltage between cathode and anode is raised just past 24.5 , for the reason illustrated by those experiments of Compton and Benade-the electrons lose energy in all of their collisions, even the elastic ones, and arrive at the anode not with the full energy corresponding to its potential but with this energy diminished by what they lost on the way. In the familiar diatomic gases, the electrons lose much more energy in their ordinary collisions. I did not speak of these gases in the foregoing section, because experiments of the very same type as those which show the sharp distinction between elastic impacts and inelastic impacts in the noble gases and give the sharply-defined values of the resonancepotentials of these gases, yield comparatively vague and ill-defined data, when they are performed on hydrogen or air. In these gases, above all in active gases like oxygen or iodine, it is unlikely that any of the impacts, whether the electrons be moving rapidly or slowly, are truly elastic. ${ }^{9}$

[^18]Now if an electron on its wat through the eleetric fied from cathode to anole strikes atoms so often that it rately has a chance to acquire more than saly half a wolt of energy from the lield letween one impact and the nevt, and if in each impact it loses most of the energy it has just acguired if this condition pretails, we need mot wonter that the voltage between the electrodes must be raised far beyond the ionizingpotential of the gits before there is the least sign of intensification of current.

In interpreting the experiments upon such gases and at such pressuren as theae last, it has heen customary to make a more drast ic assumption, the opposite extreme from the one which justified itself in dealing with rarefied helium; it is assumed that the electron surrenders at every impact all the energy which it has derived from the field since its last preceding impact. One may be inclined to make mental reservations in accepting so extreme an assumption, and it could almost certainly be advantagenusly modified; but as a tentative assumption it is successful enongh to be legitimate. If it is true the electron can never buik up a capital of energy step by step along its path; the only chances it will have to ionize will come at the ends of unnsually long free tlights.
L.et us imagine a -pecific case pour fiver les idées: supposing the anode and the cathorle wo parallel plates d apart, and representing the potential-difference between them byy and the field strength hetween them hy $X\left(X=I^{\prime} d\right)$, we will set $d=6 \mathrm{~cm} . I^{\prime}=300$ volts, $X=\tilde{J 0}$ volts $\mathrm{cm} .:$ we will imagine that the interspace is filled with a gats having an innizing-potential equal to 15 volts, and so dense that the average free path of an electron between collisions is one millimetre. I sly that the aterage free path is 1 mm . long; if all the sisty free paths which the wectron trateres in going from cathode (1) anode were equal, it would never acepuire more than 5 volts of energy, atel could newer ionize an atom; but owing to the statistical distribution of free patho about the mean value, there will be a certain number out of the siv! which will be longer than three millimetres, and long enowgh, therefore, for the electron to acquire the 15 volts of energ! which are necemar! to ionize. In this case there will be $60 \epsilon^{2}$, dobut eight, of these long free paths. In each centimetre there will le $10 e^{2}$ of them. I will use the better α^{\prime} to dengignte this later ntmber, which is the number of atoms struck by the electron in each centimetre of its phath, at momemts at which it hats energy enough to ionize all 1 "1011: "' is therefore the number of chances to ionize which the - Wecton has per contimetre. The formula for α ' is:

$$
\begin{equation*}
\because^{\prime} \quad \frac{1}{\lambda}, 1 \cdot x \lambda=c_{e} c 10 x=\beta p \in \quad \text { liplo, } x \tag{3}
\end{equation*}
$$

in which F_{0} repreathts the innising-potential of the gets; λ reprenents the mean free path of the elewtron: $(\therefore$: its rectipncal, is the momber of collinions sulfered has the electen in each rentimetre of the path:
 ley $B p$ in the limal formulation."

It is alrealy elear that the new asampution leads to a theory which reguires a differemt langugge and at different set of iteds from thene of the foregoing sertion. Nut the ioniaing-potential, hat the number of ionizations performed ly an clectron in a centimetre of its path. is the gumbity to be measured by experimental devices: mox the woldage between the eleetrodes, but the lield strength in the gas, is the factor which comerols the phenomena. ${ }^{10}$ In dealing with gases which are expected to conform to the theory, the appropriate prosredure is lo meature the number of molecules which an electron ionizes in a cemtimetre of it-path, for all practical values of the lied strength \mathcal{F} amd the density of the gats (or its pressure p) as independent varidbles. I will designate this number, following the usual pratice. hy α : if the theory is true it cammo be greater that α^{\prime}, it may be less. These pmantities or and α^{\prime} are statistical quantities, not like the ioniz-ing-potential qualities of the individual atom or molecule, and this is a misfortume and diswlvantage of the theory and of the experiments. which it interprets: we are not, sen to speak, in the presence of the ultimate atoms ats lefore, we are one step remosed from them, and this step a difficult one to take.

The measurement of α is effected ly varying the distance d between anode and cathede, and determining the current as function of d. If . S_{n} electrons flow out of the cathode in a second, the ionization commences at the distance $d_{0}=V^{V}$ from the cathode, and from that

[^19]point onward the electron-stream increases exponentially, so that the current Ne arriving at the anode is
\[

$$
\begin{equation*}
N_{e}=N_{0} e \exp \propto\left(d-d_{0}\right) \tag{4}
\end{equation*}
$$

\]

In Townend's experiments the cathode was a zine plate, the anode a film of silver spread upon a quartz plate; through little windows in the silver film a beam of wleaviolet light entered in from behind, crossed over the interspace and fell normally upon the zinc plate, and drove electrons out of it. The zine plate was raised and lowered by a screw; the voltage-difference between it and the silser film was altered pari passu so that the field strength in the gas remained always the same. The current rone exponentially as the distance between the plates was increased, and thus a was determined. A typical set of data (relating to air at 4 mm . pressure, with a field strength of 700 volts cm .) is plotted logarithmically. in Fig. 5, the logarithm of the current as ordinate and the distance from anode to cathode as abscissa. The first few point: lie close to a straight line, corresponding to an exponential curse such as erpuation (4) requires; the value deduced for α is 8.16 . (The distance d_{0} is alwut . 3.5 mm . and has been ignored.) of the divergence of the later points from the straight line I will speak further on.

Such an experiment shows that there is an α-that the theory is mot at any rate in discord with the first obvious physical facts-and it gives the value of a for the existing values of X^{\prime} and p. Townsend performed many such measurements with different field strangths and different pressures, and so accumulated a large experimental material for determining α as function of the two variables p and X. To interpere these we will begin by making the tentative and temporary assmmption that wheneser a molecule is struck by an electron having energy enough to imize it, it is innized that is, $\alpha^{\prime}=\alpha$. Rewriting the equation (3) which expresses α^{\prime} as function of p and X, we see that

$$
\begin{equation*}
a^{\prime} p=\beta \exp \left(-B \vdash^{\prime} p, X\right)=f(X p) . \tag{5}
\end{equation*}
$$

Therefore, if $\alpha^{\prime}=\alpha$, the gumem of α log p is a function of X^{\prime} and p only in the comblination X. p; or, whenever the pressure and the fied strength are varied in the same proportion, the number of molecules ienized by an electron in a centimetre of its path saries proportionally with the promore. I leawe it to the reater io insent other ways of expressing (.5) in words which illuminate sorions aspect of its physical mesuing.

Fig. 5 tosarithmic plot of the currents across a gas (air) in which ionization by collision is occurring, for a constant fick strength and various thicknesees of gas (D.ta from Townsend)

Experimentally, the test of (5) is made by dividing each one of Townend's values of α by the pressure at which it was determined, and then pintting all these values of $\alpha^{\prime} p$ versts the corresponding values of $I \mathrm{x} p$. All the points for any one gas should lie on or close (o) a single curve, and within certain ranges of pressure and field strength they do; so far, good. The curve should be an exponential
one, and whin certain ranges of lied strength and pressure it is: again, gered. The next step is to calculate the values of B and V_{0} which the curse imposes on the gats to which it relates. I quote the values of V_{n}, the ionizing-potential, which Townsend presents:

Air	λ_{2}	11_{2}	$(0)_{2}$	$11(9$	11.4	A	110
2.5	27.10	20	23.3	16.5	22.4	17.3	12.3

When the lirst of these values were determined. no more direet way of measuring innizing-potentials was known. لow that we have some values obtained by the direct methods sketched a few pages batek. and fortified hy indirect but wery forcible evidence from spectroscopy, it is possible and guite important to test some of these. The values for argon and helimm, although of the proper order of magnitude, are certainly tox low. This is not in the least surprising, considering how many of the collisions between electrons and atoms must be perfectly chastic. It seems indeed rather mysterions that the current-volage relation in either of these gass should hase conformed closely enough to (1) to make it possible to define and measure α; but the electrons no dombt entered into many of the collisions with energy enough to put the atoms into eveited states, if not to ionize them; and it is nearly always posilhe to take refuge in the assertion that the impurities may have beon sulficiont to distort the phenomena. As for the other gases it the list, all of them diatomic or triatomic, Fownsentl's values are too high not very much ton high, howeer; ustally a matter of one-third to two-thirds."

It appears therefore that the theory 1 have just developed is 100 simple, and must he amended. It seems natural to begin lyy dropping the tentatise assmmption that a molecule is innized whenever it is hit ly an electron having as much or more energy than is required to ionize it, and adopt instead the idea omse already suggested in these pages, that it is sometimes but not always ionized by such a how; that there is a certain probability of iomization by a blow from an electron having energy l^{\prime}, a probability which is gero when $L^{\top}<\mathrm{V}^{\circ}$ and is some fet-to-fe-determined function of l^{\prime} when $C^{\prime}>1^{\prime}$. This wond leate insate the eonclusion that a p shond be a function of $\mathcal{A} \quad$, a conclusion which we hase alreaty found to he verified by experiment; lot it would relieve to of the acoesaty of assuming that

[^20]that function is precisely the exponemtial function appearing in (i). lissentially the theory is reduced to this pestulate: the number of molecules ioniaed lyg at electon in a centinetre of its path depends only upon the chersy it acepures fom the field in its free light fom ane collision to the nevt. If in this form the theory still camont give stivfaction, the nevt step will be to alter the original asump, tion that the electron comen practically to a dead stop in every collision. In dealing with the moble gases and the metal sapours, the facts about elastic collisions which I have already omblined prose that this asomption should not be mate at all. It is clear that this is another problem for the future Bultamann!

Weambile, one of the carelinal feature of the Tosnamed experiments is the fact that they slighlity the gradual alsent of the tratsformation of the matiataised currents which we have hitheren considered, into the self-maintating diecharges whech are the familiar and the spectacular ones; and we now have to examine the agencies of this tranaformation.

4. The Dtschitrie Begin to Contrlbete to tife ElectronStream Willch Mantans It

Creatly though the current of primary electrons from the cathode to the anole may be amplified by the repeated ionizations which I have described, there is nothing in this process which suggests how the discharge may eventually be transformed into a self-maintaining one like the glow or the arc. The free electrons may ionize ever so abundantly, but as soon as the supply from the cathode is suspented by cutting off the heat or the light, the last electons to be emitted will migrate ofl owards the anowle, and whatever electons they liberate will go along with dem. leaving a stratum of gas devoid of electrons in their wake; and this stratum will widen outwards and keep on widening until it reathes the anode, and then the discharge will be ended. Something further must happen continually in the gas through which the electrons are Alowing, something which continually supplies new free electrons to replace, not merely \mathbf{w} supplement, the old one which are alsorbed into the anode and sonish from the srene.

We have alrealy moticed one sort of event conthatly happening in such a gas as helimm tratraed by not-ton-show electrons, which might conceisably develop into a mechanism for mantaining the discharge; for, when an atom of the gas is put into the "exeited state" by a blow from an clectron, it later return- into it- normal state, and
in su returning it emits a quantum of radiant energy which may strike the cathole, and be absurbed by it, and canse another electron to leap out of the cathore and follow the first one. There are two other conceivable processes, which have the merit that they can not only be conceived but alser withereed in uperation by themselves when the right conditions are provided. P'ositive ions flung violently against a metal plate drive eloctrons ont of it, as can be shown by putting a positively-charged collector near the bombarded plate and noticing the current of negative charge which flows inte it; and positive ions llowing rapilly across a gas ionize some of the atoms in it, as may he shown he sending a beam of such ions across the interspare between two metal plates, with a gentle crosswise field between them which sucks the fred clectrons into the positive plate. The mechanism of the first prowes is not understond, except when the positive ions are so many and so swift that they make the metal hot enough to emit thermionic electrons, which dues not happen in the cases we are now considering. The mechanism of the second process is only thimly understood, but it in clear enough that a positive ion driven against an atom is much less likely to ionize it, than an electron of egual energy woult be. ${ }^{12}$ Vither of these two processes is very inefficient, at least at the comparatively low speets with which positive ions move under the circumstanes of these experiments; but they are probably elficient emough tw do what is required of them. No foubt all three of them contribute to the discharge; but the relative proportions in which they act certainly differ very much from one sort of discharge to another, and will furnish researeh prohlems for years to come.

Returning to lig $\overline{\text { B }}$, we note ance more that as the electrotes are mosed farther and farther apart while the density of the gas and the fied strength are hedd constant, the current at lirst rises exponentially (linearly in the hogarithmie plost) as it should if the free electrons and anly the free thecrons ionize; but eventually it rises more rapidly and seems of he headed for an uncontrollable upward sweep. Townsend attributed this uprosh to the tardy but pretent participation of the fositive ions, cither ionizing the molecules of the gas by impact after the fasbion of the negative ions, or triving electrons out of the cathoule when they strike it, or buth. Vither assumption leads to

[^21]an egtation expreming the data equally well. If we adopt the former, and designate by of the momber of molecules ionized by a positise ion in a centimetre of its path, and hy . Nis the monter of electrons supplied per seeomel at the cathoule, we get
\[

$$
\begin{equation*}
I=\frac{X_{n}(\alpha-\beta) e^{\prime} \alpha}{\alpha-\beta e^{\prime} a-\beta d} \tag{6.}
\end{equation*}
$$

\]

Df eourse, 今s must be mush matler that α, of the pemitive ions would hase mate themselves felt carlier. Or if we alopt the lather inter, and designate by k the mamber of dectrons expelled from the cathexle (on the aterage) by eath positise ion striking it, we arrise at the formula

$$
\begin{equation*}
N=\frac{\lambda_{11} r^{a_{1}}}{1-k\left(e^{a_{1}}-1\right)^{2}} \tag{7}
\end{equation*}
$$

Naturally k must be much smaller than mity for the same reason. In ligg. 5 the broken curve represents (ti), with the values S .16 and $.00 t i=$ assigned to α and β; it also represents (7), with the values 5.16 and .00082 assigned to α and $k .^{13}$ (1t was expected that the curses representing the two equations would be perceptibly apart on the scale of Fig. $\overline{\text { a }}$; but they were found to fall indistinguishably together.)

Wivently, therefore, the positive ions, weak and lethargic as they are in liberating clectrons (one hats only to compare β with α, or look at the value assigned to k in the last sentence!), can proxluce a motable addition to the current when the electrodes are far enough apart; and more than a notalde add tion, for when the dis'ance d is raised to the value which makes the denominator of (6)-or of (7), whichever equation we are thsing equal to zero, the value of N is infinite! P'er-

[^22]making the assumption which leads to (6) we have
$$
d M d x=\alpha M+\beta P=1 \alpha-\beta M+\beta i, \varepsilon
$$

The boundary conditions are: $M=\mathcal{V}_{0}$ at $x=0$ and $M=i$ e ill $x=d$. Integrating the equation andi inserting these we get (6). Haking the issumption which leads to (1) we have

$$
d M / d x=a . M
$$

The Ixpundary contitions are: $M=X_{0}+k i \quad e-M$ or $\left.I+k\right) M=X_{0}+k i$ e at $x=0$, and $M=i$ e at $x=d$. Integrating the equation and inserting these we arrive at (7).
haps the best way to conceive of this is, that as the distance between the plates is increased toward that critical value of d, the value of $\mathrm{N}_{0}-$ which is the rate at which we have to supply electrons at the cathocle, in oreler to keep a preassigned current flowing-diminishes comtinumsly and approtheses zero; en that eventually the current will keep itself going (and actually start itself) with the assistance of the occasional fons which are ahwats appearing spontancously in wery gas, even though it be encosed in an armor-plated shiedd. Of course, it is rather risky to predict just what is going to happen, When an equation wheh hain bern fivel up to represent a finite physical phenomenon over a certain range exhibits an inlinite discontinuty at a point outside of that range. Is mally, of course, the infinite value which the equation require is monlified into at finite one by the intluence of some factor which wat neglected when the equation was deviexd. In this case, haweter, the intinite discontinuity eorresponds (1) a sudden catastrophic change. If an electrometer is shonted acrose the interpate between anoble and cathode, its needle is forciW! jerkerl; if a telephome-receiver is connected in series with the interspace, it make a dicking or a hanging sotmel; if the gap is wide, s) that the voltage just lefore the dieruption is high, there is a briltiant flash, which may bear an uncomfortably strong resemblance to the lightning-lolt which is the cosmical prowtype of all electric sparks.

What goes on after the critical moment of transition or transformation depends on many things; amd not only on obsions features of the -park-gap, such an the kind and density of gas and the shape and size and material of the electrokes, but alon on suth things as the resistances and the inductances in series with the diccharge, and the qualities of the sumere of electromotise furce and its ability to satisfy the demands for corrent and woldge which the new discharge maty make. Sometimes these themath are too evtravagant for most laboratory sources or perhaps for ally source to meet; probably this is why the spark hesween extemed plame surfaces in dense air is as ephemeral as it is violent. But this der- tost always happen; in a sufficiently rarefied gals, the self-mathtaning diacharge which sets in after the transformation requires ouly a mokent current and a pratelicable poltage, and - Hpperta ilself with a fell thousamel whes applied across its terminals. The serme thing exturs in atense gas, if either of the electrodes is printed or sharply corvel, like a neerlle or a wire; the comdition, more evactly: is that the radith of curn atare of either electrole should be distinctly less that the leas distance beeween the two. The transformation, howeror, is always very suklen, whether the new discharge lee tran-ient or permanemt ;and there are also sudden transi-
tions from one sot of self-mantoining diadhage to amother, c.p., from glow to are or from whe hime of glow to smother when ereain

 stants of the spark-ghp). There are diseontimities of corrent and discontimmite of voltage . It there tran-itions, .mol abrupt changes in the sisible dpecarance in the dimelarge; and at each transformation there is a rearrangement of the distribution of spare-charge in the gas. Hitherto we hase emenmered -pace-charge only in one or two of its simpleat momifestations, retarting the thw of an electronstream aeross a bacumm, and suddenly annulled when positive ions are mingled with the stream. Now we have to consider much subther and more complieated cases, in which the space-charge varies rapidly. in density and even in sign from one part of the gas to another, and the beld and petemtial distributions are utterly distorted be it; and these disturtions are esenential to the life of the discharge. This distribution of space-charge is indeed fommant; and so I will write down sume formulate which may be used to deseribe it.

EQc:1tonis

The fundamental equation of the electrostatic field, known as Poisomn's erpuation, is

$$
\begin{equation*}
\Gamma^{2} V^{-}=\frac{d^{2} V^{-}}{d x^{2}}+\frac{d^{2} 1^{*}}{d y^{2}}+\frac{d^{2} V^{-}}{d z^{2}}=-4 \pi \rho \tag{s}
\end{equation*}
$$

in which 1° represents the electrostatic potential, and ρ the volumedensity of electric charge.

We consider only the mathematically simplest case in which all variables are constant over each plane perpendicular to the x-axis, and so depend only on the conedinate x; as for example near the middle of an exceerlingly wide tube with the x-axis lying along its axis. In this case Poisonn's equation is

$$
\begin{equation*}
\frac{d^{2} V^{0}}{d x^{2}}=\frac{d X^{2}}{d x}=-1 \pi \rho \tag{9}
\end{equation*}
$$

in which 1 represents the potential-gradient, or held strength with sign reversed. ${ }^{14}$ The value of X is determined at all peints when the

[^23]value of X at any whe point and the values of ρ at all intermediate points are preassigned. Thus let S_{0} represent the preasigned value of X at $x=0$, and X represent the value of X at $x=d$; we have
\[

$$
\begin{equation*}
X_{d}=-4 \pi \int_{0}^{d} \rho d x+x_{0} \tag{10}
\end{equation*}
$$

\]

Consequently the P.D. between any two points is also determined; that between $x=0$ and $x=d$ is

$$
\begin{equation*}
V_{d}-V_{0}=-4 \pi \int_{0}^{d} d x \int_{0}^{x} \rho d x+I_{0} d . \tag{11}
\end{equation*}
$$

Now we introluce the further assumption that the electric charge is concentrated upon corpuscle's (electrons or charged atoms) of one kind, of equal charge E and mass m, of which there are $n d v$ in a very small volume $d v$ at $x ; n$ is a function of x. Then

$$
\begin{equation*}
n E=\rho . \tag{12}
\end{equation*}
$$

Assume finally that the corpuseles are moving with speed u, identical for all corpusches having the same x-coordinate, but depending on x; represent the current-density by i; we hase

$$
\begin{equation*}
n E \|=i \tag{13}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\rho=i / u . \tag{14}
\end{equation*}
$$

Now consider the llow of curren (leetween (wo parallel planes, from one electronle at $x=0$ to the othor at $x=d$. If the current is borne by corpustes of one kind, and the asomption last made is true; and if we know the speed of the corpmectes at every puint between the plates, and the liedd strength at some one point; then we can calculate the fiedd strength exerywhere between the plates, and the potentiat-difference between them.

The costomary convention about the liehl strength is to assume it to le zero at the electrofe from which the corpuscles start, so that $\mathcal{X}_{0}=0$ in (11). Rewriting (11) t1) take accommt of (11), we have

$$
\begin{equation*}
r_{d}-1_{0}=-1 \pi i \int_{0}^{d} d x \int_{0}^{r} d x u \tag{15}
\end{equation*}
$$

as the general equation.

[^24] x in free thigh from the edectrole where they start, we hase ! mu = el: shil
\[

$$
\begin{equation*}
\left(\Gamma_{d}-\Gamma_{0}\right)^{12}-\frac{!\pi}{1} \int_{2}^{m} i d^{2} \tag{16}
\end{equation*}
$$

\]

This is the equation alapter tor electrons or other inns flowing across otherwise empty space.

If we suppose that the corpuseles have at eath point a speed propartioms to the lield strength at that point, we have $u= \pm k d V^{\circ} d x$, and

$$
\begin{equation*}
r_{d}-r_{0}=\frac{2}{3} \backslash \frac{\stackrel{4 i}{ } d^{3}}{k} \tag{17}
\end{equation*}
$$

This expation would be adapted to ions drifting in so denser a gats, or so weak a lied, that they aequire sery lillle energy from the liek (in comparison with their average energy of thermal agitation in the gas) between one collision and the next, and lose it all at the next. ${ }^{13}$

If we conceive of ions which acquire much energy from the ficlel between one collision and the next (much, that is, in comparison with their average energy of thermal agitation) and lose it all at the next collision, we have $u^{2}=\left.(\pi e l \cdot 2 m) d\right|^{-1} d x$ and

$$
\begin{equation*}
\left(I_{i}-I_{0}^{\prime}\right)^{32}=C i d^{5.2} \tag{1S}
\end{equation*}
$$

the constant C being equal to $\sqrt{m} E /$ multiplied by a certain numerical factor, and l stamding for the mean distance traveled by the ion between one collision and the next.

The theory just given is tow simple; it is an essential fact of the actual physica! case that the ions emerge, at the surface of the electroxle whence they start, with forward velocities which are distributed in some way or other about a mean value. These initial forward velocities, though often small compared with the velocities which the inns may acquire as they cross to the other electrode, are large enough so that all of the ions would shont across the gap if the field strength were really zero at the emitting electrote and assisted them everywhere beyond it. In fact the space-charge creates a retarding field at the surface of the emitting electrole, and a potential minimum (if the ions are negative; a potential maximum, if the ions are positive) at a certain distance in front of it. Here, and not at the emitting electerele as we previously assumed, the fiedd strength is zero. Equation (16) is often valiel in practice, because this locus of zero fieklstrength is often very close to the emitting electrode. In fact, by
${ }^{13}$ As in electrical conduction in solid metals (cf. my preceding article).
raising the P.I). Detwect the plates sufficiently, the locus of zorn fied can be drisen back into condelabe with the emithing plate; beyond which stage, the "limitation of cerrent ly space-charge" ceascs. But if the I'.1). is sutiocienty low the potential minimum (or maximum) is prominent and is remote from the electrode, and in these cases the expations we hase just deduced are inapplicable.

It thus may readily happen that whon we apply a certain potential 10 one chectroble and a certain wher potential to another electrode separated from the first whe ley gats or vacum, we may find points letween them where the potential is not intermediate between the potentials of the electrodes. This is a queer conclusion, 10 anybody accustemed to the flow of electricity in wires. But it is true, and must be kept in mind.

The Are ought to be the easiest io umberstand among the selfmaintaining discharges, in ome respect at least; for it keeps its own cathede so intensely hot that hermionic elertrons are supplied contimously in great abundance at the negative end of the discharge, and the theorist can legem his labors by trying to explain how and why this high temperature is maintained. Anything which tends to lower the temperature of the cathode, for instance be draining heat away from it, is very perilous to the are. Stark uses various schemes for presenting the cathorle from growing very hot, and they all killed the are. This alas explatiss why the are is most difficult of kindle and most indined to Hicker ont when formed between electendes of a metal which comblucts heat exceptionally well, and most durable when formex hetween clectrodes of carbon, which is a comparatively poor comductor for hoat. It probably exphans why the are has a harder time we kep itelf dive in hydrogen, a gats of high thermal comeluetivity, than in air. While the gas in which the are has its being and the amole to which it evonds beth intluence the discharge, the high temperature of the cathote is cardinal.

The rathede is presmablly kept bot by the rain of positive ions upon it, striking it with velence and !iedeling up their energy of metion to it; at leas this is the whions and platsible explanation. Sow the are is commonly and casily matataned in farly dense gases, with a compatatively small petential-difference hetween widelyeqparaled electrade ; and the calergy which an inn can acquire from the telel stongth prevailing in it, in the shore interval letween two collisions with meterules, is so small that it camot be made to account
for the furions beat dewteped at the cathoule when the whe thath strike it. Just betore the ions arrive at the catherle they wint be

 fromt of the cathode there is a sharp amd sudten putential-i.tle, corresponding to astrong tied extending but a little wis outwadel from the electrode and then dying down into the wesk lied presailing through the reat of the are. This strong lied picks up the iots which have meandered to its outward edge from the bodye of the discharge and hurls them agetinst the cathode not very forcibly, for the energy they receise from that polential-falt is not a great amount by ordinary standards, and mose of the ions probably lose some of it in collisionson the way; but with muth more energy than they would be likely to phessess anywhere else in the are.

This potential-fall immediately in fromt of the negative electrode, the cathode-fall of the are, is measured by thrusting a probe or sound-ing-wire into the discharge as close as possible to the cathode (generally about a millimetre away), and determining the P.D. between it and the cathode. The probe is regarded with some distrust, as it raises in all acute form the old question as to how far the phenomena we observe in nature are distorted by the fact that we are observing them: the wire may alter the potential of the point where it is placed, or it may assume a potential entirely different from that of the envirming gas; but the general tendency nowadays, I beheve, is to accept its potential as a moderately reliable index of the potential which would exist at the point where it stands if it were not there. ${ }^{16}$ The cathorle-fall, as so measured, depends monfortunately on quite a number of things; the material of the cathode, the gats, the current. The gats is always mixed with a vapour of the electrode-material, particularly in the vicinity of the dectrode; the only way to have a single pure gats is to endose the whole system in a tule, evacuate the tube to the highest prosible degree, and then heat it until the vaportension of the metal of which the cathode is made rises high enough for the vapor to sustain the arc. This is practicable with the more fusible metals; and with mercury; the are generates heat enongh to maintain the vapor-tension sulficiently high. In pure mercury-
${ }^{16}$ On this matter the experiments of Langmuir and Schottky, mentioned further along in this article, promise new knowledge. The probe antomatically assumes such a potential that the net current-flow into it is nil; for example, if it is immersed in an ionized gas in which dectrons and ionized atoms are roaming about, its event ual potential is such that equal numbers of particles of the two kinds strike and are ahsorhed in it per unit time. If the electrons are much more numerous or have a much higher average encrgy; or both, this potential may be several volts more negative than the potential at the same point before the probe was put in. The same may be said about the wall of the tube.
vapor, the eathode-fall atsomes the value 4.9 volts which is the first resonance-potemtiat of the mereury atom and therefore, as we have seen, is effectively the innizing-potential of the free mereury atom when the efectron-stream in as dense as it is in the are. This suggests a delightfully simple theory of the whole process: the electrons stream from the cathote, lhey actuire $1 .!$ volts of energy from the cathodefall, they ionize mercury atoms at the outward edge of the region of high fiedd strength, the positive ions so created fall backward across the catherle-fall and strike the cathode, surrender their energy to it and so keeps it hot, more dectrons pour out, and so forth ad infinitum. It remains to be seen whether so simple a theory can be modified, by statistical considerations or oherwise, to explain the values of the cathode-fall in mixed and diatomic gases.

We do not know a priori what is the ratio of the number of electrons flowing outward across the cathode-fall in a second to the number of ions flowing inwarl. It might, however, be very great, and still the mumber of ions within the region of the cathode-fall at any instant could far surpass the number of electrons within it-we electron moves so much more rapilly than the ion, and has so much better a chance of crosaing the region in one free tlight without a collision. Even in hydrogen, in which the ions are the lightest of all ions, the efectron current woukl hase to be 3.50 times as great as the ioncurrent if the efectrons just balanced the ions in unit volume. It is therefore legitimate to try out the assumption that the region of cathorle-fall is a region of purely positive space-charge, in which some such equation as (16), (17), or (16) gives the current of ponitive ions as a function of the cathole-fall and the width of the region. K. T. Comp(on metected (1S). Cnfortunately the width of the cathode-fall region hats not been measured, but he assumed it equal th the mean free path of an clectron in the gas. The value which he thus calculated for the curtent of peritive ions wats about 150 curront; the romaining !9!; consist of the electrons.

From the cathote region onward in the anode, the gas traversed by the are is dazzingly lrilliant. In the long cylindrical tubes which enclose the mereury arsese eommonly sen in laboratories and studios, the bapor shines everywhere exeept near the ends with a cold and rather ghasly white light timgerl with bhish-greem. This is the pesitive column of the mercory ars. The potential-gradient atong it is uniform, suggesting the thw of chectricty down a wire; but here the rewmblance saps, for when the current-density gees up the promtial-gratient gene down. The curve of volage versis current, which for a solisl metal is is we all know an upward-slamting straight

 stae. Ionization gers on enthtmally within the positive columns. atul ions al both signs call be drawn out by at crossivise feld; but reeombination of ions, a process which we have uot emsidered, also goes on continnally and mantains an equilibritm. Presumably is

Fig. 6-Voltage-current curves or "characteristics," for arc discharges (below) and slow diwhorges (above) in air, between gold celetrodes. The different curves correspond to different anole-tatherle distames. (ives, Journal of the Franklin Institute)
is the effeet of the field strength on this equilibrium which canses the current-voltage curse to slant in what most people instinctively feet is the wrong way; but the theory of the equilibrium is not yet f.ar advancerl.

Langmuir and shottky, working independently in Schenectaly amb in Cermany, performed some very pretty experiments by thrust-

Eng negatively-chatged wires or plates into the positive column. These wires and plates surroumed themselves with dark sheathe, the thiekuess of which increaseal at the potential of the metal was mate more amd more higbly negative. The explatation is, that the electrons in the positive column cannot approwh the intruded wire, being driven latek be the adverse beld; the dark sheath is the region from which they ate excluded, and across it the positive ions adrance to the wire through at field controlled hey their space-charge. The equation sefecterl be Langmur to reprement the relation between the thickness of the sheath, the woltage across it, and the current of positive ions into it, in (li). As the sheath is visible and its thickness can be measured, as well as the other quantities, the relation can be testecl. This was done by thotely; the result wats satisfactory. When the intruded electrode is a wire, the sheath is cylindrical, and expands as the roltage of the wire is mate more negative. Is the area of the outer boundary of the sheath is increased by this expansion, more ions from the positive column touch it and are sucked in, and the density of flow of positive ions in the columbs can be determined. By lowering the potential of the wire gradually ar that the electrons can reach it, first the fastest and then the shower omes, the velority-distribution of the electrons in the column can be ancertained. Their average energy depends on the density of the mercury vapour, and mity amount to several volts.

Beyond the positive colum, lies the anode, itself preceded by a sharp and sudden potential rise. The electrons are flung against it with stme foree, and it grows and remains very hot; Hsually, in fact, hotter than the cathote. This high temperature does not seem to loe ensential th the continuance of the discharge, for the anole can be cowled without killing the are; get it seems strange that a quality so regularly found should be withont intluence upon th: discharge. One must hewate of underestimating the influence of the anode; when ath are is formed in air between two clectrodes of different materials, it behates like an are formerl between two clectrodes of the same material at the anotle, not the eathode!

The su-c.alled tow-qoltage arc, ahbough not at self-maintaining dischatge, merits at least a paragraph. I (lense electron-stream poured intw d momatomic gat from an indegendently-heated wire, and arceleratal by a P'. I). surpasing the resomathe-potemtial of the gats, moty ionize it as intemely that there is a suden transformation into " lumimote are-like dis-harge. This is a sort of "aswisted" are, its catherle laing kept wam for its benelit bex outside agencies. Its history in a long athd imtereating chapter of contemporary physies, "hereof the ent in toet yet. The mone remarkable feature of this are
is that it can survive even if the voltage between anode and cathode is far below the resenance-potential of the atoms of the gas, which seems imperssible. A year ago it seemed that this efteet could always be aseribed to high-toltage high-frequency oscillations generated in the are. This explanation was presently confirmed in some cases and disqualified in others, and now it appears that when there are no oscillations an astonishingly strong potentiat-maximum develops within the ionized gits. Potemtial-maximum and oscillations alike are probably to be regarded at manifestations of space-charge.

The Glow in a rarcfied gas is a magnificent sight when the gas is rarefied to the proper degree, not too little and not too much; divided into luminous cloods of diverse brightnesses and diterse colors, recalling Tennyson's "月luid haze of light," yet almost rigidly fixed in their distances and their proportions, it is one of the most theatrical spectacles in the repertoire of the physical lahoratory: The grand divisions of the completely-developed discharge are four in number, two relatively dim and two bright; beginning from the cathode end,

Fig. 8-The Crookes dark space between the cathode (thin line at left) and the megative glow Lee formate ${ }^{12}$. Aston, Procedings of the Royal Siociety)
they are the Croskes dark spatee, the negative glow, the Faraday dark space, amd the positive coltumn. Whtiontal graditions of color and brightuess can wfon le seen very close to the cathode and very close to the anokle. Photographs of the glow which give anything approselhing of trae iden of its appearance to the eve are hard to find. 1 reproduce in lig. I some photographs a aken nearly lifty years ago by de la kile, whith hase re:ppeatel in many at text; they show chielly the striking theralent choullets intor whieh the positive column some(imendividesitadf. In Figg.! threare tw sketches made by Craham.

The Cromkes dark abace (or cathomle dark space, or Hittorf dark spate ats it is called in lermany) extemb from the cathoule to the boumbary of the bright laminons dond which is the megotise ghow.
 limels it easy to julge when a somding-wire just touches it, or the cross-hat of a telemone connciles with it- imatge; "in the case of axygen," Istom sait, "the sharpuess was simply athazing; even with so large d dark space ats 3 cm ., the sighter combl he set (to the boundary) as wecurately as to the cathorle itself, i.e., to absut 0.01 mm ." I reprotuce sume of I-son's photographe in ligure s, although he satys that for reasme of perspective the hamdary of the negative glow appears more difluse than it really is. ${ }^{17}$ The electric lield strength within the Croskes dark space is greater, often very much greater, than in any of the wher divisions of the discharge; almost the whole of the volage-rise from cathokle 10 anoule is comprised within it, amd the remainder, although spread across all the brilliant parts of the glow, is inconsiderable unless the tube is made unusually long. The behavior of the dark space when the current through the tube is varied (by varying it resistance in series with the tube) is curious and instruclive. If the current is small and the cathode large (a wiele metal plate) the negative glow overarehes a small portion of the cathorde surface, lying above it like a canopy with the thin dark sheath beneath it. When the current is increaned the canopy spreads out, keeping its distance from the metal surface unathered, but increasing its area proportionally to the current; the thickness of the Crookes dark spate and the current-density ateross it remain unchanged. If the experimenter continues to increase the current after the catborle is completely overhung hy the glow, the dark space thickens steatily, and the current-density across it rises.

The changes in the voltage across the Crookes dark space which accompany these changes in area and thickness are very important. The voltage is measured with a sounding-wire, like the cathorle-fall in the are; but since the boundary of the dark space is so sharply marked, the experimenter can set the somoding-wire accurately to it instearl of merely as close as possible to the cathode. Solong as the

[^25]negative glow does not overarch the whole cathode, and the thickness and current-density of the dark space keep their fixed minimum values, the voltage across it remans constamt likewise. This is the normal cathode-fall of the glow. It is an even more thoroughgoing constant than the thickneso or the current-density of the dark space, for these vary with the pressure of the gats the dark spate shrinks boik in depth and in silewise extension, if the curremt is kept constant While the gas is mate denser) while the normal cathede-fall is immune (o) changes in presature It depents both on the gats amt on the mat terial of the cathote; the remorded value extend from almut bill volts talkali-metal (athores) to about too volts. Stwompts have been made to correlate it with the thermionic work-function of the catherte metal, and there is no doubt that bigh values of the one tend to go with high values of the other, and low with low. When the cathode is entirely overspreal lye the negative glow and the dark space begins to thicken, the voltage acons it ricen rapidly; the cathoce-fall is satid to become anomalous, and maty ascemb to thonsands of volts.

Almosi the whole of the woltage-rise from cathode to anocle, as 1 have stated, is generally comprinerl in the cathode-fall; the remainder. although spread ower all of the brilliant divisions of the discharge, is inconsiderable mates the tube is musually long. The held strengh in the Crookes dark space is also much greater than anywhere else in the gho. This is illustrated by the two curves in Fig. 9, representing the field strengit in the discharges sketched above them. (For the region of the Crookes dark space, bowever, the curses are defective.) In the luminous fomels the clocerie fore is feeble, and they in fact are nent esemtial to the current-flow; if the anole is pushed inwards (owards the catherle, it simply swallows them up in succession without interfering with the enerent; lut the moment it invates the Crowke dark -pace, the disebarge ceases maless the electromative foree in the cirent in hastily pu-bex up. The mechanism which keeps. the glow alive lies concealed in the dark space.

One naturally trion to insemt a merhanism resembling the one -nggested for the are: the cathende-fall serven to give energy to the Flectron- comerging from the cathogle, at that they ionize molecules at the eqke of the negative glow ; and the ions fall aganst the cathote with enorge combly to drixe out new electrons. But the details are more difticult to eyplain. The cathokle-fall gives much more emergy (6) the chertron- than they newt to iomize any known motecule, so that
 vongs! In extrat dectron- from the eathode. We can hardly argue that the celectons are thermionic electrons; the cathote does not

 metals by iens striking them hats been separately studied, but nut sulticiently.

On the other hatad, there in gexel exielence that the (rowken hark -pace, like these dark sheathe seopered out in the poritise colums

Fig. 9) sketches of the glow in rarefied nitrogen at two presures whe higher below with curves showing the trend of field strength along the discharge. Giraham, W'iedemanns Innalen)
of the mercury are by intruding a negatively-charged wire, is a region of predominantly positive space-charge, in which positive ions adrance towards the cathose in a manner controlled by some such equation as (16i) or (17). For example, Gunther-Schutze proposed (16) to describe the state of affairs in the Crookes dark space in the condition of normal cathote-fall; that is, he assumed that the ions fall unimperterl from the erlge of the negative glow th the eathode surface. No
doubt this assumption is too extreme, yet it leads to unexpectedly: growl agreements with experiment. Thus when the thickness of the Crookes dark space is altered (by altering the pressure of the gas) leaving the voltage across it constant, the current-density varies inversely as the square of the thickness, as it should by (16). And when Gomther-Schulze calculated the thickness of the dark space from (IIi), using the colserved values of cathode-fall and current for six gases and two kinds of metal, and substituting the mass of the molecule of the gas for the coedicient m in that equation, the values he obtained agreed fairly well (within 10°) with the observed thicknesses. L.ong before, J. J. Themson had proposed (17), and Aston lested it by a serien of experiments on four gases, in the comelition of strong anomatents cathonfe-fall. . Is k of that equation should be inserecty proportional to the pressure p of the gas, the product $i d^{3} \mathrm{Y}^{-2}$ (1 standing for the cathorle-fall) should be constant at constant pressure, and the proxluct id $\mathrm{l}^{3} 1^{-2} p$ should be constant under all circumstances. Thene conclusions were fairly well confirmed for large current-densities.

Several attempts to teat the theory by actually determining the putential-distribution in the Crowkes dark space were made with sounding-wires and loy other methods; but they have all been superseded, whereser possille, by the beantiful method founded on the discovery that certain spectrum lines are split into components when the molecule emituing them is floating in an intense electric field, and the efparation of the components is propurtional to the strength of the field. This was establisherl by Stark when applied a streng controllable dectric fieth to radiating atoms, and by Losurde whe (xamineal the lines amiteel by molecules rushing through the strong fietel in the Crowkes dark spate, in the condition of anomalons cathodefall. Now that the elfeet has been theroughly studied it is legitimate (1) turn the experiments around and use the appearance of the split lines as an inclex of the fiek strength in the plate where they are emitted. Brome in Ciermany and lioner at liake diel this. In the plotegraphs Fig. 11, 11) wese the compmemts merged together at the top, which is at the edge of the mentive glow, where the field is very small; thene they diverge th a masimum separation, and finally approach wile another very slighty. lefore reaching the bottom, which is at the rathonle surface." This shows that the net space-charge in the Crooke

[^26]

Fig. 10-Spectrum lines subxivided and sprearl out in the Crookes dark space by the strong amd varialile fidd. Ser lontmote ${ }^{18}$. (J.S. Foster, Physical Reviete)

I ig. 11 - 1 group of lines near $\lambda+388$ (parthelium spectrum) resolved and spread out in the Crookes dark space. See footnote ${ }^{13}$.
dark spate is positive from the edge of the negative glow almost but not quite to the cathorle; there is a thin region just above the cathode where there is more negative charge than positive. This is splendid material for the theorist, and it is deplorable that the method cannot be applied execpt when the cathode-fall is anmalous and exceedingly large.

When a narrow straight hole is pierced in the cathode, the positive ions making for it shoot clear through, and can be manipulated in a chamber provided behind the cathode. In particular the ratios of their charges to their masses ean be measured, and thence their masses can be inferrel. This is Thomson's "positive-ray analysis," which Aston developed into the most generally available of all methods for analyzing elements into their inotopes. If the density of the gas is so far reduced that the Crookes dark space extends to the anote, the electrons can be studied in the same waty and their charge-mass ratio determined. Hence the mass of the electron can be deduced, and its dependence upon the speed of the electron aseertained, yelding preeious evidence in support of the special or restricted theory of relativity: These are among the simple phenomena which I mentioned at the leginning of this article, in which the properties of the ultimate atoms of electricity and matter are revealed.

The positive column, which is the brilliant, colorful and conspicuous part of the ghow, resembles in some ways the positive column of the morcury are, In it the potemtial-gradient decreases with increasing current, and the characteristic of the glow is negative (Fig. 6). ()ften the positive colum sulntiviles itself into at regular procession of doutlets or striations, all just alike and equally spaced (Fig. 7). The potemtial-difference between twor consentive striations has the same value all along the processon, and everyone feels instinctively that it ought whe the ismizing-potential or the resonance-potential of the gats; but this is coiclenty too simple an interpretation for the general case, although striations at potential-intervals of 1.9 volts have been realizel in meroury bupor, Conerally, if not atways, the striations appear when the gas is comtaminated with at small admixture of another. In this fact the key to the problem of their origin probably lico.

The (ilow in a dense gas (as dense as the atmosphere, or more so) is visible only when the surface of either or both electrotes is cursed, with a radius of curvature smaller that the minimum distance between the (w). In these circumstance the fiedt strength varies very greatly from one point to amther of the interaphere, at least before the spacecharges begin to distort the lickl, and premmally afterwarls as well;
it attaine salne just in front of the curs ad electrode (or chectrales. if beth are cursed) an great that if they prestiled over eth equal inter.
 *park. In stme cisen the glow in a elenar gas reatmbles a very com-

1:ig. 12-The glow in air at atmospheric pressures, near a curved electrode the other electrode is a plate beyond the top of the pi-ture). In 1, + the curved electrode is the anode; in 2, 3, 5, 6 it is the cathorle. (J. Zeleny, Physical Review)
tracted and reduced copy of portions of the glow in a ratrelied, gats. Thus in the photographs (Figs. 12, 13) of the luminosity surfounding a very curved cathote, it is possible to discern two dark spaces and two bright ones, the first dark space lying just outside the cathode, the tast bright region fading off into the darkness which extends away towards the Hat anode (far above and out of the picture). In the pictures of the glow surrounding a very curved anode, we see only a luminous sheath
spread over the metal -urface (Fig. 12). ${ }^{13}$ Mathematically the simplest case (at last before the space-charge legins to affect the fiedd) is realized by a slender celintrical wire stretched along the axis of a

Fig. 13-Magnification of one of the pielures in Fig. 11. (The lowest bright spot is a reflection in the cathode surface)
much wider hollow eydinder, the wall of which may be imagined to recede to infinity in the limiting cane. In this case the glow bears the emphonious name of corona, and has been intemsively studied lecause it wastes the prower tramsmitted over high-tension lines.

191 an indelted to l'rufresor J. Fellony for phates from which these figures were marle.

Often there is a hamimus eytindrical sheath encosing the wire, and from the boumbary of the sheath sutwards to the outer eylinder the g.ts is dark. It is customary to atsimme that the dark region, like the other dark aphes we hate oblsidered, is tratered by a procession of folls of one sign, positive or negative as the cane maty le, moving at a speed proportional to the lied and contentled hy their own spacecharge acoorling to the expotion in eylindrical coordinates corresponding to (1i) ; and the expriments support this assumption to a cert.ain evtent.

I must use my last paragraph to crase the impression-inevitably (1) In given by an atcount so short its this, in which the understond phenomena must be stresed and the mysterious ones passed overthat the flow of electricity throngh gatses is to be set down in minds and books as a perfected science, organized, interpreted and finished. (Wite the contrary! there are as many obscure and mysterious things in this fieh of physics as there are in any other which has been explored with as much diligence. Its remarkable feature is not that most or many of the phenoment in it have been perfectly explained; but rather, that for those few which have been explained, the explanations are very simple and elegant; they are based on a few fundamental assmmptions about atoms and electrons which are not difficult to adopt, for they are not merely plausible but actually demonstrable. l'erhaps ats time goes on all the phenomena will be explained from these same assumptions. There will be experimenters who modify the apparatus and the circumstances of past experiments so that all of the atoidable complications are avoided and the phenomena are simplified into lucid illustrations of the fundamental principles; and there will be theorists, who take the complicated phenomena as they are delivered over to us, and extend the power of mathematical analysis until it overcomes them. They may find it necessary to make other and further assumptions, beyond those we have introduced; at present it is commonly felt that ours may be sufficient. Whether posterity will agree with us in this, must be left for posterity to decide.

Carrier Telephony on High Voltage Power Lines

By W. V. WOLFE

1.tronection

THF: use of power from hydro-electric generating stations and central steam plants has increased until single companies serve a territory of many thonsathds of spuare miles and the problem of coordinating the distributing centers with the generating stations hats steadily increased in complexily.

One of the essentials of this coordination is obviously an adegrate system of communication and amtil the recent adsent of high freguency tekphony, this service was secured over privately owned telephone lines and ower lines of public service telephone companies.

The adsent of the power line carrier telephone system now offers a highly reliable and satisfactory means of communication in connection with the eperation of power systems. This equipment has been designed to employ the power conductors ats the transmission medium and to provide service as reliable as the power lines themselees with a low initial cost, a small maintenance charge, increasel safety for the operating personnel and transmission comparable in quality and freedom from noise with that obtained on high grade commercial toll rircuits.

PREIAMINIRE PROBLEMS

In proseceling with the development of the Western Electric Power Line Carrier TVdephone System thre major problems were encomntered. It was lirst necessary to learn from fiedd tests and close contact with power companies the characteristics of power lines and associatcol apparatas at high frepuencies and the operating requirements for such at telephone system; second, it was necessary to devehop a safe ath efficiont methoel for compling the carrier apparatus to the power conductors and thirel, westect and develop circuits and equipment mited to this service.

The superiority of the full-metallic over the ground return high frepuconey circuit whe catily established by comparative measurements of attentation, maise and interference, and therefore the experiment.1 work was largely conlined to the former circuit.

Since the theasurement of the attemtetion of a circuit urdinarily reguire that the circuit le terminated in its surge impedance ${ }^{1}$ to asoid reflection chlects, the tirs step in determining the attembation of the power lise was to meavare its surge imperlatese. Vfer cons-

Fig. 1 Open Circuit (Z_{0}) and Short Circuit (Z_{0}) Impedance as Measured at Carrier Frequencies on a 110,100 Yolt Power Line 12 Miles Long
metherl was adopted because of its simplicity and the rapidity with which measurements could be marle. This method depends upon the fact that the apperent or measured impedance of a uniform line terminated in its surge imperlance is equal to that surge imperlance and it consists in terminating the line in a known resistance and determining the value of current supplied to the line by an oscillator

[^27]and then substituting for the line a mon-inductive resistance until the same value of current is dratw from the oscillator. In employing this method for determining the surge impedance it was assumed that the oscillator ontput was constant, and that the phase angle of the surge impedance was small.

A study of the curves on Fig. I shows that the apparent impedance of the line will change with the impedance in which the line is terminated in different watys, depending upon the frequency used. (1) If

Fig. 2 Giraphical Solution of Substitution Method for Determining the Surge Impedance of a l'ower line
a frepuency mil-way between the quarter wave lengths ${ }^{2}$ is used, the ofen circuit and short-circuit impedances are the same. (2) If a fregueney corrsponding to atn even guarter wave length is used, an increase in the torminating imperlance will proxluce an increase in the apparent imperlance of the line. (3) If a frequency corresponding to an ord quarter wate length is used, an increase in the terminating impedance will produce a decrease in the apparent imped-

[^28]anee of the line. If the apparent imperatace of the lime is photed agesinat the terminating impelance, in (1) the curse will be horianutal; in (2) the curse will hase a positive slope appobehing 15° atel in (3) the come will hase a megative slope of approximately 1.5°. Fiath of these curses will intersect at 1.5 line drawn throngh the wrigit at at peint where the terminal imperance is equal to the surge imperdane of the line. This intersection can be determined with the

Fig. 3 Firequency ss. Ittenuation and Frequency vs, Surge Imperlance as Measured on the Tallulah Falls-Gainesville 110,000 Volt I'ower Line
greatest ease and accuracy when the curve crosses the 45° line at right angles or under condition (3), that is, when the determination is made at a irepuency corresponding to an orld quarter wave length. To determine the surge impedance at 'a given frequency all that was nerenary wats to terminate the line at the distant end in an imperance which it wats anticipatel would be just below the surge impelance and measure by the substitution method the apparent impedance of the line, and then to terminate the line at the distant end in an imperlance which would just exceed the surge impedance and determine the corresprading apparent imperlance. The intersection of a straight line through these points with the 15° line determined the correct terminating impedance. In Fig. 2 is shown a determination
of the characteristic impedance of the Tallulah Falls-Gainestille line of the Ceorgia Railway and Power Company at three different frequencies.

The attenuation of the line was then measured by terminating it in its characteristic impedance and measuring the current in to the line and current out of the line. ${ }^{3}$ The results of the attenuation measurements made on the Tallulah Falls-Gainesville line are shown on Fig. 3. The irregularities in the attemation shown by the lower

Fig. 4 Impealance (harateristics at Carrier Frequencies of a Typieal $6000: 110000$ Vole Tranaformer Bank
curse are probably eauned by the error in assuming that the phase angle of the surge imperance was small and that the surge impedance Wats a straight line function of freenency. From these and other d.ata it was $\begin{aligned} \text { witlent that for frequencien as ligh as } 1.50 \text { Ki.C. the }\end{aligned}$ attennation is not eversaive.

In order to determine the effeet of power transformers on the use of the power line ats at transmission merlimen for high frepuency currents,
2. Itrentation expressed in tramsmionion units is cymal to $20 \log _{10} \frac{I_{1}}{I_{2}}$ where I_{1} is the current intes the netwark and I_{2} is the current reecived from the network and mesanneal in a cirruit whome imperlance corrempends to the characteristic impedance of the network.
the imperatace of typieal eramsformer banks was meanared. In Fig. t is shown the imperlance versus frempency chatemerintie of a
 nected "star" on the high side with the netutral groumeded and "elefte" on the low side. As shown by the diagram, these meantrements were made between phases on the high side with the low side open circuited and short circuited. The coincidence of theose curves for
 dominant characteristic is the distributed capacity of the high winding and the imperlance is probably unatfected by changes on the low potential side of the transformer. Below . J Kic... however, the impedance changes rapidly both with frequency and with the low potential termination.

I study of Figs. 3 and 1 and other datat shows that the desirable frequency range in which to operate a power line carrier telephone
 tion is not excesoive, it is very little affected bey the associated power apparatus, and it is independent of the conditions on the low potential power circuits. The curse shown in Fig. 3 indicates that, contrary to the common le lief, the attenuatiom in this range is a relatively smooth function of frequency: This conchusion is supported by the fact that in the tarious installations of power line carrier telephone equipment which have been made since the attenuation measurements on Fig. 3 were obtained, no power lines have been encountered where the attemation was a critical function of frequency. Another important argument for the selection of this frepueney range lies in the fact that it is well above the range employed for multiplex telephony on commercial telephone systems and therefore procludes any interference with such systems.

Cotplas; Between Carrater Egutpment ant Powter lane

Probably the most difficult problem to solve was that of providing a satisfactory method for connecting the carrier copuipment to the power line. The use of power transformers hat not been found practicable for if frequencies low enough to be efliciently transformed were employed, the attenuation of the circuit would be a function of the conclitions in the distributing network and at change in the number or arrangement of transformers would result in atl appreciable change in the attenuation. Such a methot of compling to the power line woukl also have the objection that communication would not be possible when the pewer transformers were disonnerted from the line.

Since it did not seem practicable to develop a carrier frequency transformer suitable for comecting letween phases of a high voltage power line it was decided (o) couple to the power line by means of eapacity. Two general types of condensers are possible, first, a concentrated capacity condenser and second, a distributed capacity condenser. A concentrated capacity condenser suitable for direct connection to a high voltage power line was not available, but its development has been successfully undertaken by the Ohio Brass Co.

```
2.
*)
```

I-ig. 5 Voltage Amplification Characteristic of Iligh Frequency Transformer

The distributed capacity was obtained by suspending a wire parallel to the power conductor and employing this wire as one plate of the condenser and the combluctor as the other plate. Both of these methods of connecting to the power line have been developed and are described later.

1) ESAGN OF the: C.arrier Eoumpant

Athough the "earrier suppresed" system hats many advantages over the "carrier transmittel" system, the difficulty of securing lilters suitable for suppressing the mwanted proxlocts of the moxlulation prevented the use of the earrier suppressed system.

Several gencral elatateristies of the wectrical and mechatnical design of this carrier equipment are worthy of mote. The various stages of vacoum tube in both the transmiting and receiving circuits ate conpled hey transformers. These transformers are closed iron core coils using the standard core employed for atdio-freduency tratmeformers. Figg is shows the characterintic of one of these transformers, and it is evielent from this ligure that the variation in am-
 mission mat.

Ithergh the frequencies employed be this expipment are fairly high, it wis praticable to mount all of the .pporatis win standard
 erfipment ats "(") batteries have been emplosed, the grid potentials

Vig. 6 -Front \iew of Transmitter Panel with Cover Removed from Tuning Condensers

Being obtained from filament drop, "B" battery drop and a combinationgor thene two.
I. The transmitting mat shown in 1 igs. 15 and 7 is divided into two parts, the tranmitting circuit proper and the power amplifier. The first is a circuit comprising a 101-1) tube functioning as a Hartley
oscillator with inductise feed-back, a 223-. 1 tube operating as a speech amplifier or modulator and a 22:3-1 1ube operating as a high frequency amplificr. The plate or constant current system of modulation is emplosed bent differs somewhat from the usual practice in

t. i i Kar liew of Transmitter l'anel with Cover Removed
that the output of the high ferquenty amplifier is modulated rather theth the omtput of the oseillator iteclf. This scheme was found to deliver more moxblated power that the usaal aramgement since it is not limited to the same ratent by the oworlotang of the high frequenes amplifier. This circtut has at pewer outpur of one wate, which hats proved to be ample for normal uperation of the carrier system.

Fop provide for operation of the syatem when the attentation on the power line has been materially increased lyy lite fatult combitions a power amplitier is prowidet. This amplifier employs a $\overline{50}$ watt tulo (211-1) and is plated in the cirewit hy a situple switehing operation. When this amplifier is operateol, the output of the transmitting circuic is impreseed upon the grid of the 50 watt tube and amplitied to approximately tify times its mormal power output.

In the present type of carrier system duplev or two way operation is secored by the lase of two different carrice frequencies one for transmission in each direction. Is will $1 x$ penineed out later in the

Fig. S-Rear View of Receiver l'anel
sertion on signaling the lower freguency is always assigned to the calling station. The transmitting circuit must therefore operate at two different frequencies. This change is accomplished by the automatic operation of the relay shown in Fig. 6. The operation of this relay changes the capacity in the oscillating circuit, thereby changing its freguency. The values of the two frequencies at which the transmitting eircuit operates are determined by the variable condensers F1 and F2, Fig. 6, and certain fixed condensers which are connected in parallel with the variable eomelensers.

The receiving unit shown in lig. S is extremely simple. It is not tuned and the only control is the filament rheostat. It consists of three 101-D vacuum tubes operating respectively as a carrier frecpency amplifier, a negative grid potential detector and an audio frepuency amplifier.

Two way operation is secured by operating the transmitting and receiving circuits at different frequencies and separating them by means of filters. In the single channel systems this separation is secured by a high pass filter and a low pass filter although in the mul-
tiple channel system band pass filters will be employed. Fig. 9 shows attenuation versus frequency characteristics of the high and low pass filter combination. A study of these curves shows that the transmission loss or attenuation in the high pass filter to frequencies transmitted by the low pass filter is never less than 90 T. U., which corre-

Fig. 9 Transmission Characteristic of High Pass and Low Pass Filters
ponds 16 a curremt ratio of approximately 30,000 or a power ratio of approximately 9×10, and the attentation in the low pass filter (o) the frequencies transmitted ly the high pans filter is alst equal to or greater than 90 T.1.

The characteristics of these filters are remarkable when it is considered that the freguency range in which they operate is higher than that employed for multiplex carrier telephone systems, the attentation secured is higher than that ordinarily required for such systems, and a power of . Al watts hats to be transmitted through them thereby introducing special problems in the design of the coils and combensers. ligss. 10 and 11 are front and back views of one of these filters.

The of the umsual features in the use of the er filters is the fact that the pesition of the lilters in the cirenit is changed from time to tine
by the operation of the relay shown on ligg. 11, that is to s.sy, when the transmitting circuit is operating at a frequency lower than so k. C. the low pass filter is connected to it and when the tramsmitting cirenit is uperating at a frequency higher than 100 K.... the high pass fileer must be connected to it.

> SHOMAN: SySH.W

Sibnaling or ringing is acomplished at the transmitting end by chatiging the frequeney of the ose illator from a frequency lelow SoK.C. to a frepuency above tot K.C. Without changing the lilters. Thi in

Fig. 10-Front View of Low Pass Filter with Cover Removed

Fig. 11 -Rear View of l.ow Pass Filter with Cover Removed
accomplished by operating and releasing the relay in the oscillator circuit. Since the filter connected to the transmitting circuit will pass only one of these frequencies, pulses of the carrier frequency are sent out on the line. At the receiving end these pulses are amplified and rectified and the change in the space current of the detector oporates a marginal relay: The mmber and arrangement of these pulses is controllet loy a spring-operated selector key of the type commonly employed for telephone dispatching on railroad lines. At the receiving end these pulses operate a train dispatching selector relay
（see Fig．12）which responds to 17 impulses．This selector relay will respond to only two arrangements of these 17 pulses．The first arrangement is 17 consecutive pulses in which case these pulse＇s must follow one another at the correct speed and must be of the correct duration．This makes it posible to ring all stations at the same time as may be desirable in issuing general orders．The selector relay will also respond to 17 pukes broken up into three groups in which case the correct number of pulses must oecur in each group and the total of the three groups must be 17．This makes it possible to

Fig．12 Rear View of Signaling and Low Frequency Panel Showing the Signaling 1 ipparatus
select one station from a group of more than 50 stations without dis－ turbing the others．In addition to these desirable characteristies a single selector relay will prosicle selective ringing on four low fre－ quency extensions from the carrier terminal．

The carrier equipment may be operated with complete control and talking facilities from either a telephone located at the carrier terminal or a telephone some distance from the carrier terminal but connected to it hy a physical teleplone circuit．In any event the control is atutomatic，the transmitting circuit operating only when the receiver is off the switchhow，while the receiving circuit operates comtimususly

Designating the earrier frequeney which is below so K．C．as F_{1} and the carrier frupuency which is above 100 だ「．at F_{2} ，the opera－ tion of a carrier system comprising three carrior terminals designated ats A, B and C with a remote control station designated as A_{1} located at the loat dispatteloer＇s office and separated from the carrier terminal by several miles of physical telephone circuit is as follows．Each of these stations maty commanicatte with any of the other stations． Communication between A, B and \mathcal{C} is carried on ower carrier cir－ cuts；commmentation letween 1 and A_{1} is carried on ower the physical
 circuits which are compered of a carricer circuit amel a physical cirenit operating is tamdem. When in the mornal or mon-operated conditions, each of these carrier terminals is set 川1 to recete a sighal on frepuency F_{1}, but when the receiver is remosed from the switelslosok at any station to initiate a call, the carrior terminal corre-

Fig. 1.3-1t1 K. . . Coupling Condensers Vsed for Coupling Carrier Circuit 10 a 110 K. V. Power Line
-ponding to that telephome is atomatically set up to transmit on frequency F_{1} and receive on frequency F_{2}. When the ringing key is operated, pulses of Irequeney F_{1} are sent ont and received at all of the other carrier terminals. It the called station these pulses operate a selector relay and ring the bell, and when the operator remoses his receiver from the switch-hook to answer the call, his carrier terminal is antomatically set up to transmit on frequency F_{2} and receive on
freguency F_{1}. This switching of the transmitting and receiving circuits from one frequency to another is neces ary where more than (wo stations are operated on the some syatem and it is desirable for every station to be able to call every other station without routing the call through a central point.

If station A_{1} is comnceled with station A by means of two or more pairs of telephone wires which are not exposed to high voltage power

Fig. 14-Transmission Characteristic of Coupling Band Pass Filter
lines, a simple I.C. remote control circuit may be employed. However, if only two wires are arailable or if the telephone lines to be used are exposed to high woltage power lines and must therefore be equipped with insulating transformers and drainage coils, it is necessary to employ a somewhat more complex alternating current control circuit. In this circuit the 135 eycle interrupters and relays familiar to the telephone plant are emplosed.

The voice frequency cirenits used in connection with this carrier equipment are the standard two wire and four wire circuits used in commercial telephone practices.

Fig. 13 shows 1 Wo of the 120 K.V. compling condensers developed by the Ohio Brass (0 . Liach of these condensers has a capacity of .003 $\mu \mathrm{f}$ although similar condensers bating a capacity of $.007 \mu \mathrm{f}$ are alst available. These comelensers are approximately 5 ft . in diameter and 12 ft . high over the bushing and weigh about 8,000 pounds. The
comberar element is mowle up of a large momber of small comderneers in parallel, the asombly lexing immersed in transiormer oil.
 clement of a single acetion, contluent (ype, Cimplall band pans filter ats shown by lig. 2:, the genteral attemtotion charateristic being shown by Fig. 11. This tilter is intembed to tromsmit elliciently the carrier frequencies, and to exclude power frequency currents.

Fig. 15-Typical Layout ol Power Line Carrier Telephone System, Using Iligh Voltage Condensers for Coupling to Power Line

In Fig. 15 is shown a typical layout of a condenser coupled power line carrier telephone system.

In employing the distributed capacity type of condenser for coupling to the power line, (wo) coupling wires (sometimes incorrectly called antennae) are suspended parallel to the power conductors for a distance of approximately $1,000 \mathrm{ft}$. Fig. 16 shows the last tower supporting the coupling wires in an installation at Anniston, Alabama. This is a twin circuit 110 K゙. ${ }^{\circ}$. power line and in order to secure coupling to broth lines, the coupling wires are suspended midway
between the (op and bottom phases. The box shown on the tower in ligg. 11 is the coupling wire tuning unit shown in ligg. 17. The compling wires are terminated in this tuning unit. In ligg. 18 is

Fig. 16 Distant lind of Typical Conpling Wire Installation Showing Coupling Wire Tuning Unit
shown the schematic diagram of the wire coupling circuit and Fig. 19 illustrates the character of the resonant peaks secured hy this circuit. The series inductancen L_{1} and the terminating inductance L_{0} are variable and by adjusting them the points of resonance may be
-hifted to corret lor sariatons in the compling wire inductane and rapocity lor ditherent installations. Vig. 20 illastrates at typal carrior terminal intallation comploging twe wite compling methox.

The only peint in han of the wire compheng as mompared with the condenser compling is the fiet that for poner lines of voltages higher

Fig. 17-Coupling Wire Tuning l'nit
than 33 K K. V . it somewhat cheaper. On the other hand condenser coupling is much more efficient, thereby increasing the range and reliability of the system. It also permit- high quality transmission, the tratnsmisoion through it is not affected by small variations in frequeney, and the component parts are of constant value determined at the time of manufacture and require nos adjustment at the time of installation. In addlition to these athantages the inspection and maintenance of the conclenser is easier than for the coupling wires.

Pritective Melitres

In con-iflering the problem of safety the the operating personnel and the equipment from the power line voltage, the normal insulation
supplied by the high voltage condenser where it is employed or by the air separation where the coupling wires are employed, is disregarded, since this insulation maty fat, thereby applying the power line voltage to the line terminals of the coupling circuit shown in

Fig. 1S-Schematic of Wire Coupling Circuit
Fig. 21. The circuit shown in this figure is the same both for condenser and for wire conpling installations. The first element of protection is the horn gap, which is mounted outside of the buidding and serves to limit the voltage to ground which the drop wire fuse,

Fig. 19 - Charater of Resonant I'eaks secured with Wire Coupling
constituting the second element of protection, will hase to break. This fuse consists of an element inside of a porcedain tube the ends of which are closed by lead caps. This fuse is about $\overline{5}$ inches long and 1_{2} inch in diameter and is supported by the wire itself. When it
 (1) break athe permits the wires to f.all apart. In power line carrior
 20 ft. is whtamed. The thed element of protection is the -hant coil with the mil-pmint gromedel. In many respects this element is the

Fig. 20 -Typical Layout of lower I.ine Carrier Telephone System I'sing Wire Coupling
most important one, since it provieles a low impedance path to ground for power frequencies, thereloy draining off the 60 cycle potentials which are collected by either the compling wires or the condensers in normal operation.

As will be noted from Fig. 27 the line series inductances and this shunt inductance coil comprise a tunit (the upper pancl) which is known as the filter coil unit. The coils on this unit are insulated for 20,000 volts on the line terminals and are constructed of edgewise wound copper ribbon large enough to carry heavy momentary currents without damage. The fourth element of protection is a fused switch and surge arrester such as is commonly employed for the protection of prisate telephone lines exposed to power lines. This device consists of
fuses in series with the line and forming the blades of a swith. These fuses have been found satisfactory for the interruption of whages as high as $2 \overline{5}, 000$. Following this fused switeh is a 1,500 volt breakdown static spark gap to gromed and a $\mathbf{0} 0 \mathrm{ol}$ volt breakdown bacmum gay,

Fig. 21 Schematic of Protection Circuits
across the line. Following these there are two series capacity elements which are high voltage mica condensers. These condensers have a capacity of $.007 \mu \mathrm{f}$. and a breakdown voltage in excess of 7,500 . Finally, there is provided a repeating coil with the mid-point of the line side

Fig. 22 ('hange in the Itcmuation of the High Frequency Line Necessary to Matintain a Constance Coice Fersucney level with Variation in the Frequency of the Carrier
winding grounded and protected by 506 volt vacum gaps 10 ground. This repeating coil is alson provided with a grounded shied between the windings and has a breakdown voltage from the winding to the shick of 1,106 wolls. The operation of this protective circuit has been demonstrated several times in the field by connecting one phase
af a 110 K. V°. poner line directly to one of the line terminals of the protective circuit. In every case the cireltit has uperated satisfowhrily: In ne case has atny of the stambard apparatos been damaged nor has there been ame evidence that the elements of protection beyond the third, that is, the shmut cenil with the mid-posint gronended. have been called upan to finction.

Fig. 2.2 shows the attemthtion (expresed in tramsmission thits) of

2
30 HIGH FREQUENCY LINE (T. U.)

Fig. 23-Variation of () verall (atain with the . Itenuation of the Iligh Frequency line
in attenuation in less than is T. I°. This curse was made with a constant atulio frequency iuput of 3.3 .5 mils and an output of 3.3 .5 mils from the carrier vircuits, the andio frerpuency being 1,000 cyeles. The sariation of atulio frequency level with the attemation of the high freguency line is shown in Fig. 23. The observations given in Fig. 24 were made on an artificial transmission line in which the line constants, and therefore the attentation, could be rearlily changed without changing the carrier frefuency: The shape of this curve is a function of the receiving circuit since the atulis) input, carrier frequency and the molulated output of the transmitting cirenit are maintained constant. It shows that for atulio frequency levels lying between -10 and +10 T. . the equivalent in approximately atraight line function of the attentstion of the high freguency lise and that therefore the rewiving circuit is not overloaded.

Fig. 2t shows the audio frequency load characteristic. This curve
is principally a function of the load characteristic of the modulator and it shows that for inputs greater than 1 mil, the modulator is overloaded. In practice the overloading of the modulator is prevented by increasing the average fow frequency line equivalent to an attenuation of 10 T .1 . 1s means of a resistance artificial line. This

Fig. 24 -Transmitting Circuit Load Characteristic
arrangement is desirable in order that the balancing of the low frequeney hylorid coil may not be complicated when operating over very short plysical circuits.

The curve in Fig. 25) is a single frequency quality characteristic and shows that where the method emplayed for connecting to the
∞

0

-

Fig. 25 Single Frequency (Hality Characteristic
power line will promit, remarkably trate voice transmission may be sectred. The variation in the equivalent over the range from 100 cycles to \quad,, 000 eycles is only $5_{2}{ }_{2}$ T. T . ., while the varition from 300 cyeles to 5,000 cyeles is only 2 T.U. Reference to lig. 19 will indicate, howeter, that less satisfactory quality characteristics are ob-
tained when the wire compling method is emploged, becatme of the sharphess of resomatice of the coupling eirenit.

A. mina Powler Compiny Instaldaton

Figs. 21 a and 27 are photegraphe of the instathation of power line carrier telephone erguipment at the Amiston substation of the Mahamo

Fig. 26-Typical l'ower Line Carrier Telephone Installation

Power Company：Fig． 26 illustrates the simple character of the assembled units and freedom from controls．The right hand bay is devoted to power control apparatus with space reserved for the 135 cycle remote control equipment when $i t$ is employed．The left

1Fig． 27 Typical Installation of Coupling I＇ancls
hand bay includes the transmitting and receiving circuits，the high and low pass carrier frecuency liters and the voice frequency and D．C．control circuits．Beginaing at the top of this bety，the first panel，which is blank on frout，carries the system terminal．block （t）which all wiring except the power supply is connected．The second panel is the high patss filter；the third panel is blank．The fourth
pathe is the tromsmitting equipment, buth low penter dad high prower. The lith patel is the receiving eireuit: the sivh pathel contains the wiee frepueney athe signaling equipment. The seremth patel contains D. © , comerol equipment, and the bottom prond is the low patos lilter. On the wall to the right of the carrier panel assembly are shown the tilter eoil unit and the lilter and prostector unit. These mits are urore clearly shown in Fig. 27 amelingrammatically in Fïg. 21. Returning to Fig. 26, the alesk stand which the operator is using is that associatere with the carrier equipment, while the key mounted on the table immerliately to the left of the clesk stand is the selector key employed for ringing. lig. Ifi shows the compling wire installation at this station.

The power line carrier telephone equipment which has been brielly described in the foregoing article is in successful operation today on several power systems in this conntry. Its reliability, simplicity of operation and maistenance have been well established.

The large number of variables which are involved in line failure comblitions make it impossible to predict what effect these emergency conditions may have on the operation of the carrier equipment. The fact remains, however, that under many simulated and actual trouble conditions successful operation of the carrier equipment has leen obtained.

With the growing need of power companies for communication facilities, it is probably only a question of a very short time before multiple channel carrier systems will be in operation on the large power systems of this country:

Abstracts of Bell System Technical Papers Not Appearing in the Bell System Technical Journal

Photomechanical Itaze Analyzer Applied to Inharmonic Analysis. ${ }^{1}$ C. F. Sacti. This type of Fourier Analysis deals with wave-forms which are not strictly periodic, since they are of finite duration and of warying eyclic forms. Hence in a finite frequency range they have an infinite number of infinitesimal components (shown by the Fourier Integral) as contrasted with the finite number of finite components at regular intervals (shown by the Fourier Series).

This analyzer utilizes the continual repetition of the aperiodic wave, deriving therefrom a periodic wave, the infinitesimal components neutralizing except for frequencies which are integral multiples of the frequency of repetition; here the components build up to finite magnitudes. The simple relation between these components is seen from the corresponding Fourier Integral and Series identities for the unrepeated and repeated waves respectively. By increasing the period of repectition a new set of components can be similarly. derived.

The wave form is represented as a black profile on a transparent strip whose ends are joined to form an endless belt. Driven at constant speed past a transverse illuminated slit, it generates light fluctuations which are converted into electrical fluctuations by means of a selenium cell. A tuned circuit, amplifier, rectifier and microammeter are used to select and measure the components, while the frequencies are determined loy the speed of the strip, the frequency of tuning, and the time scale of the original wave form.
"Demagnetization and Mysteresis Loops." L. W. Mckeenan and P. P. Cowft. The fact that permalloy shows its maximum inital permeability in the absence of external magnetic fiedds is used to check the exact compensation of the earth's magnetic fied or other stray fields by measurement of the initial permeability of a strip or wire of permalloy placed paralled to the fied component to be compensated. Increased accuracy is obtained by the use of somewhat greater fieds than those which approximately give the initial permeability. The effect of demagnetization by an alternating current fied is studied with samples of the same sort, the apparent permeability varsing as the external fild at the time of magnetization is caried. The dissymenctry in hysteresis hoxps where the upper and lower limits

$$
\begin{aligned}
& \text { ' J. O. S., R, S. I., Vol. 9, pp, } 487 \text { 191, } 1921 . \\
& { }^{\text {J. U. }} \text {, S., R, S. I., Vol. 9, pp, } 479-485,1924 .
\end{aligned}
$$

are mesmmetical with respect the zero of mognetic fichl is illus－ trated ．and the defection of sheh discymmetry is discossisel．

I（＇lassifiet l．ist of Published Bibliographies in［＇hysics， 1910 1！9？？3 K゙art．ド．I．arkew．This work，malertaken at the request of the Xithonal Researeh cosumeil，represents ． 11 attempt to cope with the problem of providing a convenient and adequate biblingraphy of physis，not hy actuslly writing a complete elasoilied biblingraphy （ ${ }^{\text {h hich would till a huge volume and reguire the prolonged latoor of }}$ several ment，but by listing the very mamerous partial hiblingraphies uneler a detailed subject－elassification．Many of the accounts of researeh published in scientifie journals contain short histories of the previous work in the subjects which they treat，many others contain lists of references，ant there are alst a number of critical or macritical reviews of particular lieds with thorough documentations．The Classified List of Published Bibliographie＇s refers to all of these which appeared in any of the familiar physical journals between 1910 and 1922 inclusively，and a mumber of books as well；it is beliesed that almost every article upon a physical subject，which has ever been cited or reviewed in another article，can be traced through the List．The syisem of clasification，in which the field of physics is divided into seventy－five clases with nomerous sublivisions，is much the most detailed and elaborate which has been made ont for the science of physies in a score of years．An adequate system of classification is of great value in any science，for researches which are clasified under it are not only made easy to trace，but their various aspects and their mutual relations can be emphasized．Because of the rapid growth and evolution of physics，the earlier systems have mostly become inalequate；but it is hoped to make and keep this system effective by constant attention and revision，and to extend the use of it．

Transmitting Equipment for Radio Telephone Broadcasling．${ }^{4}$ Edward 1．．Nelson．The general transmission considerations apply－ ing to any system for the high quality transmission of speech or music are outlined brielly，and the specific requirements to be met by the various apparatus units in a radio broadcasting equipment are dis－ cussed in some detail．The standard Western Electric 500－watt broadeasting equipment，which has found application in some fifty of the larger stations in this country and abroad，is described．Its per－ formance capabilities are illustrated and it is indicated that a standard of performance has been attained which renders possible reproductions not substantially different from the original．
${ }^{3}$ Bulletin of the Sational Researeh Council，No． 47.
－Proc．of The Inst，of Radio Engineers，Vol．XII，page 553， 1924.
> "The I'apor Pressures of Rochelle Salt, the Mydrates of Sodium and Potassium Tartrates and Their Saturated Solutions." ${ }^{\text {S }}$ H. H. I.owry and S. O. Morgin. The vapor pressures were determined loy a static methosl at seseral temperatures between 15° and 40°. Temperatures were controlled to $\pm 0.1^{\circ}$ and the pressures read to $\pm 0.1 \mathrm{~mm}$. The measurements on the saturated solution of Rochelle salt show that the solid phase in such a solution is unstable above 40°, in agrecment with wher insestigators.

> Minimal Length Ire Characteristics. ${ }^{6}$ H. E. Ives. This paper is a study of the electrical discharges which oceur between opening contacts. 11 is found that the discharge occurring when currents bedow a certain value are broken are atmospheric sparks corresponding to a definite breakdown voltage, which in the case of air is about 300 volts. Abowe a critical value of current, which is different for every material, the discharge is an are, in which the voltage corresponding to the discharge varies with current. Spectograms taken in the two regions show only the air spark spectrum for all materials below the critical curent and the are -pectrat of the materials above the critical current. The charateristic equations of the ares caused by the opening contacts are derived and are used to ohtain expressions for the current $i s$. time relations at the opening contact.

The Dependence of the Loudness of a Complex Sound L'pon the Energy in the Various Frequency Regions of the Sound. ${ }^{7}$ H. Fletcuer and J. (. Stemblert. Two complex sounds were studied, one with a continuous energy frecutency spectrum corresponding to connected speech, the other a test tone having tiscrete frequency components. By means of filters the energy was remosed from all frequencies either above or below a certain frequency, and the resulting decrease in loudness was measured hy attenuating the original sound without distortion until equal in loudness to the filtered sound. Taking the werage results for six ohservers, this decrease was found to depend on the absolute values of the loukness. For a loulness of 22 units abowe threshold, each frequency region comtributes to loudness in proportion to the energy in that region weighted according to the threshold energy for that frequency. For a loudness above 30 units, however, this is no longer true, lecause of the non-linear character of the response of the car. By assuming each frequency region contributes in propurtion to a fractional power of the weighted energy of that region, values of the tot.1 louduess in agreement with oh-

[^29]sersed salues ate obtained if proper whlues ate taken for the foretional power, decreasing to ome third as the landuco increase to 100) units.

Correlation Between ('rack) Techopment in (ilass Ilhile Conducting E:lectricity and the Chemical composition of the Glass. ${ }^{8}$ EInt.t: 1i. Soltwictusk. I staly was mate of the shaceptibility to erack development shewn by lise dilferent kimels of glas when they were subjected to the action of an electric current. The results indicated that the temeney to crack increased with incerasing alkali content of the ghas and with increasing electrical conductivity.

Report of the Chairman of the Telegraphy and Telephony Committce of the Imericun Institute of Electrical Engineers. ${ }^{9}$ (). B. BLICKwtal.. This report gives a brief summary of the adsances wheh have been make or which have come into prominence in the communcation art during the year. Papers which hawe been presented before the lastitute and which, in general, have recorded such advances are reviewed.

Selectize Circuits and Static Interference. ${ }^{10} \mathrm{~J}$. R. CIRson. This paper is an application of a general mathematical theory to the guestion as to the possibilities and limitations of selective circats when employed to rexluce "Static" interference. In the case of static interference and randon disturbances in general the rambom and umpredictable character of the disturbances makes it necessary to treat the problem statistically and express the results in mean values. In spite of the meagre information available regarding the character and frequency distribution of static, this treatment of the problem vields general deductions of practical significance. The conclusion is reached that for given signal requirements there is an irredncible residue of static interference which cannot be eliminated. This limit is closely approached when a filter of only two or three sections is employed as the setective circolt, and only a negligible further gain is made posible by the most claborate circuit arrangements. A formula is alon given for calculating the relative figures of merit of - dective circuit- with respect to random interference.

The Guided and Rediated Energy in W'ire Transmission. ${ }^{\text {t }}$ J. R. Carsos. This is a mathematical analysis of wate propagation along guiding wires from the fundamental equations of efectromagnetic theory. It is shown that the engineering theory of wire transmission is incomplete, and that, in addition to the transmitted wase of en-
s Jour. Am. Chem, Anx., Vol, XLII, No, X, August, 1924.
'Journal of the American Inst. of Elec. Engineers, Vol. 4.3, page 108.3, 1924.
${ }^{13}$ Trans. I. I. E. E..., 1924.
(1) Jour, I. I. E.. E.., (kil., (1)?
gincering theory, an infinite series of complementary wases exist. It is through these waves that the phenomena of radiation are directly accounted for. Except for the phenomena of radiation, however, the complementary wawes are of theoretical rather than practical interest in present-day transmission practice, and except in extreme cases they may be ignored in practice without appreciable error.

Sound Magnification and Its Application to the Requirements of the Deafened. ${ }^{12}$ Harves liletcher. A general description of the generation and propagation of sound waves was given and experiments performed to illustrate the principles involved. The general reguirements for aiding persons having various amounts of deafness were outlined. The relation between the loudness of speech received by the ear in a rom of average aconstic characteristics and the distance the speaker is away from the ear was illustrated by a chart. Also, a chart showing the characteristic frequency regions and loudness levels of the fundamental speech sounds, and one showing the interpretation of speech at various loudness levels by persons having various degrees of hearing, were exhibited. By means of these three charts it was shown how one could predict the amount of intelligibility which would be obtained by a person having a definitely measured amount of hearing. In particular it was pointed out that such sounds as th, f, and v will be the first sounds to be lost as the hearing decreases. These sounds are the easiest ones to detect by lip reading so that hearing aids and lip reading go hand in haud in aiding one who is hard of hearing to obtain the proper interpretation.

Abstract of a Telephone Transmission Reference System. ${ }^{13}$ L. J. Siflan. The subject is dealt with in four parts: A-The function of a transmission reference system; B Requirements to be met by the reference system; C-Work done on the construction and calibration of a preliminary moxlel of the new reference system; D-Proposed future development of the new reference system in its final form to be adopted as the standard for the Bell System.

A brief discussion of the methods and apparatus entering into the general problem of rating telephone transmission is given. It is
${ }^{12}$) ecture given before the Innual Conference of the American Federation of Organizations for the I lard of I earing, Washington, 1). C., Thursday, June 5, and published in Volta Review, September, 192.

A large number of the audience who listened to this lecture were hard of hearing. A rough moisurememt of the amount of hearing of each of those present was made and groups arranged according to the degree of hearing. The amplification was then adjusted to each group to sinit their particular needs. The results seemed to be mont gratifying, as nearly everylody said that it was the first time they ever heard a public lecture of this sort without difficulty since they had become hard of hearing.
${ }^{12}$ Electrical Communications, Vol, 111, pp. 11.1-126, 1924.
conclatedt that a physical reforente system is essemtial, and that a mere sercification of its physisal operating characteristios is insulficient. The inderpaty of the reference symems now in tase is pointed out.

The conditions to be aimed at in the new reference system are: I The performance of the system and of its component parts manc be specitiable in terms of chantities admitting of definite physical medsurement; II The performance of the reference system, ander specitied operating amb atmospheric conditions, must remain constant with time; III The reference system must be free from onom-linear distortion wer the range of acoustic and electric amplitules which it must handle; $\mathbb{I V}^{-}$The freptency response over the range of speeeh frequencies must be as nearly uniform as possible.

Of the above, comblitions 1 and $I I$ are regarded as the most important. It is also proposed to builel auxiliary reference systems which will meet conditions I and II while falling short of 111 and IV. These are needel for purposes of ready comparisons with the commercial circuits commonly in use.

Contributors to this Issue

F. L.. Rhodes, S.B., Massachmetts Institute of Technology, 1892; American Bell Telephone Company; Outside Plant Engineer, American Telephone and Telegraph Company, 1909-19; Outside Plant Development Engineer, 1959 -. Ar. Rhodes has had an active part in the development and standardization of materials, apparatus and practices employed in the underground and overhead wire plant of the Bell System. He has written many articles, among which may be mentioned those on "The Telephone" in the Encyelopedia Americana and Nelson's Encyclopedia.

Georgi: Crissox, M.E., Stevens Institute of Tcchnology, 1906; instructor in Electrical Engineering, 1906-10. American Telephone and Telegraph Company, Engineering Department, outside plant division, 191014 ; transmission and protection division, 1914-19; Development and Research Department, transmission development division, 1919 -
II. H. H.ARIかEX, B.E.E., University of Michigan, 1912; Engineering Department, American Telephone and Telegraph Company, 19121919; Department of Operation and Engineering, 19!9-. Mr. Harden hats been engaged in the development of tramsmission maintenance testing methods and in the preparation of routines and practices reguired for applying these methorls in the telephone plant.
K. S. Jonssox, A.B., Harvarel University, 1907; Grahuate School of Applied Arts and Sciences, 1907-09; Engineering Department of the American Telephone and Telegraph Company, 1909-13; Engineering Department, Western Electric Co., Ine., 1913 24; Bell Telephone Laboratories, Inc., 192.j-. Mr. Johnson's work has relaterl especially to the thenretical aspects of telephone and telegraph transmission.

Timotuy l:. SuE. S.MI, Massachusetts Institute of Technology, 1913; instructor in Electrical Engineering and Physics, 1918-20; Manufacturing Department, Western Vlectric Company, 1920-21; Encineering Department, 192121 ; Apparatus Development Department, Bell Telephone Laboratories, 192.)- Mr. Shea has been principally engaged in the clevelopment of electric wave lilters and allied apparatus.

 ment, Wistern Vilectric Compan!, 1917 23. Bell Pelephone V.aboritorics, fuc., 102. - Mr. Datraw has been engaged largely in pre-
 physics.
11. V. Wotfi, B.G.. Carnegie Institute of Techmology, 191s: Signal (orphs, 191s 19); Ceneral Electrie Company, 1919: Stambard I udergromad (able (ompany: 1!320; Engineering Department, Western Flectric Company, $192021 ;$ Bell Telophome Laboratorics, Ine., 1925- Mr. Wolli has been engaged in the development of varion typer of carrier systems.

The Bell System Technical Journal

 April, 1925
The Transmission of Pictures Over Telephone Lines

By H. E. IVES and J. W. HORTON, Bell Tel. Lab. Inc. R. D. PARKER and A. B. CLARK, Amer. Tel. \& Tel. Co.

Is rrodection

THE problem of directly transmitting drawings, figures and photographs from one point to another hy means of electricity has long atracted the attention and curiosity of scientists and engineers. ${ }^{1}$ The broal principles of picture transmission have been recognized for many years. Their reduction to successful practice, however, required, among other things, the perfection of methods for the faithful transmission of electrical signals to long distances, and the development of special apparatus and methods which have become a part of the communication art only within the last few years. Prominemt among the newer developments which have facilitated pieture transmission are the phothelectric cell, the vacuum tube amplifier, electrical tilters, and the usic of carrier currents.

Cone of the systems heretufore devised have been sufficiently developed to meet the requirements of modern commercial service. The picture transmission system described in this article has been designed for practical use oser long distances, employing facilities of the kind made available by the network of the Bell System.
The desirability of adding picture 1 ramsmission facilities to the other communitation facilities offered by the Bell System seems now to be well assured. Varinus engineers of the System have made suggestions and carried out fundamental studies of the possibilities for picture transmission offered by the telephone and telegraph lacilities in the Bell System llant which have aided materially in the development of the methed to the described.

[^30]The account of the picture transmission system which follows is intended to give only a general idea of the work as a whole. A number of engineers have collaborated in this work, and it is expected that later publications will describe various features of the system and its operation in greater detail.

Gereral Scheme of Picture Transmission

Reduced to its simplest terms, the problem of transmitting a picture electrically from one point to another calls for three essential elements: The first is some means for translating the lights and shades of the picture into some characteristic of an electric current;

Fig. 1-Sending end optical system in section: (L) light source; (D) condensing lens: (A) diaphragm; (S) projection lens; (C) transparent picture film in cylindrical form; (P) photoelectric cell
the second is an electrical transmission channel capable of transmitting the characteristic of the electric current faithfully to the required distance; the third is a means for retranslating the electrical signal as received into lights and slades, corresponding in relative values and positions with these of the original picture.
Analyzed for purposes of electrical transmission, a picture consists of a large number of small elements, each of substantially uniform brightness. The transmission of an entire picture necessitates some method of traversing or scanning these clements. The method used in the present apparatus is to prepare the picture as a film transparency which is bent into the form of a cylinder. The cylinder is then mounted on a carriage, which is moved along its axis by means of a screw, at the same time that the film cylinder is rotated. A small spot of light thrown upon the film is thus cansed to traverse the catire film area in a long spiral. The light passing into the
interior of the cylinder then baries in intensity with the transmision or tone salue of the picture. The optical arrangement by which a small spot of light is projected upen the photographic transpareney is shown in section in Fig. 1.

The task of transforming this light of varying intensity intos a variable (be⿻trice current is performed hey means of ath alkati metal

Fig. 2 - Photograph of photnelectric cell of tyge nsed in ficture transmission
photnelectric cell. This device, which is based on the fundamental discovery of the photoelectric effect by Hertz, was developed to a high degree of perfection by Elster aud Geitel. It consists of a vacuum tube in which the cathode is an alkali metal, such as potassium. I nder illumination, the alkali metal gives off electrons, so that when the two electrodes are connectef through an external circuit, a current thows. This current is directly proportional to the intensity
of the illumination, and the response to variations of illumination is practically instantancous. I photograph of a photoelectric cell of the type used in the picture transmission apparatus is shown in Fig. 2. This cell is placed inside the cylinder formed by the photographic transparency which is to be transmitted, as shown in Fig. 1. As the film cylinder is rotated and advanced, the illumination of the cell and consequently the current from it registers in succession the brightness of each elementary area of the picture.

Assuming for the moment that the photoelectric current, which is a direct current of varying intensity, is of adequate strength for successful transmission, and that the transmission line is suitable for

Fig. 3-Light valve details: (R) ribhon carrying picture current; (P) pole piece of magnet; (J) jaws of aperture behind ribhon
carrying direct current, we may imagine the current from the photoelectric cell to traverse a communication line to some distant point. At the distant point it is necenary to have the third element above mentioned, a device for retranalating the electric current into light and shade. This is acomplished in the present system by a device, due in its general form to Mr. E.. C. Wente, termed a "light valve." This consists essemtally of a narrow ribon-like conductor lying in a magnetic lied in such a position as to entirely cover at small aperture. The incoming curent passe's through this ribbon, which is in consequence dellected to one side by the inter-action of the current with the magnetic lield, thus exposing the aperture beneath. Light patsing through this aperture is thus varied in intensity. If it then falls upon a photographic rensitive bilm bent into celindrical form, and rotating in exact synelaronism with the film at the sending end, the film will be exposed by amounts varying in proportion to the lights and shades of the original picture. The ribbon and aperture of the light value are shown diagrammatically in Fig. 3. Fig. I
 with its light where, the light whe, ame the revering eblimer.

The simple scheme of pieture tramsminion just ontlined mast be
 munication systoms, which have lewe developed primarily for other purpanes than pielure transmisuon. (If existing clectrical means of communcation, which indule land wire sysems (telegraph amd tephene), submarine cable, and ratio, the wire system, an developerl

Fig. I betion of reveiving end optical system: (I.) light source; (1) condensing lenn- Vi light valse: is projection lens: (${ }^{\circ}$) sensitive film
for the telephone, offers great atsantage when all factors are considered, including constancy, freedom from interference and speed. The picture transmision system has accordingly been adapted to it.

In the simple sheme of picture tranmisain outlined in the preceding section, the photobelectric cell gises rise to a direct current of varsing amplitude. The range of frequency components in this current runs from zero up th a few hundred rycles. Commercial long distance telephone circuits are not ordinarily arranged to transmit direet or very low frequency currents, or the phothelectric currents are not directly tramsmited. Norenser, these currents are very weak in comparison with ordinary telephone currents. ()n acount of thene facts, the current from the photnelectric cell is first amplified by means of vactum tube amplifiers ${ }^{2}$ and then is imprensed upon a vacuum tulse moxlulator jointly with a carrier current whose frequency is about 1,316) cycters per seenod. What is transmitted oser

[^31]

Fig. 5 Portion of transmit:ed picture of variable width line type, enlarged
the telephane line is, then, the carrier wase ${ }^{3}$ mentulated by the photeelectric Ware so that the corronts, in frequenry range and in amplituke, are similar the the curconts corre-pmoling (1) ordinary speceh.

When the carrier corrent, mexlulated acourding to the lights and shatso of the pioture at the sombling emb, traverses the riblon of the light balse at the receiving end, the uperture is epeneal and elosed with eath pulse of altermating current. The emvelope of the pe pulses follows the light and shate of the pieture, but the artual course of

SYNCHRONIZING CHANNEL
Fig. 6-Diagrammatic representation of the picture and synchronizing currents. (P) photoelectric cell; (AM) amplifer motulator; (A) amplifier; (V) light valve: (.I) phonic wheel motors; (T) tuning forks; (AR) amplifier rectifier
the illumination with time shows a fine structure, of the periodicity wi the carrier. This is shown by the enlarged section of a picture, Fig. 5 ; in this the black lines are traces of the image of the light valve aperture. Superposed on the larger variations of wisth, which are proportional to the light and shate of the picture, small steps will be noted (particularly where the line width varies rapidly); these are caused by the carrier pulses.

SYNCIIRONIZATION

In order that the light and shate traced out on the receiving cylinter shall produce an accurate copy of the original picture, it is necess.ry that the two cylinders rotate at the same uniform rate. This, in general, demands the use of accurate timing devices. The means employed in the present apparatus consist of phonic wheels or impulse motors controllerl by electrically operated tuning forks. ${ }^{4}$ Were it

[^32]possible to have two forks at widely separated points rumning at exactly the same speed, the problem of symehronizing would be immediately solved. Actually this is not practical, since variations of speed with temperature and other causes prevent the two forks from operating closely enough logether for this purpose. If the two cylinders are operated on separate forks, even though each end of the apparatus rums at a uniform rate, the received picture will, in general, be skewed with respect to the original. The method by which this difficulty has been oserome in the present instance is due to Mr. M. B. Long. Fundamentally the problem is solved by controlling the phonic wheel motors at each end by the same fork. For this purpose it has been found desirable to transmit to the receising station impulses controlled by the fork at the sending end. The problem of transmitting both the fork impulses and the picture current simultaneously could be solved by the use of two separate circuits. If this were done the currents going over the two lines would be substantially as shown in Fig. 6, where the upper curse represents the modulated pieture earrier for two successive revolutions of the picture eylinder, and the lower curse shows the synchronizing carrier current modulated by the fork impulses.

If would not, howeter, be economical to the two separate circuits for the picture and synchronizing channels, conseguently the two currents are sent on the same circuit. In order to accomplish this. the picture is sent on the higher freguency carrier, approximately 1,300 cycles per second, and the synchronizing pulses are sent on the lower frequency carrier, approximately 400 eycles per second, both lying in the range of frequencies readily transmited by any telephone circuit. These carrier frequencies are obtained from two vacuum tube ascillators. ${ }^{3}$ The two currents are kept separate from each other by a system of electrical filters at the sending and receiving ends, so that while the current on the line consists of a mixture of two modulated frequencies, the appropriate parts of the receiving apparatus receive only one carrier frequency each. ${ }^{6}$

[^33]
Meilunical I Irangements

 ing the eylinder at the sembing station, and for holding the photocheerre cell atal the amplifying and modulating sysem ore shown in the photograph, Figg. 7. . It the extreme left is the phonir wheel impulse motor. which drives the lead serew through a spiral gear.

Fig. 7 Sending end apparatus showing motor, film carriage, optical system and amplifier mostulator

The spiral gear orelinarily turns free of the lead screw, but maty be engaged with it by a spring clatch. The lamp housing, which provides the illumination for the photoelectric cell, is in the foreground at the center of the photograph. The photwelectric cell is in a cylinelrical case at the left end of the large box shown on the track and projects into the picture cylinder on which a film is in process of being clamperl. The amplifier and moflulator system is carried in the large box to the right, which is mounted on cushion supports to eliminate disturbances due to vibration.

The receiving end medhanism for turning and advancing the cylinder is similar to that at the sending end. The parts peculiar to the receiving end are shown in Fig. 8. They consist of the light value, which is in the middle of the photograph, and the lens for projecting the light from it upon the cylinder. The metal cylinder

Fig. 8 - View of receiving end apparatus showing light valve and observation microscope
around which the semsitive photographic film is wrapped, appears at the extreme right. The mioroscope and prisin shown are used for inspecting the light valve aperture for adjusting purposes.

Electrical Circuits

The essential parts of the electrical circuits used are shown in the shematic diagrams, Jigs. ! and 10 , in which the varions elements which have been described previonsly are shown in their relations to each wher.

Certain portions of the electrical circuits deserve somewhat detailed treatment. One of these is the amplitier-modnlator system for the picture chamel, the other is the filter system employed for separating the pieture and syuchronizing chammels.

Fig. 10 . Shematic diagram of receiving end apharatus

In Fig. 11 is shown (at the top) a diagram of the direct current amplifier and the modulator und for the picture channel, ogether with diagrams (at the bottom) showing the electrical characteristics of each element of the system. Liarting at the extreme left is the

Fig. 11 ("ireuit schematic of amplificr-motulator with characteristics of each element
photederate cell, we current from which passes through a high resistance. The potemtial tapped off this resistance (of the order of 30 or 10 millivols) is applied to the grid of the first vacuum tube amplifier. The second vacum tube amplifier is similarly coupled
with the lirst, ame the bemum tube modulater in turn to it. The relationship, between illumintion and current in the photobectric cell is, ss show in disgran No. I. linear from the lowest to the highese values of illumination. The vohage-current (E versas I) character-

PICTURE CHANNEL FILTER

Fis. 12 - "ircuit shematics dalove and attenuation characteristies delow of picture (full line) and synehronizing (dhashed line) channel filters
istics of the amplifying tulnes and the modnlating tute circuits are shown in the higure by the didgrams which lie immediately below these tubes. They are not linear over their whole extent. It becomes necesary, therefore, in order to prenerve the linear characteristic, which is essential for faithful picture transmission, to locate the range of variation of current in each of the latter tubes on a linear
portion of their characteristics. This is accomplished by appropriate biasing voltages (Eg), as shown. As a consequence of this method of utilizing the straight line portions of the tube characteristics, the current received at the far end of the line does not vary between zero and finite value, but between two finite values. This electrical bias is exactly matched in the light valve by a mechanical bias of the jaws of the valve opening.

Fig. 12 shows diagrammatically the form of the band pass filters used for separating the picture and synchronizing channels, together with the transmission characteristics of the filters. The synchronizing channel filter transmits a narrow band in the neighborhood of 400 c . p. s., the picture channel filter a band between 600 and 2,500 c. p. s.

In addition to the main circuits which have been discussed, arrangements are made for starting the two ends simultaneously and for the transmission of signals. These functions are performed by the interruption of the picture current working through appropriate detectors and relays. Testing circuits are also provided for adjusting the various elements without the use of the actual transmission line.

The Transmission Line

In view of the fact already emphasized, that the currents used in picture transmission are causer to be similar both as to frequency and amplitude to those used in speech transmission, it follows that no important changes in the transmission characteristics of the telephone line are called for. With regard to the frequency range of the alternating currents which must be transmitted and ahso the permissible line attentation, the transmission of pictures is less exateting on the telephone line than is speech transmission. In certatin other respects, however, the reguirements for picture transmission are more severe. For speech, the fundamental requirement is the intelligibility of the result, which may be preserved even though the transmission varies somewhat during a comversation. In the case of picture transmission, variations in the transmission hoss of the line, or noise appearing even for a brief instant cluring the several minutes required for transmission are all rocorded and presented to view as blemishes in the finished picture. Picture transmission circuits must, therefore, be carefulty designed and operated so ats to reduce the possibility of such disturbances. In tramsmitting pictures over telephone lines, it is also necessary to guard against certain other effects, including transient

 ~AAAPR

Fig. 13 Diagram illustrating performance of system
effects and "echoes" catued hy reflections from impedance irregularities. I high degree of balane between the lines and their balancing networks at repeater points is also reguired. These conditions can be satisfactorily met on wire telephone lines. Ratio communication channels are inherently less stable and less free from interference, and special means to overcome their defects are required in order to secure high-grade pictures.

Charactertstics of Recfelley Pictures

All electrically transmited picture have, as a result of the processes of scamning at the sending and receiving ends, a certatin amount of structure, on the fineness and character of which depends the detail rendering of the result.

The origin and nature of the microscopic structure characteristic of pietures aransmitted by the present process is illustrated by the diagrammatic presentation of Fig. 13, which may serve at the same time to give a review of the whole process. We will assume that the original pieture consists of a test object of alternating opaque and transparent lines. Such a set of lines is shown at A. The lines are assumed to be moving from left to right across the spot of light falling on the film. The width of the spot of light (corresponding to the pitch of the screw) is represented by the pair of dashed lines. If the spot of light were infintely narrow in the direction of motion of the picture film, the photoelectric curremt wothd be represented in magnitule in the mamer shown at B. Aetually the spot must have a finite length, so that the ransitions leetween the maximum and minimum values of current are represented by diagonal lines as sbown at (${ }^{\circ}$. Due (6) the umabidable reattances in the amplifying syisem, there is introxlued a certain rounding off of the signal so that the variation of potential impreserl on the morlulator tube follows somenhat the course shown at I. The alternating current introdued ly the vacumm tube ascillator is, then, given the characterBtics shown at k, the emselope heing a dose copy of D. I'assing ont to the transmissun line, the fate that the band of freguencies tranmitted by a telephone line is limited in extent results in a certain further rounding off of the envelope of the preture curent ats shown in f. The rihbon of the light salve when travered by the atternating corrent from the line performs oscillations to either side of the conter of the aperture, consectuenty opening tirst one side of the aperture and then the obher. The lwo curves of sketeh G represent the excursions of the light value riblon, with time, past the

edges of the aperture, which latter are indicated by parallel straight lines. Owing to the fact that the light valse aperture must have at finite length in the direction of rotation of the eylinder (indicated by the small rectangle in the center of the sketch), there is a certain overlapping of the light pulses on the film. (This is, in fact, necessary for the production of solid blacks.) These are indicated diagrammatically at $I I$. In sketch I are shown, from an actual photomicrograph, the variations in the image of the light valve as traced ont on the moving photographic film. Here the dashed lines represent the limits of the image as formed by one rotation of the receiving eylinder. It will be noted that the images due to the opening of the light valse in each direction form a double beaded line. These double lines are juxtaposed, st) that the right hand image due to one rotation of the cylinder hacks up against the keft hand image due to the next rotation, thas forming on the film a series of approximately symmetrical lines of variable width. These are exhibited clearly in the enlarged section of a picture, Fig. 5. It will be understood that for purposes of illustration, the grating used as the test object in the preceding discussion has been represented as traversing the spot of light at the sending end at such a high speed that the final picture is close to the limit of the resolving power of the system. Thus the photomierograph shown in 1 mast be viewed from a considerable distance in order that its difference in structure from the original object A will disappear. A practical problem in the design of picture transmission apparatus is to so choose the speed of rotation of the rylinder with reference to the losses in resolving power incident to transmission that wefintion is substantially the same along and across the constituent picture lines.

There are, in general, two methods by which a transmitted pieture may be received. One of the ee is to form an image of the light value aperture on the sensitive photographic surface. When this is done, in the manner described in connection with Fig. 13 the picture is marle up of lines of constant demsity and barying width. A picture of the sort is shown in Figg. 1.1. A merit of this kind of pieture (when received in negative form) is that if the structure is of suitable size (fit) to fi.) lines to the inch) it may he nased to print directly on zine and thus make a tyongraphic printing plate smilar to the eartier forms of half tone, wherely the lase of time vasally incident to copying a picture for reproduction purposes may be awoded. A rlisadvamage of this form of pieture is that it deres not lend itself readily to retosh hing or to change of size in reproduction.

Another methol of picture reception is to let the light from the

Fig. 15 Portion of transmitted picture of variable density line type, enlarged
Fig. 16 -Variable density line picture-Cleveland high level bridge

Vig. 17-Variable density line picture-Portrait of Michael Fararlay

Fig. is Variable density line picture I'resident Coolidge taking the oath of office, March 4, 1925
light walve fall upon the lilm in a dillused manner throngh ats aperture of lised lengeth ow that lines of constant width (exomely justaporex) but of barying density are proxluced. A photomiorengraph of a sariable density picture of the phatue line test whent previously diselosed is shown at I. lig. 13 . Prints made from diln negatives receised in this way, it the structure is chosen fine enough (lot lises (1) the inch or more) are chocly similar in appearance (or original photographic prints and may be reproduced through the ordinary half-thne cross-line screen. They may be retouched or subjected to suecial photographic procelures in any way desired. An enlargement of a portion of a variable density picture is shown in Fig. is athl examples of complete pictures as recoived are shown in liggs. 116.17 and 18.

Flectrically transmitted pictures are, in general, suitable for all purposes for which dienct photographic prints are used. Such uses include half-tone reproduction for magazines amd newspapers, lantern slides, display photographs, ete. Among these uses may be mentioned, as of some interest, the transmission of the three black and white records used for making three-color printing plates. The frontispiece to this article is an example of a thrececolor photograph transmitted in the form of three black and white records, each corresponding to one of the primary colors, from which printing plates were made at the receiving end.

Some practical details of the procedure followed in the transmission of pictures by the apparatus described may serve to clarify the foregoing description. The picture to be transmitted is usually provided in the form of a negative, which is apt to be on glass and of any one of a mumber of sizes. From this a positise is made on a celluloid film of dimensions $5^{\prime \prime} \times \sigma^{\prime \prime}$, which is then placed in the cylindrical film-holding frame at the sending end. Simultaneously an unexposed film is placed on the receiving end. Adjnstments of current values for "light" and "clark" conditions are then made, over the line; after which the two eylinders are simultancously started by a signal from one end. The time of transmission of a $\pi^{-\prime \prime} \times 7^{\prime \prime}$ picture is, for at 100 line to the inch picture, about seven minutes. This time is a relatively small part of the total time required from the taking of the picture until it is delivered in the form of a print. Nost of this total time is need in the purely photographic operations. When thee are reduced to a minimum by using the negative and the sending end positive while still wet, and making the prints in a projecttion camera without waiting for the reccived negative to dry, the overall time is of the orfler of three-guarters of an hour.

Fig. 19 - Flectrical transmission of cartoon

FIELAK GF l'abllintion

"The fiedels its which electrically tramsmited pietures may be of greatent service are those in which it is clesired to transmit information which call only be convered effectively, or at all, by ath apral (o) visom. Illustrations of cases where an adequate verbal descrip tion is almost imponsible, are portraits, ats, for instance, of criminals

Fig. 20-Electrically Iransmitted fingerprint
or missing individuals; drawings, such as details of mechanical parts, weather maps, military maps, or other representations of transient conditions.

The value of electrically transmitted pictures in connection with police work has been recognized from the earliest days of experiments in the transmission of pictures. Besides the transmission of portraits of wanted individuals 10 distant points, there is now possible the transmission of finger prints. Some of the possibilities of the latter were demonstrated over the New Vork-Chicago picture sending circuit at the time of the Democratic Convention, July, 1924. The Police Department of New Vork selected the lingerprint of a crininal whose complete identification data were on lite in the Police Department in Chicago. This single fingerprint, together with a code description of the prints of all the fingers, was
transmitted to Chicago and identified by the Chicago experts almost instantly: This method of identification will be, it is thought, of value in those cases where difficulty is now experienced in holding a suspect long enough for identification to be completed. Fig. 20 shows a transmitted fingerprint.

The fact that an clectrically transmitted picture is a faithful copy of the original, offers a field of usefulness in connection with the

Fig. 21 Transmission of attograph material-First section of Jopanese-tmerican Treaty of 1.85 .3

Iransmission of original mestages or documents in which the exact form is of significance, such as autographed letters, legal papers, signatures, etc. It would appear that this method might under certain circumstances save many days of valuable legal time and the accumulation of interest on money held in abeyance. For these reasons, it is thonght that bankers, accountants, lawyers, and large real estate dealers will find a service of this kind useful. Fig. 22 illustrates the transmission of handwriting.

Menages in foreign languages, employing alphabet ts of forms not suited for telegraphic cowling, are handled to wantage. Thus, Fig. gl show. the first section of the original Japanese- American

Glvertising material, particularly when in the form of special typography amd drawing is often dillionlt atoll conley to get to dis-

Therbert 6. Ives

Fig. 22 Transmission of signatures
ant publishers in time for certain issues of periodicals and magizines. A wire service promises to be of considerable value for this purpose.

A very large field for electrically transmitted pictures is, of course, The Press. Their interest in the speedy transportation of pictures has been indicated in the past by the employment of special trains, aeroplanes, and other means for quickly convoying portraits and pictures of special events, to the large news distributing centers. The use of pictures by newspapers seems at present to be growing in
favor, and many are now running daily picture pages as regular features.

Some of the possibilities in this direction were demonstrated by the picture news service furnished to newspapers, especially those in New Iork and Chicago, during the $192 \&$ Republican and Democratic National Conventions at Cleveland and New Vork. During these conventions several hundred photographs were transmitted between Cleveland and New York and between New York and Chicago, and copies furnished the Press at the receiving points. Photographs made shortly after the opening sessions, usually about noon, were transmitted to New York and Chicago and reproduced in afternoon papers. A demonstration of picture news service on a still larger scale was furnished on March 4th, 1925, when pictures of the inauguration of I'resident Coolidge were transmitted from Washington simultaneously to New Vork, Chicago and San Francisco, appearing in the afternoon papers in all three cities. Illustrations of typical news pictures are given in Figs. 14 and 18. The transmission of timely cartoons offers another field for service, Fig. 19.

Other news-distributing agencies can also use electrically transmitted pictures to advantage. Among these are the services which make a specialty of displaying large photographs or half-tone reproductions in store windows and other prominent places. Electrically transmitted pictures of interesting events, about which newspapers have published stories, appear suited to this service, and have alreadybeen so used by some of these picture service companies. They may also be used as lantern slides for the display of news events of the day by projection either upon screens in front of newspaper offices or in moving picture theaters.

Miscellaneous commercial uses have been suggested. Photographs of samples or merchandise, of building sites, and of buildings for sale may be mentioned. The quick distribution of moving pieture "stills" which is now done by aeroplane is one illustration of what may prove to be a considerable group of commercial photographs for which speedy distribution is of value.

Propagation of Electric Waves Over the Earth

By H. W. NICHOLS and J. C. SCHELLENG

Abstract

 three humfreal melers miluctes stome sort of seleqtiwe fifeet in the atmos in the atmombere when the magnetic fichl of the earth in taken mbancome. In the cartis masnetic tielel, which is abrot one-balf s.allss, this selectere effect will exater at a wowe length of approximately 200 meters. lonized a few handred eveles, this being outside of the radio range. The paper, homever, lakes into acoont the effects of ionizel moleeules as well its electroni-

The result of this combination is that the clectrie vector of a wave travel. ing tharalled whe magnetic fied is rotated. Wives trateling perpendicular to the magnetic fiedel underge efouble refration. Critical efferts are observed in rotation, bembling of the wave and absorption at the resonant frepueney. The pater develops the mathematical theory of these phenoment and gives formalas for the sarionts effects to be expected.

TH1E problem of the propugation over the carth of electromagnetic Wates such ats atre used in radio communication has attracted the attention of a mumber of investigators who have attacked the problem dong somewhat different lines, with the purpose of offering an explatation of how electromagnetic waves can affect instruments at a great distance from the source in spite of the curvature of the earth. No attempt will be mate here to describe aderuately the barious theories, but we remark that the theories of diffration around a conducting sphere in wherwise empty space did not gite satisfactory results and led to the necessity for the invention of a hypothetical conducting layer (Heaviside layer) whose aid is invoked to confine the wave between two concentric spherical shells. In many cases this Heaviside layer was considered to have the properties of a good conductor and it was supposed that a heam of short waves, for example, might be more or less regularly reflected back to the earth. The hish condurtivity of this layer was supposed to be due to the iomizing action of the sun or of particles invading the earth's atmosphere from outside and proxtucing in the rarefied upper atmosphere a high elegree of iunization. The differences in transmission during day and night and the variations which ocrur at sumrise and sunset were supposed to tee due to the different ionizing effects of the sun's rays appropriate th the diferent times of day. The explatation of the phenomenon of "fatling" or comparatively rapid fluctuations in the intensity of received signals conld then le built up on the assumption of irregularities in the Ileaviside layer producing either interference between wave arriving log different paths or reflection to different points on the earth's surface. The principal difficulty in
this explanation is the necessity for rather high conductivity to accoum for the propagation of waves to great distances without large ab)sorption.

In 1912 there appeared an article by Eecles 'in which the bending of waves around the surface of the earth was explained on the hasis of ions in the upper atmosphere which became more numerous as the vertical height increased and therely decreased the effective dielectric constant which is a measure of the velocity of propagation of the wave. In this case the velocities at higher levels will be slightly greater than the velocities at lower levels, which will result in a hending downward of the wave normal and a consequent curvature of the wase path to conform in the curvature of the earth. In order to produce this effect without absorption the ions must be relatively free. If they suffer many collisions during the period of a wase, energy will be absorbed from the wave and pass into the thermal agitation of the molecules. Thus absorption of the wave can be computed provided the nature of the mechanism is understond thoroughly.

Sommerfeld and others haie worked out the effect of the imperfect conductivity of the ground upon the wase front and such computations lead to a prediction that the electric sector in the wave near the ground will be tilted forward and thus have a horizontal component. This effect of imperfect conductivity is usually given as the catuse of the large electromotive force which is induced in the so-called "wave antemna." This effect, however, apparently does not lead to an explanation of the bending of waves around the earth.

There has recently appeared an article by Larmor ${ }^{2}$ in which the idea of a density gradient of ions or electrons is developed further to explain the bending of waves around the earth without a large absorption. This paper, as well as that of Eecles, leads to the conclusion that long radio waves will be bent around the earth, and that the - Ifect increases as the square of the wave length, beroming vanishingly small for very short wases.

The large amount of data now asalable from both qualitative and quamtitatise observations of radio transmission shows that the phenomena may be more complicated than would be indicated lyy these theories. It is found that very long wases possess a considerable degree of stability and frectom from fading and that as the wase lengit derreases the attemution and the magnitude of fluctuations increanes until for a wave length of the order of two or three hundred
${ }^{1}$ I'rix. Roy. Six., June, 1912.
${ }^{2}$ Phil. Mag., Uec, 1934.
metern there is great irregularity in transmission so that reliable communicatom ower lather for distaces ds short is 100 milen is unt aloayi possible even with large amounts of power. With decreasing Wave length we find also variations in apparent direction of the wate. () 12 the other hamd, its the wase length is decreased still further we timl, sometimes, rother surprising increases in range and stability. The mature of the fading changes, becoming more rapid, and the dhorption in many cases seems to decrease. This prouliarity of Wrse transmission mast be explated in a satisfactory theory. In adelition to the apparent selective effeet just mentioned, some obervations indicume that there are often differences between east and west and north and south transmission at all wave lengths.

The various irregularities in radio transmission, and particularly the apparently erratic and anomalous hehavior of electromagnetir waves oceurring in the neighborhood of a few hundred meters wawe length seem to indicate that as the wave length is decreased from a value of several kilometers to a value of a few meters some kind of selective effect oceurs which changes the trend of the physical phenomena. These consilerations have suggested to us the possibility of tinding some selective mechanism in the earth's surface or in the atmosphere which beeomes operative in the neighborhood of 200 meters. A rather superficial examination of the possibility that such a selective mechanism may be found in a possible distribution of charged particles in the atmosphere has resulted in the conclusion that a selective effect of the required kind cannot be proxtuced by such a physieal mechanism. There is, however, in the earth's atmosphere in addition to distributions of ions-a magnetic field dwe 10 the earth, which in the presence of ions will have a disturbing effeet upon an electromagnetic wave. Is is well known, a free ion moving in a magnetic field has everted upon it, due to the magnetic fied, a force at right angles to its velocity and to the magnetic field. If the ion has impressed upon it at simple perionlic electric force, it will execute a free nscillation tugether with a forced ascillation whose projection on a plane is an ellipse which is traversed in one period of the applied force. The component velocities are linear functions of the components of the clectric field and at a certain frequency. depending only upon the magnetic field and the ratio ${ }_{m}^{c}$ of the ion. become very large unken limited by dissipation. This critical frequency is expal to $\begin{gathered}\text { Ife } \\ 2 \pi m e\end{gathered}$ if $I I$ is measured in electromagnetic units and e in electrostatic units. It is the same as the frequency of free
nscillation. For an electron in the earth's magnetic field (assumed to have a value of $1^{\prime} 2$ gauss) this resonant frequency is 1.4×10^{6} cycles, corresponding to a wave length of 214 meters. ${ }^{3}$ We thus have an indication that some at least of the phenomena of transmission at the lower wave lengths may be explained by taking into account the action of the earth's magnetic field upon electrons present in the earth's atmosphere and acted upon by the electric field of the wave. This frequency occurs at approximately the position in the spectrum at which the peculiar effects already mentioned occur. The next resonant frequency which would be encountered would be due to the hydrogen ion which has a ratio, $\frac{e}{m}$, equal to $\frac{1}{1800}$ that of the electron.
The resonant frequency of this ion is only $\$ 00$ cycles and certainly can have no sharply selective effect in the propagation of electromagnetic waves over the earth. We have, therefore, worked out the consequences of the assumption that we have in the upper atmosphere two controlling factors influencing the propagation of electromagnetic waves in the radio range, namely, free electrons and ions together with the earth's magnetic field. The electrons will be dominant in their effects in the neighborhood of the resonant frequency and perhaps above, while the heary ions will affect the wave at all frequencies and, if much more numerous, may be controlling at frequencies other than the critical one. In working out this theory it is assumed that there are present in the earth's atmosphere free electrons and ions. At high altitudes these are eapable, on the average, of vibrating under the influence of the electromagnetic field through several complete oscillations before encountering other ions or neutral atoms. At low altitudes this assumption will not hold, the collisions being so numerous that the importance of the resistance term in the equations of motion becomes much greater. In either case the ions have no restoring fores of dielectric type. The motion of the clectron or ion constitutes a consection current which reacts upon the electromagnetic wase and changes the velocity

[^34]of prophestion of the Wate. Thi - is, in fiet, the hasis for the explathe tiont of the optical properties of transparent amb absorbing media and ahos of media which show magnetic or wher rotatory pawers. Whe to collision- abl recombinations, energy will pase contimonsly from the electronagnetio biclel and increase the emergy of agitation of
 almorption of eners! from the wave.

A-same an chectron or ion of charge e and mass m mosing with velocity V and wed upon hy an cleetric liedd E dad the earth' - mag. metio lied \boldsymbol{H} The equation of moxion of the free ion will be
ar

$$
\begin{align*}
& \ell_{i}^{m} \dot{\mathbf{v}}=\boldsymbol{E}+{ }_{c}^{1} \boldsymbol{v} \times \boldsymbol{H} \\
& a \dot{\mathbf{i}}=\boldsymbol{E}+\mathbf{r} \times \boldsymbol{h} \tag{1}
\end{align*}
$$

in which h is writen for $\frac{H}{c}$ and a for $m e$. (When we come toconsider aboopption it will the neresary to generalize a into a $\left(1-i \frac{r}{m n}\right)$ to include a resisting force, re: proportional to the velacity.)

The total current is given by

$$
\begin{equation*}
4 \pi I=\dot{E}+\searrow 1 \pi \cdot l e v . \tag{2}
\end{equation*}
$$

In there equations and the following we are using Caussian units and the summation refers of different kinds of ions.

In order (0) avoid a complicated mathematical treatment. Which, howerer. is not difficult to carry through if necessary, it will be assumed that the magnetic fiedd \boldsymbol{H} is atong the axio of \boldsymbol{z}. When more general result- are required, they will the stated. All time variables are assumed periodic with a frequeney ${ }_{2 \pi}^{n}$, wh that $\frac{\partial}{\partial l}=$ in.
solving equation (I) for the comproments af we find, for each type of ion:

$$
\begin{aligned}
& \varepsilon_{1}=\frac{i n a X+h Y}{h^{2}-a^{2} n^{2}}, \\
& \tau_{2}=-h X+i n a \mathrm{Y}, \\
& h^{2}-a^{2} n^{2} \\
& \tau_{3}=\frac{Z}{i n a},
\end{aligned}
$$

from which it appears that a resonance frequency occurs for

$$
n=\frac{h}{a}=n_{0} .
$$

Since c / m for the electron is $-1 . \mathrm{I}^{1} \mathrm{c} \times 10^{7}$, the earth's magnetic field of about $1 / 2$ gauss will produce a resonance frequency at 1.4×10^{6} corresponding to a wave length of 21.4 meters, white all heavier ions have resonance frequencies far outside the spectral region to be considered.
The assumption that the components of the ionic motion are simple harmonic, in spite of the fact that the motion of the ion is rather complicated, is justified as follows. From (1) we find that the velocity of an ion (r), say v_{r}, is made up of the emmplementary solution, v_{r}^{\prime} and the particular solution $\boldsymbol{v}_{r}^{\prime \prime}=f(\boldsymbol{E})$. The latter depends upon the impressed force E, while the former has constants of integration determined by the position and motion of the inn at the last collision. The complete current is thus

$$
I=\frac{1}{4 \pi} \dot{E}+\sum c v_{r}^{\prime}+\operatorname{Nef}(\boldsymbol{E}) .
$$

The second term, however, averages out over a large number of ions since the initial conditions are random; ${ }^{4}$ hence, as far as the effect upon wave propagation is concerned, we may treat all quantities as perioctic.

Following the ustal procedure for the investigation of the propagation of waves in media of this kind, we shall rewrite equation (2) in terms of the components of the electric field, thus for each type of ion :

$$
\begin{align*}
& 4 \pi I_{1}=\left(1+\frac{\sigma . \}{n_{0}{ }^{2}-n^{2}}\right) \dot{I}-i \frac{\sigma N^{\prime}-\frac{n_{0}}{n}}{n_{0}{ }^{2}-n^{2}} \dot{Y}=\epsilon_{1} \dot{I}-i \alpha \dot{Y} \text {, } \\
& I_{\pi} I_{2}=i \frac{\sigma \Lambda^{n_{0}}}{n_{0}{ }^{2}-n^{2}} \dot{I}+\left(1+\frac{\sigma . \bar{Y}}{n_{0}{ }^{2}-n^{2}}\right) \dot{I}=i \alpha \dot{X}+\epsilon_{1} \dot{Y}, \tag{3}\\
& 4 \pi I_{3}=\left(1-\frac{\sigma M}{n^{2}}\right) \dot{Z} \quad=\epsilon_{2} \dot{Z},
\end{align*}
$$

in which $\frac{4 \pi e}{a}=\sigma$, or 3.2×10^{9} for an electron and $3.2 .10^{9} \frac{\mathrm{~m}}{\mathrm{M}}$ for an ion of mass.M. In order to avoid complicated formulas, the summations, which must be carried in equations (3) to t.ke account

[^35]of the effect of ions of different kimk hase lexen omitterl, lint it is (1)
 from the eontribution of all type of ions. Than for at ion of mass M we muat put $\sigma{ }_{M}^{m}$ for $\sigma, n_{0}{ }_{M}^{m}$ for $n_{0,}$, in equations (3).

The effective dielectrie constant, insteal of being unity, has thus the structure:

$$
(\epsilon)=\left(\begin{array}{ccc}
\epsilon_{1} & -i \alpha & 1 \\
i \alpha & \epsilon_{1} & 0 \\
0 & 0 & \epsilon_{2}
\end{array}\right)
$$

and we may write equation (2) as

$$
4 \pi \boldsymbol{I}=(\epsilon) \dot{E}
$$

Which has the significance of the scalar equations (3). Thus I is a linear vector function of E and the operator (ϵ) is skew symmetric, indicating of rotatory elfect about the axis of z.
(The general case in which h has the three components ($h_{1} h_{2} h_{3}$) results in a dielectric constant having the structure

$$
(\epsilon)=\left(\begin{array}{ccc}
\epsilon_{1} & -\beta_{3}-i \alpha_{3} & -\beta_{2}+i \alpha_{2} \\
-\beta_{3}+i \alpha_{3} & \epsilon_{2} & -\beta_{1}-i \alpha_{1} \\
-\beta_{2}-i \alpha_{2}-\beta_{1}+i \alpha_{1} & \epsilon_{3}
\end{array}\right)
$$

of which the above is a special case. With this value of (ϵ) the equation (4) below contains the general solation of our problem.)

Let $\boldsymbol{\Pi}_{1}$ be the magnetic force associated with \boldsymbol{E} in the wate so that

$$
\begin{aligned}
c \text { curl } H_{1} & =(\epsilon) \dot{E} \\
c \text { curl } E & =-\dot{H}_{1} .
\end{aligned}
$$

Fliminating \boldsymbol{H}_{1} from these extuations we get

$$
\begin{equation*}
-\Gamma^{2} \boldsymbol{E}+\Gamma \operatorname{div} \cdot \boldsymbol{E}=\frac{n^{2}}{c^{2}}(\epsilon) \boldsymbol{E} \tag{4}
\end{equation*}
$$

or in scalar form

$$
-\Gamma^{2} X+\frac{\partial}{\partial x} \text { dis } E=\frac{n^{2}}{c^{2}}\left(\epsilon_{1} X-i \alpha Y\right),
$$

$$
\begin{align*}
& -\Gamma^{2} I^{\prime}+\frac{\partial}{\partial y} \text { div } E=\frac{n^{2}}{c^{2}}\left(i \alpha \cdot X+\epsilon_{1} Y\right) \tag{5}\\
& -\Gamma^{2} Z+\frac{\partial}{\partial z} \text { div } E=\frac{n^{2}}{c^{2}}\left(\epsilon_{2} Z\right)
\end{align*}
$$

These equations for the propagation of light in magnetically active substances have been given lig Voigt, Lorentz, Drude and others and form the basis of the explanation of optical phenomena in such substances. As applied to uptics, they are worked out, for example, in Drude's "Optics" (English translation), page 433. As applied to this problem, they assume either that the motion of the ions is unimpeded or that the resistance to the motion may be expressed as a constant times the velocity, which, as explained later. may be done in this case. We shall work out some comparatively simple cases and point out the conclusions to be drawn from them.

Consider first a plane polarized ray having its electric vector parallel to the magnetic field and moving in the $x y$ plane; for example parallel to x. In this case the electric vector is a function of x and t only of the form

$$
Z=Z_{0}{ }^{i n}\left(t-\frac{\mu x^{x}}{c}\right)
$$

in which $\frac{c}{\mu}$ is the velocity of the wave. Substituting in the general equations (i) we find that

$$
\begin{equation*}
\mu^{2}=1-2 \frac{\sigma_{i} న_{i}}{n^{2}} \tag{6}
\end{equation*}
$$

The velocity of propagation is thus a function of the frequency and of the density \mathcal{N}. This particular case corresponds to that treated by Eccles and Larmor in the papers cited. It will be noted that the velocity is greater for long wates than for short waves and that if N is a function of distance from the surface of the earth, the velocity will vary in a vertical direction, calusing a curvature of the rays ats worked out by the authors mentioned. In this particular case, however, which corresponds completely in pratetice to conditions obtaining over only a limited area of the earth's surface, the greatest effect is produced on the fonger wawe Since eloctromagnetic waves are in general ratiated from vertical antemass so that the electric vector is rertical, this case would correspond to the condition of transmitting across the north or south masnetic poles of the carth.

The recond case to be considered is that of propagation along the direction of the magnetic liedd. In this ease X and I are functions
of zand 1 and the appenpriste solutions of the fumdamemtal erfution(5) are

$$
\begin{aligned}
& X^{\prime \prime}=A \cos n\left(1-\frac{\mu_{1} \tilde{c}}{c}\right), \\
& Y^{\prime \prime}=-A \sin n\left(1-\frac{\mu_{1} \tilde{c}}{c}\right), \quad \mu_{1}^{2}=\epsilon_{1}+a, \\
& X^{\prime \prime}=A \cos n\left(1-\frac{\mu_{2} z}{i}\right), \\
& Y^{\prime \prime \prime}=A \sin n\left(1-\frac{\mu_{2} z}{c}\right), \quad \mu_{2}^{2}=\epsilon_{1}-\alpha .
\end{aligned}
$$

which represent two oppositely circularly polarized components traveling with the different velocities $\frac{c}{\mu_{1}}$ and ${ }_{\mu_{2}}{ }^{\circ}$. The plane of polarization is rotated through an angle of 2π in a distance gisen hy

$$
\frac{z_{0}}{\lambda}=\frac{\epsilon_{1}}{\alpha} .
$$

The third case to be considered is that of propagation at right angles to the magnetie field, say in the direction of x. For this case equations (5) beoome:

$$
\begin{aligned}
X & =\frac{i \alpha}{\epsilon_{1}} I \\
-c_{n^{2}}^{2} \Gamma^{2} Y & =\left(\epsilon_{1}-\frac{\alpha^{2}}{\epsilon_{1}}\right) Y \\
-\frac{c^{2}}{n^{2}} \Gamma^{2} Z & =\epsilon_{2} Z,
\end{aligned}
$$

of which the solutions are

$$
\begin{aligned}
& X=\frac{i \alpha}{\epsilon_{1}} Y_{0} \epsilon^{i n\binom{\mu_{1} x}{c}} \\
& Y=Y_{0} \epsilon^{i n\left(1-\frac{\mu_{1} x}{c}\right)} \quad \mu_{1}^{2}=\epsilon_{1}-\frac{\alpha^{2}}{\epsilon_{1}} . \\
& \left.Z=Z_{0} \epsilon^{i n(1, r} \mu_{c}^{\mu_{2}}\right) .
\end{aligned}
$$

The first of these is merely the (usually small) component of field required to make the total current solenoidal, that is, to balance the
convection of electrons. The last two show that the plane polarized ray whose electric vector is parallel to $I I$ will travel with the velocity $\frac{c}{\mu_{2}}$ while the one whose electric vector is at right angles to this direction and to the direction of propagation will travel at a different speed, ${ }^{c}$. There is thus double refraction.

Bending of the rays. If μ is the index of refraction, which is a function of the space variables, the curvature of the ray having this index is $\frac{1}{\mu} \frac{d \mu}{d s}$ where s is taken perpendicular to the direction of the ray: Since μ is practically unity except at the critical frequency, this curvature is $12 d \mu^{2} d s$. In order that the ray should follow the curvature of the earth it is clear that μ must decrease at higher altitudes; that is, $\frac{d \mu^{2}}{d s}$ must be negative.

Whe shall work ont the curvatures for the special cases consideret. (The first case has been given above and was worked ont in the papers (ited). For the case of propagation along H, the two circularly polarized beams have indices given by

$$
\begin{align*}
\mu_{1}^{2}=\epsilon_{1}+\alpha & =1+\frac{\sigma N}{n^{2}} \frac{1}{\omega-1}, \tag{i}\\
\mu_{2}^{2}=\epsilon_{1}-\alpha & =1-\frac{\sigma N}{n^{2}} \frac{1}{\omega+1}, \tag{K}\\
(\omega & \left.=\frac{n_{0}}{n}\right) .
\end{align*}
$$

We are interested in the values of $1,2 \frac{d \mu^{2}}{d s}$ in which N and h are funclions of distance s and also of the time. These come ont to be

$$
\begin{align*}
& C_{1}=\frac{\sigma}{2 n_{0}{ }^{2}}\left[\frac{\omega^{2}}{\omega-1} \frac{d N}{d s}-\frac{\omega^{3}}{(\omega-1)^{2}} \frac{N}{h} \frac{d h}{d s}\right], \tag{9}\\
& C_{2}=\frac{\sigma}{2 n_{0}{ }^{2}}\left[\frac{-\omega^{2}}{\omega+1} \frac{d N}{d s}+\frac{\omega^{3}}{(\omega+1)^{2}} \frac{N}{h} \frac{d h}{d s}\right] . \tag{10}
\end{align*}
$$

A striking fact shown by these formulae is that the cursatures of the two rays are in general different. A limited heam entering an ionizel medinm along a magnetic meridian will be split into two which will traverse different paths. Thus we should expect to find,
excasionall!, a circularls puhariad beato at the receiver dase the the fuet that the receiving instrment is lesated at ot pexint toward which
 ioniad layer. This is mon lexing inventigated experimentalls: It is clear that, although the two componemts do not ill general travel wer the same path, both moy eventually arrive ot the same receiver. The first ras, however, may have penetrated much higher in the atmensthere than the other, that is, to a level at which $\frac{d . J}{d s}$ hats the proper negative value to caluse it to rethrn to earth.

Fior long wase the curvilure become:

$$
\begin{align*}
& {C_{1}}=\frac{\sigma \omega}{2 \omega n_{0}{ }^{2}}\left[+\frac{d N}{d s}-\frac{N d h}{h d s}\right] . \tag{11}\\
& C_{2}=\frac{\sigma \omega}{\because n_{0}{ }^{2}}\left[-\frac{d N}{d s}+\frac{N d h}{h d s}\right] . \tag{12}
\end{align*}
$$

Hence a limited beam of hong waves entering this medium would tend to split into two of opposite polarization and traverse different paths. In the special case for which $\frac{1}{-1} d / S^{\circ}=\frac{1}{h} \frac{d h}{d s}$ throughout the medium, there will be no such separation of the beam.

For very short waves

$$
\begin{align*}
& C_{1}=\frac{\sigma}{2 n_{0}{ }^{2}}\left[-\omega^{2} \frac{d N}{d s}-\omega^{3} \frac{V d h}{h d s}\right] \tag{1.3}\\
& C_{2}={ }_{2 n_{0}{ }^{2}}^{\sigma}\left[-\omega^{2} \frac{d N}{d s}+\omega^{3} \frac{V d h}{h d s}\right] . \tag{14}
\end{align*}
$$

Hence if the most effective cause of refraction is the variation in the ionic density both components tend to remain together and to travel with a rotation of the plane of polarization. If variation in the magnetic field is appreciable the two components tend to diserge as in the case of long wases.

For propagation at right angles 16 , $I I$, saty along x, we have

$$
\begin{align*}
& \mu_{1}^{2}=\epsilon_{2}-1-\frac{\sigma . V}{n^{2}}, \tag{1.5}\\
& \mu_{2}^{2}=\epsilon_{1}-\frac{\alpha^{2}}{\epsilon_{1}} . \tag{1ti}
\end{align*}
$$

The bending of the plame polarized componemt having the index μ_{1} shows no selective effects, being simply

$$
\begin{equation*}
C_{1}=-\frac{\sigma}{2 n^{2}} \frac{d J}{d s} \tag{17}
\end{equation*}
$$

and is appreciable only for long waves malens.V is very large. For the other component we find:

$$
C_{2}=\frac{\sigma}{2 n_{0}^{2}} \cdot \omega_{\omega^{2}-1}^{\omega^{2}} \frac{1-\frac{2 J^{\circ}}{n_{o}^{2}} \omega^{2}-\frac{\sigma^{2} \Lambda^{-2}}{n_{0}^{4}} \frac{\omega^{2}}{\omega^{2}-1}}{\left(1+\frac{\sigma_{1}}{n_{0}^{2}} \frac{\omega^{2}}{\omega^{2}-1}\right)^{2}} d \Omega
$$

where, in order to simplify the formala, only the term contating $\frac{d .}{}{ }^{\prime}$ has been included. This applies to ions of one kind.

For long waves thene two curvatures become

$$
\begin{align*}
& C_{1}=-\frac{\sigma}{2 n_{0}^{2}} \omega^{2} \frac{d N}{d s} \tag{19}\\
& C_{2}=\frac{\sigma}{2 n_{0}^{2}}\left(1-\frac{2 \sigma N}{n_{0}^{2}} \omega^{2}\right) \frac{d N}{d S} . \tag{20}
\end{align*}
$$

These formulas show that the first carvature is always in the same direction for a given value of $\frac{d N}{d s}$, while the second curtature, which is that of the electric vector perpentienlar to the magnetic fiekd, is, for very long watwes, in the same direction as C_{1} but, as the wave length is decreased or X increased, reverses in sign and becomes opposite to (i. As an example, if $N=10$, for i kilometer waves the curvatures are opposite, so that if the first component tends to bend downward the second will tend to bend upward; while if $N=100$, for the same wave length Joth eturvatures have the same sign and the second is five times as large as the tirst.
for extremely short wase the two curvatures are equal as they whionsly should be, since the magnetic fied can then have no effect.

In transmiting from New York on Jondon, for example, waves travel approximately at right angles to the magnetic fiede, which in this latitude has a dip of ahout 70°. If we asomme a plane polarized ray starting ont with its electric vector vertical, the component parallel to the magnetic foekl will be the larger and will be subject to the curvature C_{1} above, while the smatler component will he affected
 penemts into which the original wase is resolsed will trasel with different velocitiss. It is chear that when the elistribution of ions in the upper atmospere is changed by varying sunlight conditions, the resulting eflect at a receiver is likely 10 vary considerably: Some of the prossibilities will be disethsed liter.

Kotution of the plane of polarization. It has been shown that in the second case, namely transmission aleng the magnetic feld, there will tre a rotation of the plane of polarization of the wase. This retation is such that the wate is rotated throngh a complete turn in a distance given by.

$$
\begin{equation*}
z=\frac{2 \pi i}{n_{0}} \frac{1+\frac{\sigma . V}{N_{0} \omega^{2}}}{\frac{n_{0}{ }^{2} \omega^{2}-1}{n_{0}^{2}} \frac{\omega^{2}}{\omega^{2}-1}} . \tag{21}
\end{equation*}
$$

It is interesting to note that the distance in which a long wave rotates through 2π approaches the constant value $\frac{2 \pi i n_{0}}{\sigma_{2} \bar{V}}$ as the wave length increases and that for very short waves the rotation of the plane of polarization tends in vanish with the wave length.

Absorplion. When an electron strikes a massive neutral atom the average persistence of velocities is negligible and in the steady state of motion of electrons and neutral molecules the element of convection current represented by an impinging electron will be neutralized, so far as the wave is concerned, at every collision. Of the energy which has been put into this element of consection current since the last collision, a part will be spent in aceelerating neutral molecules, part will go to increase the average random velocity of the electron and a part will appear as disordered electromagnetic radiation. Thus, as far as the wase is concerned, the process of collision with massive neutral molecules is irreversible even if the molecules are elastic, and all the energy picked up lyy the electron from the wave between collisions is taken from the wave at the next collision. Exately the satme state of affairs would exist if at each collision the electron recombined with a molecule and a new electron were created with zero or randon velocity. Thus for massive molecules for which we can neglect the persistence of electron selocities the effeet upon the wave is exactly the same whether the collision is elastic or inelastic.

These conclusions are verified by the results of two different computations which we have made of the resistance term, r, in equation
of motion of the electron. Consider in the first place a mixture of electrons and massive neutral molecules, assumed perfectly elastic, in which the persistence of velocities of the electrons after collision is negligible. If an electric fiedd $X \epsilon^{\text {int }}$ operates in the x direction and if the state of motion is a steatly one, we can compute the energy w taken from the wave by a single electron at any time after a collision at the time t_{1} and hefore the next collision. Let this time after t_{1} be τ. If the mean frefuency of collisions is f, the time τ between collisions will be distributed according to the law

$$
f \epsilon^{-f r}
$$

and we shall obtain the mean energy taken from the wave per collision by multiplying w by the above expression, integrating from zero to infinity with respect to τ and then performing an average over all the times t_{1}. The result of this is that the mean energy loss per cotlision is simply

$$
w=\frac{c^{2} \Lambda^{2}}{2 m n^{2}} \frac{n^{2}}{f^{2}+n^{2}}
$$

and consequently the loss per second is f times this. If we equate this to $r v^{2}$, which is also the rate at which energy is being dissipated, we find that $r=m f$, which is therefore the resistance term to be inserted in the equation of motion of the electron.

If the convection current is carried partly by heavier ions, it will not be annulled at each collision and all the energy derived from the field will not be lost on impact.

The foregoing computation assumes as obvious that energy is lost from the wase at a rate equal to the number of collisions times the average energy which the electron takes from the wave between collisions. The second method is somewhat more general. The mean velocity at a time t is found for electrons which collided last in an interval at t_{1}. This is evidently a function of the velocity persisting through the last collision and hence of the average velocity Defore the impact; so that if the average velecity before collision Was z, that after impact would be $\delta \dot{z}$, in which δ is a number less than unity, clepending on the relative masses and the nature of the collision. Aweraging for all values of t_{1} before t and using the same law of distributon assumed abose, the mean velocity of the ions since the last collision is obtatined. By comparison with the solution whaned for the velocity of forced oncillation in which the resistive force is $r i$, we find that $r=m f(1-\delta)$. For the special case of electrons, δ may be taken equal to zero, hence $r=m f$. For the case
of sers hesey ions colliding with light nemoral molecoles, r o, sine $\delta 1$. Fior equal masees δ would be abont one half, hence $r-\frac{1}{2} m f$.
since the resistance fateor r is expal to mi, in oreler (o) inelure the Afleet of attellation of the wave, we mast replace a by

$$
a\left(1-i \frac{f}{n}\right)
$$

If, as usual, we asomme a Wave propertional (u)

$$
\epsilon{ }_{c}^{-n k \mu r} \epsilon^{i n\left(1-\frac{\mu x}{c}\right)}
$$

the equations (i) show that, in order to calculate the value of the dborption constant k, we must put

$$
\mu^{2}(1-i k)^{2}=\epsilon
$$

in which ϵ is the generalized dielectric constant appropriate the case considered. We hase worked out in this way the absorption for the various casses treated above with the following results.

In the catse in which there is either no magnetic fiek or the magnetic field is parallet to the direction of the electric vector, we find

$$
k=\frac{\sigma . N}{2 n_{0}^{2}} \omega^{2} \frac{f_{,} n}{1+f^{2} / n^{2}} .
$$

This formula for absorption applies (for electrons) for any value of f or n. Thus near the surface of the earth where the collision frepuene? f is of the order of 10^{3}, the fraction $\frac{f}{n}$ will be large even for rather short waves. As we go higher in the atmosphere this ratio decreases for a given wave frequency until at a height for which ${ }_{n}=1$ we encounter the maximum absorption per electron. Abowe this level ${ }_{n}^{f}$ and consequently the absorption per electron decreases. For ions other than electrons the resistance will be somewhat dilferent from $m f$, depending upon the ratio of the masses, and a corresponding change must be made in the above statement.

In this paper we are considering only the effects which take place at heights abowe that for maximum absorption so that, generallyspeaking, $\frac{f}{n}$ will be small or at least less than unity. This approximation will be used in computing the absorption constants which follow.

As an example of the nature of this approximation, at a height of about 100 kilometers, we may expect an atmospheric pressure of 10^{-5} standard and a correyonding collision frequency of the order of 10°. Thus for very long waves of frequency 40,000 eycles per second we still have $\frac{f}{n}=4$, while at the critical frequency $\frac{f}{n}$ is only. 1100.

The computation of the collision freguency for electrons is rather involved because of the peculiar nature which such a collision may have and because it probably is not permissible to assume thermal equilibrium with the molecules of the gas. The processes of ionization and recombination will also lead to complications. Probably the most significant information would be the momber of electron free paths per second for unit vohme.

The question of the behavior of wases in or below the layer of maximum absorption per ion is a somewhat different one and belongs properly in another paper.

For the case of transmission along a magnetic meridian the oppositely circularly polarized rays have the absorption constants:

$$
k_{1}=\frac{\sigma . N}{2 n_{0}^{2}(\omega-1)^{2}+(j n)^{2}} \quad \omega^{2} f \quad k_{2}=\frac{\sigma N}{2 n_{0}^{2}(\omega+1)^{2}} \quad \omega^{2} \quad f .
$$

It will he noted that, at the critical frequency, the first of these waves hat the high absorption $\frac{\sigma . V^{*}}{2 n_{0}{ }^{*}} \cdot \frac{n}{f}$ and is therefore extinguished in a short distance, while the uther wate has a normal absorption constant $\sigma N_{n}^{2} \frac{f}{n}$. Thus for the cance of transmission along a meridian at the critical freguency we might expect a receising station, sufficiently far abowe the ground, to receive a circularly polarized beam. This would mean that if a loop were used for reception, the intensity of the received signal wombl be independent of the angle of setting of the loop, provieled one diameter of the loop wats set parallel to the direction of propagation of the wave. In general, of coarse, this itleat conditions combl not be realized dhe th the clisturbing action of the ground and of other conducting or refracting bodies and the most we should evpert io receve in prate ice would be an elliptically polarized beam.

In the third rabe, namely, that of propagation perpendicular to the direction of the magnetic field, we find that the wave polarized with its electric bector paralley to the magnetic field has the same
 ple inde of refration is $e_{1}-$ " 2 hats the aborption constane! $\left(k_{1}+k_{z}\right)$ in which k_{1} and k_{2} are the absorption constants given alowe for prophgation dong a magnetic meridian.

It the eritical frepuency we find, therefore, that the aborotiont conatath is aboermatly high and equal to $\frac{\sigma . V^{\circ}}{4 n . .^{*}} \cdot \frac{n}{f}$ whieh is one-hatf that obtained for the tirst raty of case 2.

One very striking fact is brought to light by these equations. Thus, referring to the two values of absorption constants for transmission along the magnetic field, we lind that for very long wates (for which ω is large) the jonic absorption is very much less with a magnetic fiekl present than witheut it. This means that in this case and in the next the presemee of a magnetic fied assists in the propagation of an electromagnetio wave ley decreasing the absurption. This reduction in absorption may amount to a rather large amount, as may be seen from an inspection of the formula for k_{1}. For example, if in this case ω is 20, corresponding 104,000 meter waves, we find that under corresponding conditions the absorption due to electrons only is reluced by the magnetic fiek to 1400 th the value it would have for no magnetic field. Of course, these cases are not directly comparable because the path chosen by the wase would be different in the two cases. It is platsible, however, that the propagation of long wares along the magnetic field may go on with much leas attenuation than propagation from East to West ower a region in which the magnetic field is nearly vertical, in which case the effect of the magnetic field is largely abeent. This conclusion, however, cannot be made in general since a number of other catses are influential in determining the propagation, for example, the bending of the rays, so that it is not certain that transmission over a region in which the magnetic fiek is vertical is always more difficult than in the other cases.

The reatson for the decrestsed aborpption of long wases when the magnetic fiekt can operate (that is, in all cases in which the electric vector is not parallel to the field) is that the velocities acyuired by the free electrons are much less for small salues of n when the magnetic field is present.

Fading. By this is meant a variation with time of the strength of a received signal at a given point. It is clear that a wave starting
originally with constant amplitude and frequency can be received as one of variable amplitude only if certain characteristics of the medium are variable with the time. So far as the atmosphere is concerned, these characteristics may be the distribution of electrons and heavier ions and the intensity and direction of the earth's magnetic field. If these are functions of the time, the velocities, bending, absorption and rotation of the plane of polarization will all be variable, the amplitude of variation depending upon the variations of N, $\frac{d N}{d s}, I I, \frac{d I I}{d s}$, as well as the frequency of the wave, the effects being in many cases magnified greatly in the neighborhood of the critical frequency. These effects are obriously sufficiently numerous to account for fadling of almost any character and suggest a number of experiments to determine the most effective causes. The question of rotation of the plane of polarization, fading and distortion is now being examined experimentally.

From the formulas it is clear that the velocity, curvature and absorption of an electromagnetic wave as well as the rotation of its plane of polarization can all be affected by a time variation in the intensity and direction of the earth's lield. An examination of the probable time and space variations of each, however, lead us to the conclusion that these are not of primary importance in determining large amplitude fading except, perhaps, during magnetic storms. One result of the last two years of consistent testing between New lork and London at about 60,000 cycles has shown that severe magnetic storms are always accompanied by corresponding variations in the strength of received signals. Thus, although the earth's magnetic field can well exercise a large influence upon the course and attenuation of radio waves, it does not seem likely that its tine variation is ordinarily a large contributing cause to fading.

This leaves as the probable principal cause of time variations the number and distribution of ions in the earth's atmosphere. It is impossible in this paper, which is devoted primarily to a development of a theory of tramsmission involving the earth's magnetic field, to consider arlecpuately all the possibilities resulting from changes in ionic distributions, lut some general remarks may be made. Imagine a wave traveling from the source to the receiver. At a short distance from the source the wave front will be more or less regular but as it progresses, dne to the irregularities in ionic distribution, the wave front will develop crinkles which become exaggerated as the wave goes on. These crinkles in the wave front will be due to irregularities in the medium and can be obtained by a Huyghen's construction at
any point. If we consider the wase a short distance before it reathes the receiver, we will tind regions in which the wase front is concalse to the receiver and regions of opposite carsature. Thus at certain portions of the wase front energy will be conemtrated toward a point farther on and at other parts will be seattered. The location of these convex or concate portions of the wave in the neighborbond of a given receiving point will be very sensitive to changes in ionic distribution along all the paths of the elementary rays contributing to the effect at the receiver. Hence, if we knew the location and movement of all the inns between the transmitter and the receiver, it would be possible, theoretically, to predict the resultant effect at the latter point.

To explain fading it is essential that there be a time sariation in this distribution. It is clear that effects of this kind should be more markel at short wases than at long waves since a region of the medium comparable in dimensions to a wawe length must suffer some change in order to produce an effect upon the received signal. If, for example, there were space irregularities in the medium comparable to the wave length, a kind of diffraction effect would be produced at the receiver which would be very sensitive to slight changes in grating space.

A possible cause of irregularity may be found in the passage across the atmosphere of long waves of condensation and rarefaction, each of which results in a change in the density and gradient of the ions, even though the average density remains constant throughout a large volume. If, as seems plausible, the upper atmosphere is traversed by many such atmospheric wases of great wave length. the resulting effect at a gisen receising point would be fluctuations in signal strength due to a more or less rapid change in the contiguration of the wave front near the receiver.

For radin waves whose length is of the order of a few hundred meters, fading experimentally obsersed oecurs at a rate of the order of one per minute (of course, it is not implied by this statement that there is any regular periodicity to the fading). The pressure wawe referred to would travel in the upper atmosphere with a velocity of the order of 300 meters per seennd at lower levels or 1,000 meters in the hydrogen atmosphere, so that the wave length of these "sound" waves would be of the order of 50 of the radio wase lengths. The irregularities of the medium whuld thus be of sufficient dimensions with respect to the electromagnetic wases so that one of the characteristics referred to above might be developed. In this way we might explain variations in intensity of the wave at the receiver recurring at intervals of a minute or so.

These effects, of course, might be produced even without a magnetic field but the results of this paper indicate that conditions in the wave front will be complicated still further by a rotation of the electric vector and lis the existence of bending and double refraction due to the magnetic field, these effects being exaggerated in the neighborhood of the critical frequency. Due to the magnetic fied we have also the possibility of summation effects between components of the wave which were split off by the action of the field and consequently had traveled by different paths at different speeds. It is obviously impossible to make any general statement concerning the nature of the effects which will be produced by this complicated array of causes but future experimental work will, we hope, allow us to estimate the relative importance of the various elements.

Open Tank Creosoting Plants for Treating Chestnut Poles

By T. C. SMITH

In rronuction

FOOR a number of vears chestont timber, beratse of its matyy desirable chatacteristios, has served a broat fithl of asefulaens in telephone lise construction work, not only in its native territory, the eastern and southeastern part of the I niterl States, but also in neighloring states. In fact, as all average, ahont 200,000 chestant pole's are set annually in the Bell System plant as replacements and in new lines.

In ateas which are gradually being extended from the northern part of the chesobut growing territory into the southern sections, blight is rapidly making serinus inroarls into this class of pole timber. North of the lotomate River prate tically all chestnut tertitories have been visited by the blight and it has in a major sense crosised into areas sonth and sonthwest of this river, where it is developing from soutered spots. While many poles are yet secured in the blighterl areas, they must be cut within a very few years after becoming affected, in order 10 sate them from the decay which destroys blighted poles after they are killed.

I chestunt pole lasts satisfactorily above the ground line but decdys at and within a few inches below the ground, thus weakening it it a critical location. In order to protect the poles from decay at this location, the open tank creosote treatment seems to be the most satifactory, where the facilities for applying the treatment are available. In general this treatment consists of standing the pole in an open tank and treating them in a crensote bath which cowers them from the butt ends to a point about one foot above what will $1 x$ e the ground line when the poles are set. The methosl of applying the treatment will be explained in more detail further along in the paper.

Wue to the scattered locations of the chestnot (imber and also to the fate that in many places this timber is rapidly being depleted by the blight, it hats required considerable stuly to establish locations for opeon tank treating plants which would be consenient for applying the treatments and would also have at sufficient available pole supply (1) permit the speration of the plants long enough to
warrant the necessary investment in them. However, suitable locations have been established and plants have been constructed which will, when oprerating to their planned capacities, treat about 139,000 chestuut poles per year, and these plants may easily be enlarged to treat additional quantities as the demand for treated poles deselops.

These plants have been designed by our engineers and are being operated for applying preservative treatments to poles used by the Bell System.

Lociting the Treating Plants

It might be interesting to bring ont the governing considerations in locating the chestmat open tank treating plants, as compared with commercial plants for treating cedar poles, which are operating in the north ceutral and northwest portions of the thited States. Due (1) the geographical locations in which the cedar poles grow, in relation to the centers of distribution en route to the locations where they will be used, ercating plants of large capacities can be supplied for many years with poles which pass them in the normal course of transporting the poles from the timber to their destinations. Commercial pole treating companies seem to have had no difficulty in cstablishing locations for handling 100,000 or more cedar poles per year through a single plant; whereas the seattered locations of the chestnut poles, as outlined alowe, make it more economical to build the chestmut treating plants in units varying between 10,000 and 36,000 poles per year capacity:
several factors were considered in fletermining the proper locations for the seven Bell System treating plants which have been milt. It was often pessible 10 select a location which was admirably adapterl to the purpose when considered from two or three viewprints lut which was found undesirable when considered from all of the necessary angles. The principal points considered were:

1. Quthtity of poles of the desired sizes arailable locally which could le elelivered to a proposed plant by wagnes, motor vehicles, ete.
2. Wamtity of poles which could he conseniently routed past the plant during the rail shipments from the timber to their destinations.
3. Tuality of the available timber.
4. The longth of time during whieh al plant of the Aesired sia could tre supplied with timber for treatment. This estimater ligure would, of eourse, determine the lengeth of life of the prospesed plant.
5. Ratrend facilitics and freight elistamese from the proposed platet (1) pronts where the poles would be used.
(i. Ivalability of labor for operating the plant.
6. Laxating st stitahte site for the phant.

Wiperience of the Western V:lectric Compony's Purchasing Depart-
 together with information from fowemment reports, prosided the

Fig. 1 Land upon which Sylva Ilant was Built
. mbwers (1) the first live items. Studies upon the ground were mate (1) settle the remaining two items after a preliminary surver of the sitation hat indicated what loxations semed to warrant consid(r.tlion.

The unevennes of the land as shown by Fige 1, which is typical of the maty atalable locations studied, made it dittient to secure at comparatively level trate of the proper area ath dimensions adjoining a railroarl sieling or at a focation where a siding could conveniently
be established. In fact it sonn became evident in making the preliminary studies, that it would be necessary to design the various treating plants to fit the lesst of the available tracts.

As a result of these studies, seven plants were established and placed in operation in five states as outlined below:

l.ocation	Date when Plane Wias l'laced in Operation	Innual Pole Capacity Now	Total Annual Pole Capacity When Idditions Now I'lanned Are Completed
Shipman, Va	(1) 1922	10,00\%	15,000
1)abury Conn.	Dec. 1922	10,000)	10,000
Citural Bridge, Va	- Ipr. 1923	10,000	18,000
Willimantic, Conn	Nug. 192.3	10,000	10,000
Sylva, X.	May 1924	18,000	25,000
, Eashville, Tenn	July 192.4	18,000	25,000
Cereto, IV. Va...	Supt. 1924	23,000	36,000
Total:.		99,000	139,000

It will be noted from the above table that several of the plants are not yet working to their capacities as now planned. In designing the plants, the plans were made to provide for the total annual capaeities shown above. However, when they were built the initial capacities were made somewhat lower as indicated by the table, by omitting in some cases tanks and in other cases pole handling equipment which could readily be added in conformity with the plans, later when the additional capacities would be required.

Yard Sizes

It might not seem neressary 10 oecupy a very great area in the operation of a pole treating plant. However, experience with some of the carlier plants indicated that a reasonably large yard was very desirable because of the mumber of poles necessarily carried in piles on skids in the yard both in the untreated stock and in the treated stock. In so far as practicable the poles in the various treating plants are arranged in such a manner that each length and class is piled sparately: This greaty facilitates handling the poles, but repuires ermsiderable space. Wrdinarily about so pole piles are necersary in a yard.

From four to ten acres of land hats leen used for each of the various prole treating yards. Fig. 2, which incluales about half of a comparatively small capacity yard, shows the necessity for plenty of room for the pole piles.

V゙.irt) 1.1101 r

 the railonel sidinge whiels handle the peles in and out of the gards and tramser them from one lacition to an ther insile the yards, it is desirable to huikl the yiteds long and narrow.

Fizs. ? Portion of Pole Yard at the of the Smaller Plants. Tool llouse and (rensote Storage Tank at Right

Of course, the sharper the railroad curses can be made in laying out a siding from the railroad into the pole treating yard, the easier it is to accommodate the siding to cramped yard conditions or to spread out the tracks over a short, wide yard. However, due to the use of heary locomotives on the main lines and the desirability of having switch curves suitable for the locomotives ordinarily used, it has been necessary to use 12 degree railroad curses in planning most of the yard entrances, and in no case has a curve been used which is sharper than 18 degrees.

It will be noted from Fig. 3 that the pole treating apparatus is so located that the work of hatndling poles to and from the treating tanks will not interfere in any way with loading outgoing cars of treated poles from the skids. It will also be noted that the polewhich are received from the river are treated during the natural course of their passage to the "treated" skids.
('ar lesels of pole- whieh are rexised by rail mest be hatked inte the track kesling to the pole treating plant for trettoment or mat be
 shonlal be a minimum of confision in the pele mosing operations.

I. is. 4 - kid l.ayout at ()ne End of Sylvat Vard
longe, natrow gard and also shows that the switch track is the batekbone of the pule yard.

It will alas tre noted from Fig. I that in the Sylva yard the ents of the skits are brought up close th the track. This is because the pole handling in the sylya yard is done by means of a locomotive crane which runs on the track and works from the ends of the cars.

In the Natural Bridge yard, which is shown in Fig. 5, a tractor crame is used for pole hambling. This unit has crawlers and wheels which operate m the narrow rodways at either side of the spur tracks. The tractor crane runs up to the side of a car to unloarl it. By: operating at the sides of the cars a much shorter boon is reguired ly the tractor crane than for the locomotive crane working at the ends of the cars handling the same lengths of poles.

Delivery of Poles to Plints

Varion- methols are treel for delivering pules th the treating plants, from the lexations where they are cut. In adelition to the use of automobile trucks with their trailers, and to the use of horse-drawn
wagons which may be seen along the road in Fig. A, poles are delivered hy raiload cars, river rafto and ox-teams.

In the timber the poles are ordinarily foaded on cars for shipment to the treating plants by means of a logging loader shown in Fig. 6.

Fig. 5 Vard Layout at One End of Natural Bridge Sard, Viewed from Mast of Derrick

Fig. 6- Placing Poles on Logging Car by Means of Logging Loader

- Whough it hat a short luomit, it is able to batalle very long pales
 either top or butt, is rested agatise the mitelle puint of the bexom ame the pole lited by the winch line which mesy be attached only whe-thed or one-fourth of the distane from the labler ent (1) the

Fig. i-Geared Lonomotive in Use on Logging Road Which Supplies Poles to Treating Plant
free end of the pole. In lifting long polen by this method, they spring considerably, and brash timber usually breaks under this treatment. Thus in handling poles by this method, they are given a test before they leave the timber.

The winch line is attached to the pole by means of hooks which resemble ice tongs. From long experience in handling these tongs, the pole men are able to throw them several feet and catch a pole at any point they desire, to pull it from the pole pile. This operation is very fast. In fact, under fatorable conditions, 3.) foot chestnut poles have been fraded on a car at the rate of two per minute.

The pole piles along the logging road are ustally disorderly, resembling a lot of giant tonth-pieks which might have been carelessly dropped in a heap.

Steep grates on the logging roads make it very desirable to use locomotives which have a maximum amount of traction. For this reason, a geared iype locomotive is used which permits a big reduction between the engine and drive wheds, and alse transmits the driving torque to all wheels of the engine and coal tender which is shown, and alon th the wheels of the water tender which is not shown in Fig. 7.

From one to ten car foads of poles in a group arrive at the treating plants. A car load varics between 40 and $6 \overline{5}^{5}$ poles depending upon

Fig. 8-Car Load of I'oles Arriving at the Danbury Treating Ilant
the sizen of the poles. They may be madoaded by a locomotive crane or a tractor cranc or by the method shown in Fig. 9.

At the Shipman Vard the poles are unlwaded by cutting the stakes and permitting the poles to roli down an embankment into piles from which they are drawn to the treating plant by means of a steed rope from a tractor winch.

I tilization of the cheapest method of delivering poles to the treating plants is pessible at C"eredo and Nashwille where the plants are locaterl on the river hanks. These prokes are securely tied in rafts of about 100 poles each and either lowed down the rivers or handled by stern whed, river steamberts.

Fis. I) I nowaling I'oles at the Shipman Yarel

Fig. 10 Four Kafts of Poles at Ceredo Plant

It may be of interest to note that the photograph shown in Fig. 10 was taken from the West Virginia bank of the river, while the Ohio bank is seen acrosis the riser and the kentucky hills are visible beyond the bridge.

Particularly in the Carolinats, ox-teams are userl to draw pole loads down from the mountains.

Fig. 11 -Pole I Celivery by $0 x$-Teams

1.ig. 12 Derriek for IVantling Poles from River Rafts to Piles or Pole Cars in the Yard
HINHIN, PoH.N IN HHI Vikt

Where the derrick is thed for lifting poles ont of the river it is necens, tory set it at distance from the whter's edge which, of comese, approaches abl recedes depending upent the height of the river. Becation of this distamer, the peles are dragged as well as lifted me the sloping side of the bonk.

Fis. 1.3 Itandling P'oles by Man Power

Fig. 14 Tractor (rane IIandling Iobers from Rail Italies in I)anbury Varel
It has lexelf fombt that wherever it is possible to eliminate the handling of proles by man-power, a considerable coonomy wan be
realized. Lees men are refuired for crane or derrick operation, and the cranes and derricks do the work much more rapidly:
for order to move the poles about the yard it is not necessary to retain a freight car to carry them, since small rail dollies have been provided for this purpose. The two dollies shown in Fig. It are reparate and can be located under the poles at any distance apart depenting upon the lengths of the poles.

The tractor crane which is used for pole handling in the smaller plants is operated by a heavy duty gasoline engine and it is able

I. is. 15 Sill I.eg Derrick Removing Poles from, Treating Tank and Loading Them on Flat Car
(1) handle a 1.000 dl . Foad at a $1 . \mathrm{f}$ foot radius through an are of about 270 degrees. It hats a 30 foot boom. Since a very large percentage of the chestnut poles handled, weigh less than one ton each, this tractor cranc has sufficient capacity for the service.

In the smaller plants where it has been found desimble to increase the prole treating capacities alowe what could be hamdled by means of the trator cranes, stifl leg derricks have been instatled. These dorricks are of li-tons catpecity, having lis-foot bosms. They are operated bw sean from the weating plant bxiler, which feeds the s II.P. hosisting engines. In these installations the swingers are unfated by the hosisting engines.

Where the treating plant is of large enough capacity to warrant
the insestment in a lowomotive crame, this type of unit has prosen to be the most stivenetory in uperations. The crames which are

 it) feet ration from the king pin of the erate, perpendienlar the the

Fig. 16 Unloading Poles from the Treating Tanks to the Dollies, with Locomotive Crane
track, without tipping the ear body of the crane. Of course, with the brom in a position abose the track the maximum safe load is considerably greater.

The method of hatndling poles most commonly used is illustrated in Fig. 17 where the poles are lifted in at balanced condition, swang to one side of the track and piled paralled to it.

Inother method which is applisable, particularly to handling a It-foxt and longer mole. consists of butting the pole emd against the laxom of the Incomotive crane and swinging it to a pile which lies perperaclicular to the track. This methex of handling poles is similar (1) that shown in use with the logging outfit in Fig. © f .

When the poles are piled either parallel or perpenticular to the track as shown by Figs. 17 and 1s, respectively, there should be frepuent breaks in the piles in order to permit the air to circulate around the proles and kecp them dry, and to reduce the fire hazard.

Fig. 1i-Handling Poles by Balanced Method with Locomotive Crane

Fig. Is Ilamding I'ole with Eind Butted lgamst Boom of Locomotive Crane

Prfparing Poles for Treatmest

Nthough elforts were originally made to clean and prepare the preles on the cars at the time they were recoivel at the plant, in orter to be able to unloal them from the ars direetly into the treating canks, it wis found to be more satisfactory to lirst unlaal them nonos skids where they would be more accessible for the removal

Fig. 19-P'reparation Skids Opposite Treating Tanks at Sylva Plant
of all bark and foreign matter from the area to be treated and where any defective poles could be culled out before treatment.

The preparation skids are ordinarily not used for storage purposes. When a load of poles is placed upon them it can be spread in such a manner that every pole will be accessible.

In Fig. 20 the load of poles from the dollies has just been laid on the preparation skids where they will be cleaned for treatment in the far tank which is shown empty. Due $t o$ the desirability of having a continuous supply of poles for treatment, also of having the poles seasoned for several months before treatment, it is not practicable in a very large percentage of cases to ship the poles direct from the timber to the yard and unload them on the preparation skids for immerliate treatment. For this reason it is necessary first to pile them in the untreated section of the pole yard and later to bring them to the preparation skids on dollies as illustrated in Fig. 20.

Treatment

The following is a very brief outline of the method pursued in treating the poles and also of the results obtained.

In se far as practicable the poles are seasoned ti months or more before being treated. The method of treatment consists of immersing the butts to a level of about 1 foot above what will be the

Fig. 20 Ireparation Skids Opposite Treating Tanks in Nashville Yarsl
ground line of the poles, for not less than 7 hours in creosote at a comperature lxetwen 212° and 230 Fahrenheit. At the end of the hot treatment, the hot oil is quickly remowed from the tank and cold oil at a temperature of from 100° to 110 Fahrenheit is permitted to Ifow quickly into the treating tank to the level previously reached by the hot oil. The cold wil treatment lasts for at least if hours.

Ileat is aboorled bye the pole butts in the hot wil bath until the moisture erotatined in the sapword is either expanded into steam or emtirely driven out. During the short interval while the oil is being changed, the surfaces to be treated remain covered by wil from the hot treatment. The wil change is macle so quickly that the pole huts cool rery little belure it is completed. Then, as soon as the cold wil is admitted, these surfaces are conered by the creosote which remains until the pole butts become conl. In the sapwod, from which the mosisture has been driven by the hot treatment, the cooling proceso condenses the steam, thus forming a partial vacuum in the

Fig. 21 Plan of Sylva Plant Fayout
wood. Thin causes the oil, in which these surfaces are immersed, to be foreed into the wood by atmospheric pressure.

During the treatmont, the creosote is absorbed by the pole to such an extent that as an aserage, about 9.5 per cent. of the sapwood in the preated sertion of the pole is saturated. This reguires from 2 to 1 gallons of oil per pole, depeneling upon the size and condition of the pole being treated.
A SGEMBES LAyOLT

The same gencral leatures of design were followed in all the pole treating plant ligouts in oof far as practicable. However, the number

Fig. 22 View of Treating Equipment at Sylva I'lant
of the different mit- ued was varied to prowile the plant capacities required.

In denigning the plants it wan found desirable (1) separate the poles into two or three treating tanks in order that the treating gang could lxe continuonsly emplosed in cither preparing or handling poles from or 2 one of the tanks while the ereatment would be in progress in other tanks. By dividing the tanks it was also possible to nse a smaller fuatity of hot creosote, since the hot oil conld be used in one tank atul when that treatment was finished, pumped to another tank containing tresh poles ready for teatment. Cotiong down the lon wil capacity, of course, reduced the athount of radiation in the beating tank ant also the amount of radiation in use at any particular
 loiler capacits that would he netossar! with a bers large single treating t.ank tunit.

 reath all pole- more eavily for attolhing dat removing the darrick wind line.

It was fombl that a vertical cylindrical tank serseal better than a horiantal one for the storage of hot oil, while the horizontal exlindrical

Fias. 2: Plan \iew of Poble Rack
tomk were preferable for eold sil storage. The ratiation from a vertical hot tank is comsiderably reduced by the jacket of hot air rising along it. siele.

Particularly dariag the smmer months are mast be taken to keep down the temperature of the cold oil. It has been found that the long oylindrical steel tanks when lying horizontally radiate heat from the oil to the atmosphere sultisfantorily and thus keep the oil comel.

Care has been taken in the design, to locate the varions units so that all hot oil lead, would be as short as prosible in order to minimize radiation. Wherever pussible, both the hot and cold sil are handed begravity. The steam beiler is lexaterl as near as practicable to the heavy banks of stean radiators.

In all cases, careful study has been given to facilitating the hathding of poles, since a comsiderable part of the enst of the pole treating process is due to pole handling.

Poni: Ruks

For supporting the poles standing in the treating tanks, it is neeses sary to hate a very strong rack surrounding each of the tanks. Fig. 20 shows a view at one end and the front side of the twotank rack in the Nishwille plant. The poles shown, stand $8^{1} 2$ feet befow the ground level. They are supported at the ends and middle of the rack loy timbers under the rack platform at a height of I2 teet abowe

Fig. 24 Exeavation for Treating Tanks
the gromod. At the back, the poles are supported by a timber which is 16 fect alowe the ground. This arrangement permits the treatment of any size of pole up to and including 6.5) leet in length.

It will be noted in fig. 23, which shows the rack above one tank, that the poldes in each tank are tivited at the middle by the plat form of the pole ratk. This feature of the rack has proved to be very desirable in that it permits the platform man to reach any pole in the rack during the lobding and untoreling process, of that there is no delay athe no hatarel in attaching the winch line sling to, or detathing it from the poles. The taper of the poles is such that ample space is provided for hobling the sertions of the peles at the platform
hevel exen thongh the areat wi the operning at this leve is sothewhat －mather thetu the ste．t of the buttom of the treating tomk．
suitable rating hawe leeen provided aroumd all parts of the platform （1）protere the platorm mase．They are subatantial emongh wiontere the＂perater amb bet the vible enough to comperatite for the irregulat actions of poles which mas lie agation thom．

けいだ

I－Was mentioned abose，in at far as practicable the tank lor the bariou－phates are mate in multiphe of stambarel units．The treating

Fis． 25 Concrete Fioundation and Protecting Walls for Treating Tanks
twhe for the smaller plants are 11 feet long and is feet 6 inches wifle with is inches in eath end of the tanks taken up ly the vertical ratiat tors．These tanks are of proper size（1）treat ${ }^{1} 2$ carload of poles cach．

The larger plants are provieled with treating tanks，each of which will easily hamelle one carload of proles．These tanks are 1.5 feet long，sfeet wide and！？feet sinches deep in the clear．
sume idea of the sizes and arranement of the treating tanks can De hat from the excatation for them hown in liig．21．Feach of the rased fevels shown，will support the bettom of at tank while the pits
between will contain the steam and oil piping, oil handling machinery, etc. This is a threc-tank pit with space for two tanks shown.

In order to provide dry pits for the equipment below the treating tank bottoms and also to facilitate removal of a tank from the groumd in case it might need repair, it has been found desirable to buikd concrete foundations and walls around the treating tanks.

Fig. 26 Treating Tanks in Place
A few inches of space is left between the concrete retaining walls and the sides of the treating tanks. This space serves two purposes: it permits placing or removing the tanks with ease and it also provides air spaces around the sides of the tanks, which tend to insulate them from the ground. As has been mentioned, it is necessary to change the temperature of the oil in the tanks quickly from about 220° to about 105° Fahrenheit. There is very little lag in making the temperature change due to heat retained by the tank walls. However, if the ground aromed the tanks were wet and in contact with them, considerable lag would be experienced in making the temperature change of the oil becanse of heat which woukl be retaned by the grouncl.

The poles in the tanks as shown by Fig. 26 rest in a position inclined slighty back towart the racks so that they remain in this
prastan "ithout luoing tical. Inelining the tank lantems toward the rear facilitates the dratinge of oil from them.

The lottem of the tank is practically perpendicular (o) the poles st they stand on it, whish minimias the tendenes for the butte to slip on the tank lootom. In oreler to further preacon any danger from thic happening, the bottom of euth tomk is maverel lye extat heavy Irving grifs similar to thome used at sabway ventilating openings. These grids are supported by a sutable I-beam framework in

Fig. 27 Bottom of Treating Tank Showing Iloriaontal Radiators and firids (isering Them
which the steed pipe radiators are placed. The grids cis not interlere with the circulation of the hot oil and form a good protection for the raditurs.
lath of the herizontal cold sil tanks has a capacity of alxut 14,000 gallons. Tanks of this size will canily take a tank-car load of creenote each, leaving some reserve capacity for residual wil which maty 1 be in the tanks at the time the additional cars of sil atre received. The t.ank cars urdinarily carr! from s,000 to 12,0 ofe gallons of oil.

The hot oil tank vary in capacity between 3 , 00n and 13,000 gallons each, depermeling upon the sizes of the plants. One hot oil tank
suffices for each installation. In order to ronserve the heat, these tanks are cowered by a 1^{1} 2 inch coat of magnesia block heat insulating material, the ounside of which is cowered by ${ }^{1}$ inch of ablestos cement and ${ }^{1}$ ínch of half and half asbestos and l'ortland cement.
 Fotopaent

For these instablations, a self-rontatned type of steam boilen wats wed becathe of its comparatively high efficiency in the sizen erepuired and also beralse of the ease of installation. The boilers used vary

from 30 (1) st hersepower capacioy depenting upon the sizes of the plants. Thene beikers are of the return mbular type with the lire besem and sm se bexen lined with keyed-in fire brick.

The boilers are operated at a pressure of about 100 ll s. which is a suitable pressure for the steam turbine and for the steam hoisting engines in the plams where these are used. This beiler steatm pressure is too high for the cast iron ratiators which are used to heat wil in the hot and cold tanks athl, for the smaller plants, in the treating tanks. btean for these racliatorn should be supplied at a presoure of about 10) jetumds. In order 10 mecet this reguirement a pressure reducer is thed weonsert the steam from the boiler presoure, whatever it may

The wather condenaed from the varions ratiators is returned to the beiler in oreler to conserve its heat. Small atutomatic steam traps
 (lo) mot promit the seeme tor pers. Oll the water sitle of these small -fatm traps, the piping from the barione ratiators is benght togerher
 lage tilting traps. The trap athom,tically ratice the water to a

Fis 29 Vertical llan ail Tank with Insulated Cowering
receiver absere the biter ame the silting trap injects it into the boiler a- fast an $i t$ is delisered to the water pipe lines by the smatl traps.

It is very desirable in the operation of the steam turbines that they he supplied with dry steam in orter that slugs of water camot enter the turbince chambers at high velocities and injure the vanes. I large water trap is lewated abose the treating tank pit at each phate to insure dry steam for the turbine which is mounted in the pit direetly below is.

THMPERATLRE: CONTROL
A comtinusus recorel is kept of the temperature of the oil in the treating tanks by means of recording thermometers mounterl in the boiler room and connected by Hexible thermometer tubes to the bulbs

Which are immersed in oil along the inside of the tanks after the poles are in place. In the cold and bot tanks the temperature does not change rapilly, so their temperatures can be read ly means of stationary indicating thermometers mounted on the sides of the tanks and having bulls which project into the insides of the tanks through suitable fittings. The oil temperatures, of course, are controlled by the steam values to the radiators in the various tanks.

Figg, 30 Steam Beiler I)uring Installation

Oil. Hinining,

The heart of the oil handling apparatus, of course, is the cemtrifugal pump which has been mentioned and which is direet connected on the 20 1I.P'. steam turline. In some of the smaller plants the centrifugal pumps are operated by 5 H . P . gasoline engines.

Buth cold sil and hot wil are fed from the storage tanks to the treatting tanks ley gravity. The centrifugal pump is used for returning the oil from the treatling tanks to the proper storage tank, for moving it from one storage tank to another or for delivering oil from the tank (ars th the storage tanks.
since the crensote which is used in pole treating may solidify at any Wmperature below low Fahrenheit, even in comparatively warm weather it is sometimen newsasy to provide a steam connection to
the ratiators insitle the tank ear in oreler to make the wil flut enough to How through the thesible lase ant pipe to the centrifugal pump. The soliditying of the creosote at comparatively high temperatures alon requires a small loank of racliators in cowh cold tank.

The ste:th pipe runs, letween the stean luiler and the varims t.onk e, and the sil pipe line leetween the various lank and the pump.

Fig. 31 Vieneral View of Natural Brilge Plant in Operation
are grouped ot that both the steam lines and oil lines can be encloned in bexes. The heat radiated from the steam lines warms the air in the broxes to such an extent that the oil remains liquid.

The valve controls for the oil and steam lines which are led through the boxes, are grouped at that several can be reached by opening the door of each of the boxes.

In the smaller plants which have the one-half-car pole capacity of treating tanks, the centrifugal pump hambles the wil at a rate ol about 200 gallons per minute. In the larger plants, however, where the treating tank-have one-car capacity of poles, the ail is handleal through the centrifugal pump at the rate of about 600 gallons per minute. As mentioned in the abose section deseribing the treatment, the high rate of nil movement is necesary in order to accomplish the change from hot to cold oil in the treating tanks in such a
short time that the heated pole butts will not be permitted to cool when not immersed in oil. The oil change ordinarily is made in from 7 to 12 minutes from the time the pump starts to remose the hot oil until the cold oil is up, to the proper level.

Experience indicates that no material lose in penetration of the creosote into the poles is experienced hy having the treated section uncovered for this short length of time. Dractically the same penetration is obtained as would be secured by keeping the poles in hot oil for the same length of time and then permitting the hot oil 10 remain around them until its temperature had graduatly fallen by radiation to that specilied for the cold oil bath.

Changing the oil instead of permitting it to cool in the treating tanks greaty expedites the treatments and consequently increases the plant capacity, which, of course, results in a corresponding economy in the cost of treating the poles.

Conctiston

In this paper an endeavor has been made to coser in a general way, the principal engineering and operating features involved in buideng crosoting plants designed specially for applying open tank treatment to chestnut poles. It has, of enurse, been necessary to omit practically all of the details of construction, which were followed in buikling the various plants.

These treating plants are valuable assets to the Bell System in prowiding concentration points where preservative treatment can be economically applied in the chestnut poles, thus becoming an important factor in the general program for the conservation of natural resources, by making possible the utilization of this vahable and rapidly diminishing wpe of timber over a considerably fonger periocl.

Selective Circuits and Static Interference*

By JOHN R. CARSON

Abstract

Sinot - : The prevent priper has its inception in the need of atorrext understanding of the lehavior of selective corcuit = when sulbjected to ir regubar and random interference, and of devising a promically ins fal ligure of merit for comparing circuits designal to realuet the efferts of this tspe of interference. The problem is exisentally a statistieal one and the results masi he expressed in terms of mean values the mathomatioal theary is clevelopelf from the ideas of the spectatil of the intorference amil the response of the selective cireuit is expressed in terms of the meath square current and mean power abonimed. The apulication of the formmlas cleduced to the case of statio interference is discussurl and it is shown that deductions of practical value are possible in spite of meagre informa tion regarling the precise niture atmlorigin of atotic interference.

The outstanding deductions of practical value nialy be summarized as follows: 1. Esen with absolutely ideal selectise circuits, an irrectucible minimum of interference will the ahsorbed, and 1 his minimum inereases linearly with the frequency range necessary for signaling. 2. The wave-filter, when properly designed, approximates quite closely to the ifleal selectise circuit, and little, if any, improvement over it present form may he expected as regarts stat ic interference. 3. As regards static or rantom interference, it is quite useless to employextremely high selectivity. The gain, as compared with circuits of only moderate selectivity, is very small, and is inevitably arompaniod hy disadrantages such as sluggishness of response with conseduent slowing down of the possible speed of signaling.

4 A formula is developed, which, together with relalisely simple experimental data, provides for the accurate determination of the spectram of satic interferenre. 5. An application of the theory and formulas of the paper to representatise circuit arrangements and sehemes designed to reduce statio inferlerence, shows that they are incapable of reflreing, in any sulnstantial regree, the mean interference, as compared with what can lue done with simple filters and tuned circuits. The underlying reason lies in the nature of the interference itself.

I

THE selective circuit is an extremely important element of every radio receiving set, and on its efficient design and operation depends the economical use of the a vailable freptency range. The theory and design of selective circuits, particularly of their most conspicuous and important type, the electric wave hilter, have been highly developed, and it is now possible to commmicate simultanenusly without undue interference on neighboring channels with a quite small frequency separation. On the other hand too much has been expected of the selective circuit in the way of climinating types of imerference which inherently do not admit of elimination by any form of selective circuit. I refer to the large amotut of insemtive thought devoted to devising ingenious and complicated circuit ar-

[^36]rangements designed to eliminate static interference. Work on this problem has been for the most part futile, on account of the lack of a clear analysis of the problem and a failure to perceive inherent limitations on its solutions by means of selective circuits.

The object of this paper is twofold: (1) To develop the mathematical theory of the behavior of selective circuits when subjected to random, irregular disturbances, hereinafter defined and designated as random interference. This will include a formula which is proposed as a measure of the figure of merit of selective circuits with respect to random interference. (2) On the basis of this theory to examine the problem of static interference with particular reference to the question of its elimination by means of selective circuits. The mathematical theory shows, as might be expected, that the complete solution of this problem requires experimental data regarding the frequency distribution of static interference which is now lacking. On the other hand, it throws a great deal of light on the whole problem and supplies a formula which furnishes the theoretical basis for an actual determination of the spectrum of static. Furthermore, on the basis of a certain mild and physically reasonable assumption, it makes possible general deductions of practical value which are certainly qualitatively correct and are believed to involve no quantitatively serious error. These conclusions, it may be stated, are in general agreement with the large, though unsystematized, body of information regarding the behavior of selective circuits to static interference, and with the meagre data available regarding the wave form of elementary static disturbances.

The outstanding conclusions of practical value of the present study may be summarized as follows:
(1) Even with absolutely ideal selective circuits, an irreducibte minimum of interference will be absorbed, and this minimum increases linearly with the frequency range necessary for signaling.
(2) The wave-filter, when properly designed, approximates quite clusely to the ideal selective circuit, and little, if any, improvement over its present form may be expected as regards static interference.
(3) As regards static or random interference, it is quite useless to employ extremely high selectivity. The gain, as compared with circuits of only moderate selectivity, is very small, and is inevitably accompanied by disadvantages such as sluggishness of response with consequent slowing down of the possible speed of signaling.
(4) By aid of a simple, easily computed formula, it should be possible to determine experimentally the frequency spectrum of static.
(5) Formulas given below for comparing the relative efficioncis, of selective circuits on the basis of signal-to-interference energy ratio are believed to have considerable practical value in estimating the relative utility of selectise circuits as regards static interference.

II

Discrimination between signal and interference by means of selective circuits clepends on taking alsantage of differences in their wave forms, and hence on differences in their frequency spectra. It is therefore the function of the selective circuit to respond effectively to the range of frequencies essential to the signal while discriminating ag.anst all other frequencies.

Interference in radio and wire communication may be broadly classified as systematic and random, alehough no absolutely hard and fast distinctions are possible. Systematic interference includes those disturbances which are predominantly steady-state or those whose energy is almost all contained in a relatively narrow band of the frequenty range. For example, interference from individual radiotelephone and slow-speed radio telegraph stations is to be classified as systematic. Random interference, which is discussed in detail later, may be provisionally defuned as the aggregate of a large number of elementary disturbances which originate in a large number of unrelated sources, vary in an irregular, arbitrary manner, and are characterized statistically by no sharply predominate frequency. An intermediate type of interference, which may be termed either quasisystematic or quasi-random, depending on the point of view, is the aggregate of a large number of individual disturbances, all of the same wave form, hut having an irregular or random time distribution.

In the present paper we shall be largely concerned with random interference, as defined above, because it is believed that it represents more or less closely the general character of static interference. This question may be left for the present, however, with the remark that the subsequent analysis shows that, as regards important practical applications and deductions, a knowledge of the exact nature and frequency distribution of static interference is not necessary.

Now when dealing with random disturbance, as defined above, no information whatsoever is furnished as regards instantaneous values. In its essence, therefore, the problem is a statistical one and the conclusions must be expressed in terms of mean values. In the present paper formulas will be derived for the mean energy and mean square current absorbed by selective circuits from random interfer-
ence, and their applications to the static problem and the protection afforded by selective networks against static will be discussed.

The analysis takes its start with certain general formulas given by the writer in a recent paper ${ }^{1}$, which may he stated as follows:

Suppose that a selective network is subjected to an impressed force $\phi(t)$. We shall suppose that this force exists only in the time interval, or epoch, $o \leqq t \leqq T$, during which it is everywhere finite and has only a finite number of discontinuities and a finite number of maxima and minima. It is then representable by the Fourier Integral

$$
\begin{equation*}
\phi(t)=1 \pi \int_{0}^{\infty} \mid f(\omega) \cdot \cos [\omega t+\theta(\omega)] d \omega \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.f(\omega)\right|^{2}=\left[\int_{0}^{\infty} \phi(t) \cos \omega t d t\right]^{2}+\left[\int_{0}^{\infty} \phi(t) \sin \omega t d t\right]^{2} \tag{2}
\end{equation*}
$$

Now let this force $\phi(t)$ be applied to the network in the driving branch and let the resulting current in the receiving branch be denoted by $I(t)$. Let $Z(i \omega)$ denote the steady-state transfer impedance of the network at frequency $\omega \cdot 2 \pi$: that is the ratio of e.m.f. in drizing branch to current in receiving branch. Further let $\approx(i \omega)$ and cos $\alpha(\omega)$ denote the corresponding impedance and power factor of the receiving branch. It may then be shown that

$$
\begin{equation*}
\int_{0}^{\infty}[I(t)]^{2} d t=1 /^{\prime} \pi \int_{0}^{\infty} \frac{|f(\omega)|^{2}}{|Z(i \omega)|^{2}} d \omega \tag{3}
\end{equation*}
$$

and that the total energy If absorbed by the receiving branch is given by

$$
\begin{equation*}
H^{\prime}=1, \pi \int_{0}^{\infty}|f(\omega)|^{2} \mid z(i \omega) \cos \alpha(\omega) \cdot d \omega \tag{4}
\end{equation*}
$$

To apply the formulas given above to the problem of random interference, consider a time interval, or epoch, say from $t=0$ to $t=T$, during which the network is subjected to a disturbance made up of a large number of unrelated elementary disturbances or forces, $\phi_{1}(t)$, $\phi_{2}(t) \ldots \phi_{n}(t)$.

If we write

$$
\psi(t)=\phi_{1}(t)+\phi_{2}(t)+\ldots+\phi_{n}(t),
$$

then by (I), W(t) can be represented as

$$
d(t)=1 \pi \int_{11}^{\infty}|F(\omega)| \cdot \cos [\omega t+\theta(\omega)] d \omega
$$

[^37].und
\[

$$
\begin{equation*}
\int_{0}^{\infty}[l(t)]^{2} d t=1 \pi \int_{0}^{\infty} \quad \mathscr{F}(\omega)=d(i \omega)=d \omega . \tag{3}
\end{equation*}
$$

\]

We now introduce the function $R(\omega)$, which will bee termed the energy spectrum of the rambom interference, and which is analytirally wefined by the equation

$$
\begin{equation*}
R(\omega)=\frac{1}{T} \quad F(\omega)= \tag{i}
\end{equation*}
$$

Disibling both sides of (3) and (1) by T we get

$$
\begin{align*}
& \bar{I}^{2}=1 \pi \int_{0}^{\infty} R(\omega) \quad d \omega, \tag{6}\\
& \vec{\Gamma}=1 \pi \int_{0}^{\infty} \frac{R(\omega)}{Z(i \omega)^{2}} z(i \omega) \cdot \cos \alpha(\omega) \cdot d \omega . \tag{7}
\end{align*}
$$

I^{2}, P and $R(\omega)$ |xcome independent of the T provided the epoch is made sutticiently great. I^{2} is the mean square current and P the mean poaice absorbed by the recciting branch from the random interference.

In the applications of the foregoing formulas to the problem under discussion, the mean square current I^{2} of the formula (6) will be taken ats the relative measure of interference instead of the mean power P of formula (7). The reason for this is the superior simplicity, loth as regards interpretation and computation, of formula (f). The adoption of I^{2} as the criterion of interference may be justified as follows:
(1) In a great many important cases, including in particular experimental arrangements for the measurement of the static energy spectrum, the receiving tevice is substantially a pure resistance. In such cases multiplication of I^{2} by a constant gives the actual mean power P.
(2) It is often convenient and desirable in comparing selective networks to have a standard termination and receiving device. A threeelement vacuum tube with a pure resistance output impedance suggests itsolf, and for this arrangement formulas (6) and (7) are equal within a constant.
(3) Wie are uathally concerned with relative amounts of energy absorbed from static as compared with that alsorbed from signal. Variation of the receiver impedance from a pure constant resistance would only in the extreme cases affect this ratio to any great evtent. In other words, the ratio calculated from formula (6) would not differ greatly from the ratio calculated from (7).
(4) While the interference actually apperceived either visually or by ear will certainly depend upon and increase with the energy absorbed from static, it is uot at all certain that it increases linearly therewith. Consequently; it is believed that the additional refinement of formula (7) as compared with formula (6) is not justified by our present knowledge and that the representation of the receiving device as a pure constant resistance is sufficiently accurate for present purposes. It will be understood, however, that throughout the following argument and formulas, P of formula (7) may be substituted for I^{2} of (6), when the additional refinement seems justified. The theory is in mosense limited to the idea of a pure constant resistance receiver, although the simplicity of the formulas and their ease of computation is considerable enhanced therebs:

The problem of random interference, as formulated by equations (6) and (6) was briefly discussed by the writer in "Transient Oscillations in Electric Wave Filters" ${ }^{1}$ and a mumber of general conclusions arrised at. That discussion will be brielly summarized, after which a more detailed analysis of the problem will be given.

Referring to formula (6), since both numerator and denominator of the integrand are everywhere $\geqq o$, it follows from the mean value therrem that a value ω of ω exists such that

$$
I^{2}=\frac{R(\omega)}{\pi} \int_{0}^{\infty} \frac{d \omega}{Z(i \omega) 2^{2}}
$$

The approximate locition of ω on the frepuency scale is based on the following considerations:
(a) In the case of efficient selective circuits designed to select a continuous finite range of frequencies in the intersal $\omega_{1} \leqq \omega \leqq \omega_{2}$, the important contributions to the integral (6) are confined to a linite continuons range of frequencies which includes, but is not greatly in excess of, the range which the circuit is designed to select. This fact is a consequence of the impedance characteristics of selective circuits, and the following properties of the spectrum $R(\omega)$ of random interference, which are discussed in detail sulsequenty.
(1)) $R(\omega)$ is a continuons finite function of ω which conserges to zoro at infinity and is everywhere positive. It possesses no sharp maxima or minima, and its variation with respect to ω, where it exists, is relatively slow.

On the hasis of these considerations it will be assumed that ω lies within the band $\omega_{1} \leqq \omega \leqq \omega_{2}$ and that without serions error it may be
taken ds the mid-frequeney ω_{m} of the hatal which may he detimed either as $\left(\omega_{1}+\omega_{2}\right) \geq$ or ats $\omega_{\text {t }} \omega_{2}$. Conserpuently

$$
\begin{equation*}
I=\frac{K\left(\omega_{m}\right)}{\pi} \int_{0}^{\infty} \quad d \omega \tag{!!}
\end{equation*}
$$

From (!) it follows that the mean spuare current \dot{I}^{2}, due to rathdom interference, is mate up) of two faetors : one $K\left(\omega_{m}\right)$ which is propor(ional to the energy level of the interference -pectrum at mid-frequency $\omega_{m} \geq \pi$: and, second, the integral

$$
\begin{equation*}
\rho=1 \pi \int_{0}^{\infty} \quad d \omega \tag{10}
\end{equation*}
$$

which is indepentent of the character and intensity of the interference. Thus

$$
\begin{equation*}
\bar{I}^{2}=\rho R\left(\omega_{m}\right) . \tag{11}
\end{equation*}
$$

Formula (II) is of considerable practical importance, because by its aid the spectral energy level $R(\omega)$ can be determined, once \bar{l}^{2} is evperimentally measured and the frequency characteristics of the receiving network apecilied or measured. It is approximate, as discussed above, but call be made as accurate as desired by employing a suthiciently sharply selective network.

The formula for the figure of meril of a selectiae circuil with respect to random interference is constructed as follows:
I.et the signaling energy be supposed to be spread comtinuously and unformly over the frequency interval corresponding $\omega \omega_{1} \leqq \omega \leqq \omega_{2}$. Then the mean sfuare signal current is given hy

$$
\frac{I^{2}}{\pi} \int_{\omega_{1}}^{\omega_{2}} \frac{d \omega}{\left.Z(i \omega)\right|^{2}}
$$

or, rather, on the basis of the same transmitted energy to

$$
\begin{equation*}
\frac{E^{2}}{\pi\left(\omega_{2}-\omega_{1}\right)} \int_{\omega_{1}}^{\omega_{2}} \frac{d \omega}{Z(i \omega)^{2}}=E^{2} \frac{\sigma}{\omega_{2}-\omega_{1}} . \tag{12}
\end{equation*}
$$

The ratio of the mean square currents, due to signal and to interference, is

$$
\begin{equation*}
\frac{E^{2}}{R\left(\omega_{m}\right)} \cdot \frac{1}{\omega_{2}-\omega_{1}} \frac{\sigma}{\rho} . \tag{13}
\end{equation*}
$$

The first factor $\frac{I_{2}^{2}}{R\left(\omega_{m}\right)}$, lepends only on the signal and interference energy levels, and dres not involve the properties of the network. The second factor depeuds only on the network and measures the
efficiency with which it excludes energy outside the signaling range. It will therefore be termed the figure of merit of the selective circuit and denoted by S, thus

$$
\begin{equation*}
S=\frac{1}{\omega_{2}-\omega_{1}} \frac{\sigma}{\rho}=\frac{1}{\omega_{2}-\omega_{1}} \int_{\omega_{1}}^{\omega_{2}} \frac{d \omega}{Z(i \omega)^{2}} \div \int_{0}^{\infty} \frac{d \omega}{\mid Z(i \omega)^{2}} \tag{14}
\end{equation*}
$$

Stated in words, the figure of merit of a selective circuit with respect to random interference is equal to the ratio of the mean square signal and interference currents in the receiver, divided by the corresponding ratio in an ideal band filter which transmits aithout loss all currents in a "unil" band ($\omega_{2}-\omega_{1}=1$) and absolutely extinguishes currents outside this band.

[1]

Before taking up practical applications of the foregoing formulas further consideration will be given to the hypothesis, fundamental to the argument, that over the frequency range which includes the important contributions to the integral $\int_{0}^{\infty} \frac{d \omega}{\left.Z(i \omega)\right|^{2}}$ the spectrum $R(\omega)$ has negligible fluctuations so that the integral

$$
\int_{0}^{\infty} \frac{R(\omega)}{\left.Z(i \omega)\right|^{2}} d \omega
$$

may, without appreciable error, be replaced bỵ

$$
R\left(\omega_{m}\right) \int_{0}^{\infty} \quad \begin{gathered}
d \omega \\
Z(i \omega)=
\end{gathered}
$$

Where $\omega_{m} 2 \pi$ is the "mid-frequency" of the selective circtut.
The original argument in support of this hypothesis was to the effect that, since the interference is mate up of a large mumber of unrelated elementary disturbances distributed at random in time, any sharp maxima or minima in the spectrum of the individual diturbanees would be smoothed out in the spectrom of the aggregate disturbance. This argument is still believed to be guite sound: the importance of the question, however, certainly calls for the more detailed amalysis which follows:
l.et

$$
\begin{equation*}
\mathrm{T}(t)=\frac{\lambda}{1}_{N}^{N} \phi_{r}\left(t-t_{r}\right) \tag{15}
\end{equation*}
$$

Where t denotes the time of incidence of the $r^{\text {th }}$ disturlance $\phi_{r}(t)$. The elementary disturbances $\phi_{1}, \phi_{2} \ldots \phi_{\mathrm{x}}$ are all perfectly arbitrary, so
that 中 (t) ds delined by (1.5) is the most getaral iype of disturthatere pmasible. The only assumption mate as get is that the instants of incidenee $t_{1} \ldots t_{\text {a }}$ ate distributal at rambon over the eprolt $a \leqq t \leqq \%$; all asimption which is clearly in acordance with the facts in the cote of static interference. If we write

$$
\begin{align*}
& C_{r}(\omega)=\int_{0}^{\infty} \phi_{r}(t) \cos \omega t d t, \\
& S_{r}(\omega)=\int_{0}^{\infty} \phi_{r}(t) \sin \omega t d t, \tag{16i}
\end{align*}
$$

it follows from (2) and (15), after some easy rearrangements that

$$
\begin{array}{r}
\mathscr{R}(\omega)=\sum_{r=1}^{n} \sum_{s=1}^{N} \cos \omega\left(l_{r}-l_{s}\left\{C_{r}(\omega) C_{s}(\omega)+S_{r}(\omega) S_{s}(\omega)\right]=\right. \\
+\quad \quad C_{r}^{2}(\omega)+S_{r}^{2}(\omega) \tag{17}\\
+\quad C_{r} \omega\left(l_{r}-l_{s}\right)\left[C_{r}(\omega) C_{s}(\omega)+S_{r}(\omega) S_{s}(\omega)\right], r \neq \mathrm{s} .
\end{array}
$$

The first summation is simply - $\left.f_{r}(\omega)\right|^{2}$. The double summation involses the factor cos $\omega\left(t_{r}-t_{s}\right)$. Now by virtue of the assumption of random time distribution of the elementary disturbances, it follows that $t_{\text {r }}$ and t_{s}, which are independent, may each lie anywhere in the epoch $o \leqq t \leqq T$ with all values equally likely. The mean value of $\left.F(\omega)\right|^{2}$ is therefore gotten by averaging ${ }^{2}$ with respect to t_{r} and t_{s} wer all possible values, whence

$$
F(\omega)^{2}=\sum^{1} f_{r}(\omega)^{2}+2 T^{2} \frac{\cos \omega T}{\omega^{2}}
$$

and

$$
\begin{aligned}
& I^{2}=\frac{1}{\pi T}-\int_{10}^{\infty} \frac{f_{r}(\omega)^{2}}{Z(i \omega)^{2}} d \omega+\frac{2}{\pi T^{2}} \geq-\int_{0}^{\infty} \frac{1-\cos \omega T}{\omega^{2} T}\left[C_{r}(\omega) C_{s}(\omega)\right. \\
&\left.+S_{r}(\omega) S_{s}(\omega)\right] \frac{d \omega}{Z(i \omega) I^{2}}
\end{aligned}
$$

[^38]Now in the double summation if the epoch T is made sufficiently great, the factor $\frac{(1-\cos \omega T)}{\omega^{2} T}$ vanishes everywhere except in the neighborhood of $\omega=0$. Consequently, the double summation can be written as

$$
\frac{2}{\pi T^{2}} \int_{0}^{\infty} \frac{1-\cos \omega T}{\omega^{2} T^{2}} d \omega T \cdot \ \frac{C_{r}(0) C_{s}(0)}{\left.Z(0)\right|^{2}}=\frac{1}{T^{2}} \simeq \frac{C_{r}(0) C_{s}(0)}{Z(0))^{2}} .
$$

Finally if we write $N / T=n=$ average number of disturbances per unit time, and make use of formula (2), we get

$$
\begin{align*}
I^{2}=\frac{n}{N} \searrow 1 / \pi & \int_{0}^{\infty} \frac{\left|f_{r}(\omega)\right|^{2}}{|Z(i \omega)|^{2}} d \omega \\
& +\frac{n^{2}}{N^{2}} \cdot \frac{1}{|Z(0)|^{2}} \text { \} \rfloor \int _ { 0 } ^ { \infty } \phi _ { r } (t) d t \cdot \int _ { 0 } ^ { \infty } \phi _ { s } (t) d t } \tag{19}
\end{align*}
$$

which can also be written as

$$
\begin{equation*}
\bar{I}^{2}=\frac{n}{N} \searrow \int_{0}^{\infty} i_{r}^{2} d t+\frac{n^{2}}{N^{2}} \searrow \backslash \int_{0}^{\infty} i_{r} d t \cdot \int_{0}^{\infty} i_{s} d t \tag{20}
\end{equation*}
$$

when $i_{r}=i_{r}(t)$ is the current due to the $r^{t h}$ disturbance $\phi_{r}(t)$.
Now the double summation vanishes when, due to the presence of a condense or transformer, the circuit does not transmit direct current to the receiving branch. Furthermore, if the disturbances are oscillatory or alternate in sign at random, it will be negligibly small compared with the single summation. Consequently, it is of negligible significance in the practical applications contemplated, and will the omitted except in special cases. Therefore, disregarding the double summation, the foregoing analysis may be summarized as follows:

$$
\begin{align*}
& R(\omega)=\frac{n}{N} f_{r}(\omega){ }^{2}=n \cdot r(\omega), \tag{21}\\
& \bar{I}^{2}=\frac{n}{N} \backslash \pi \int_{0}^{\infty} \frac{\left.f_{r}(\omega)\right|^{2}}{|Z(i \omega)|^{2}} d \omega \tag{22}\\
&=n \backslash \int_{0}^{\infty} i_{r}^{2} d t=n \int_{0}^{\infty} i^{2} d t, \tag{23}\\
& P=\frac{n}{N} \int_{0}^{\infty} r(\omega) \tag{24}\\
&=\left.N(\overline{i \omega})\right|^{2}|z(i \omega)| \cdot \cos \alpha(\omega) \cdot d \omega \tag{25}\\
& N \quad u_{r}=n \cdot w .
\end{align*}
$$

In these formulas n denotes the average number of elementary disturbances per unit time, w_{m} the energy absorbed from the $r^{\text {th }}$ disturb-
athee $\phi^{2}(t)$, and P the mean power absorbed from the ageregate disturlance $r\left(w^{\prime}\right)$ is detimed by formalat (20) and is the meat spertrime of the esgregote disturbintere, thas

$$
\begin{equation*}
r(\omega)=1 X \searrow f_{r}(\omega)=R(\omega) \quad N \tag{26}
\end{equation*}
$$

We are now in a position to discuss more previncly the approximations, fundament.al to formulats (!9) (11),

$$
\begin{equation*}
\int_{0}^{\infty} \frac{R(\omega)}{Z(i \omega){ }^{2}} d \omega=R\left(\omega_{m}\right) \int_{0}^{\infty} \quad d \omega \quad Z(i \omega)^{z} . \tag{27}
\end{equation*}
$$

The approximation insolved in this formula consists in identifying ω_{m} 2. π wh the "mid-frequency" of the selective circuit, and is based (on the hypothesis that over the ramge of frequencies, which includes the important contribution to the integral (22), the fluctuation of $R(\omega)$ may be ignored.

Now it is evident from formulas (21)-(22) that the theoretically complete solution of the problem requires that $R(\omega)$ be specified over the entire frequency range from $\omega=0$ to $\omega=\kappa$. Obsiously, the reguired information cannot be deduced without making some additional hypothesis regarding the character of the interference or the mechanism in which it originates. On the other hand, the mere assumption that the individual elementary disturbances $\phi_{1} \ldots \phi_{s}$ differ among themselses substantially in wave form and duration, or that the maxima of the corresponding spectra $\left|f_{r}(\omega)\right|$ are distributed over a considerable frequency range, is sulficient to establish the conclusion that the individual fluctuations are smonthed sut in the aggregate and that consequently $r(\omega)$ and hence $R(\omega)$ would have negligible fluctuations, or curvature with respect to ω, over any limited range of frequencies comparable to a signaling range.

It is admitted, of course, that the foregoing statements are purely qualitative, as they must be in the absence of any precise information regarding the wave forms of the elementary disturbances constituting random interference. On the other hand, the fact that static is encountered at all frequencies without any sharp changes in its intensity. as the frequency is varied, and that the assumption of a systematic wave form for the elementary disturbances would be physically unreasonable, constitute strong inferential support of the hypothesis underlying equation (27). Watt and Appleton (Proc. Roy. Soc., April 3, 1923) supply the only experimental data regarding the wave forms of the elementary disturbances which they found to be classiliable under general types with rather widely variable amplitudes and
durations. Rough calculations of $r(\omega)$, based on their results, are in support of the hypothesis made in this paper, at least in the radio frequency range. In addition, the writer has made calculations based on a number of reasonable assumptions regarding variations of wave form among the individual disturbances, all of which resulted in a spectrum $R(\omega)$ of negligible fluctuations over a frequency range necessary to justify equation (27) for efficient selective circuits. However the problem is not theoretically solvable by pure mathematical analysis, so that the rigorous verification of the theory of selectivity developed in this paper must be based on experimental evidence. On the other hand, it is submitted that the hypothesis introduced regarding static interference is not such as to vitiate the conclusions, qualitatively considered, or in general to introduce serious quantitative errors. Furthermore, even if it were admitted for the sake of argument that the figure of merit S was not an accurate measure of the ratio of mean square signal to interference current, nevertheless, it is a true measure of the excellence of the circuit in excluding interference energy outside the necessary frequency range.

IV

The practical applications of the foregoing analysis depend upon the formulas

$$
\begin{equation*}
\overrightarrow{I^{2}}=\frac{R\left(\omega_{m}\right)}{\pi} \int_{0}^{\infty} \frac{d \omega}{\left\lceil\left. Z(i \omega)\right|^{2}\right.}=\rho \cdot R\left(\omega_{m}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\frac{1}{\omega_{2}-\omega_{1}}-\int_{\omega_{1}}^{\omega_{2}} \frac{d \omega}{|Z(i \omega)|^{2}} \div \int_{0}^{\infty} \frac{d \omega}{|Z(i \omega)|^{2}}=\frac{1}{\omega_{2}-\omega_{1}} \cdot \frac{\sigma}{\rho} \tag{14}
\end{equation*}
$$

which contain all the information which it is possible to deduce in the ease of purely random interference. They are based on the principle that the effect of the interference on the signaling system is measured by the mean square interference current in the receiving branch, and that the efficiency of the selective circuit is measured by the ratio of the mean square signal and interference currents. As stated above, in the case of random interference results must be expressed in terms of mean values, and it is clear that either the mean square current or the mean energy is a fundamental and logical criterion.

Referring (o) formula (11), the following important proposition is deducible.

If the sighaling systen requires the transmissions of a batul of frequencies corresponeling to thre interval $\omega_{2}-\omega_{1}$, and if the selective circuit is effieiently designed to this end, then the mean square interferenee current is proportional to the jrequency bond witilh $\frac{\left(\omega_{2}-\omega_{1}\right)}{2 \pi}$.

This follow: from the fact that, in the case of eflicently designed Thend-liters, designed to select the frepmency range $\begin{gathered}\left(\omega_{2}-\omega_{1}\right) \\ 2 \pi\end{gathered}$ and exclute other frepuencies, the integral $\int_{0}^{\infty} \frac{d \omega}{\left.(i \omega)\right|^{2}}$ is proportional to $\omega_{2}-\omega_{1}$ to a high degree of approximation.

The practical consequences of these propositions are important and immediate. It follows that as the signaling speed is increased, the amount of interference inevitably increases practically linearly and that this increase is inheremt. Again it shows the advantage of single is. double side-band transmision in carrier telephony, as pointed out by the writer in a recent paper. ${ }^{3}$ It should be noted that the increased interference with increased signaling band width is not due to any failure of the selective circuit to exclude energy outsite the signaling range, but to the inherent necessity of absorbing the interference energy lying inside this range. The only way in which the interference can be reduced, assuming an efficiently designed band liter and a preseribed frequency range $\frac{\left(\omega_{2}-\omega_{1}\right)}{2 \pi}$, is to select a carrier frequency, at which the energy spectrum $R(\omega)$ of the interference is low.

Formula (11) prociedes the theoretical basis for an actual determination of the static spectrum. Measurement of I^{2} over a sulficiently long interval, together with the measured or calculated data for evaluating the integral $\int_{0}^{\infty} \frac{d \omega}{Z(i \omega)^{2}}$, determines $R\left(\omega_{m}\right)$ and this determination can be made as accurate as desired ly employing a sufficiently sharply tuned circuit or a sufficienty narrow band filter. It is suggested that the experimental data could be gotten without great difficulty, and that the rembling information regarding the statistical frequeney. distribution of static would be of large practical value.

The selective figure of merit S de delined 1 g. (1F) is made up of $t W 0$ factors, $\frac{1}{\left(\omega_{2}-\omega_{1}\right)}$ which is inverely proportional to the required signaling freguency range; and the ratio of the integrals σ, ρ. This

[^39]ratios is unity for an ideally designed selective circuit, and can actually be made to approximate closely to unity with correctly designed bandfilters. Formula (14) is believed to have very considerable value in comparing various circuits designed to eliminate interference, and is easily computed graphically when the frequency characteristics of the selective circuit are specified.

The general propositions deducible from it may be brietly listed and discussed as follows:

I'ith a signaling frequency range" $\begin{gathered}\left(\omega_{2}-\omega_{1}\right) \\ 2 \pi\end{gathered}$ specified, the upper limiting ralue of S with a theoretically idenl selective circuit is $\frac{1}{\left(\omega_{2}-\omega_{1}\right)}$, and the excellence of the actual circuit is measured by the closeness with which its jigure of merit approaches this limiting zalue.

Formula (14) for the figure of merit S has been applied to the study of the optimum design of selective circuits and to an analysis of a large number of arrangements designed to eliminate or reduce static interference. The outstanding conclusions from this study may be brictly reviewed and summarized as follows:

The form of the integrals σ and ρ, taking into account the signaling requirements, shows that the optimum sclective circuit, as measured by S, is one which has a constant transfer imperlance over the signaling frepuency range $\frac{\left(\omega_{2}-\omega_{1}\right)}{2 \pi}$, and attenuates as sharply as possible currents of all frequencies outside this range. Now this is precisely the ideal to which the band fitter, when properly designed and terminated, closely approximates, and leads to the inference that the more filter is the best possible form of selective circuit, as regards random interference. Its superiority from the steady-state viewpoint has, of course, long been known.

An insestigation of the effect of securing extremely high selectivity by means of filters of a large number of sections was made, and led (1) the following conclusion :

In the case of an efficiently designed band-fiter, terminated in the proper resistance to substantally climinate reflection losses, the ligure of merit is given to a good approximation by the equation

$$
S=\frac{1}{\omega_{2}-\omega_{1}} \frac{1}{1+1} 16 n^{2}
$$

Where n is the number of hifere sections and $\frac{\left(\omega_{2}-\omega_{1}\right)}{2 \pi}$ the transmission band. It follows that the selective figure of merit increases inappreciably with an increase in the number of fitter sections beyond 2, and that the
band filler of a fea sections can be designed to hate a figure of merit closely approximating the ideal limiting value, $\frac{1}{\left(\omega_{2}-\omega_{1}\right)^{\prime}}$

This proposition is merely a special case of the general principle that, as regards static interference, it is useless tomploy extremely high selectivity. The gain ohtainable, as compared with only a moxerate amount of selectivity is slight and is inherently accompanied by an increared sluggishness of the circuit. That is to s.1y, is the selectivity is increased, the time required for the signals to build up is increased, with a reduction in quality and possible signaling speed.

Another circuit of practical interest, which has been proposed as a solution of the "static" problem in radio-communication consists of a series of sharply tuned oscillation circuits, unilaterally coupled through amplifiers. This circuit is designed to receive only a single frequency (1) which all the individual escillation circuits are tuned. The higure of merit of this circuit is approximately.

$$
S=L \quad R^{\frac{2 n n 2(n-1)!2}{(2 n-2)!}}
$$

where n denotes the number of sections or stages, and L and R are the inductance and resistance of the individual oscillation circuits. The outstanding fact in this formula is the slow rate of increase of S with the number of stages. For example, if the number of stages is increased from 1 to 5 , the figure of nerit increases only by the factor 3.biti, while for a further increase in n the gain is very slow. ${ }^{5}$ This gain, furthermore, is accompanied by a serious increase in the "sluggishness" of the circuit: That is, in the partciular example cited, hy an increase of \bar{j} to 1 in the time required for signals to build up to their steady state.

The analysis of a number of representative schemes, such as the introduction of resistance to damp out disturbances, balancing shemes designed to neutralize static without affecting the signal, detuning to change the natural oscillation frequency of the circuit, demodulation through several frequency stages, etc., has shown that they are one and all without value in increasing the ratio of mean square signal to interference current. In the light of the general theory; the reason for this is clear and the limitation imposed on the solution of the static problem by means of selective circuits is seen to be inherent in the nature of the interference itself.

[^40]
Some Contemporary Advances in Physics-VII Waves and Quanta

By KARL K. DARROW

THE invaluable agem of our best knowledge of the envirming world, and yet itself unknown except ly inference; the intermediary 1etween matter and the finest of our senses, and yet itself non material; intangible, and yet able to press, to strike blows, and to recoil; impalpable, and yet the vehicle of the energies that flow to the earth from the sun-light in all times has been a recognized and conspicuons feature of the physical world, a perpetual reminder that the material, the tangible, the palpable substances are not the only real ones. Ver its apparent importance, to our forerumers who knew only the rays to which the ege rexponds and suspected no others, wats ats nothing beside its real importance, which was realized very gradually during the nineteenth century, as new families of rays were discovered one after the other with new detecting instruments and with new sources. Radiation is mot absent from the places where there is no eye-stimulating light; radiation is ommipresent; there is no region of patace enclosed or boundless, vacuous or occupied by matter, which is not pervaded by rays; there is no substance which is not perpetually absorbing rays and giving others out, in a contintal interchange of energy, which either is an equilibrium of equal and opposite exchanges, or is striving powards such an equilibrium. Radiation is one of the great general entities of the physical world; if we could still use the word "elemem," not to mean one of the eighty or ninety kinds of material atoms. but in a deeper sense and somewhat as the ancients thed it, we might describe radiation and matter, or pussihly radiation and electricity, as coerpal elements. Aso the prohlem of the nature and structure of radiation is of no lesser importance than the problem of the structure and nature of matter: and in fart neither can be treated separately; they are so inextricably intertwined that whoeser sets out to expound the present condition of one soon tinds himself outlining the other. One canmot write a diecourese on the mature of radiation alone nor on the structure of the Atom atone, we can but vary the relative emphasis lad upom these two -ubjects, or rather upon these two aspecte of a single subject; and in this artich I shall restate many things about the atom which werestated in forme articles, hut the emphasis will be laid upon lighe.

Speaking wery gencrally and rather vaguely, light has been much more tractathe the theorists than most of the other objects of
empuiry ill physis or chemintes. Over a rather long perion of pears, it wis indeed gemerally regereled as perferely intelligible. The fatmon- bathe between the corpuscular theory ahoted by Newtom, and the wase-thory founded by Deacartes and Ilagghons, died nut in the earlier sears of the nineteemth eentury with the gralual extinction of the former. The history of optes in the nineteonth remtury, from Freshel and Vomer to Miehelson athd Raveigh, is the tale of a brilliant series of beatutifal atul striking demonstrations of the Wase-theory, of experiments which were foumhel upen the wave theory as their basis and would have fated if the hasis hat mot been firm, of instruments which were designed and compedent to make difficult amb delicate measurements of all sorts from the thickness of a sheet of molecules to the diameter of a star -and would hase been useless had the theory been fallacions. The details of the beoding of light around the sides of a slit or the edge of a soreen, the intricate pattern of light and shade formed where sublivisions of a heam of light are reunited after separation, the complexities of refraction through a curved surface, are reprosented by the theory with all verifible accuracy; and so are the incredibly complieated phenomena attending the progress of light through crystals, phenomena which have slipped out of common knowledge because few are willing to molertake the labour of mastering the theory: The wave-theory of light stands with Newton's inverse-square law of gravitation, in respect of the many extraordinarily precise tests which it has undergone with triumph; I know of no other which can rival either of them in this regarl.

By the term "wave-theory of light" I have meant, in the foregong paragraph, the conception that light is a wave-motion, an undulation, a periodic form advancing through space without distorting its shape; I have not meant to imply any particular answer to the guestion, what is it of which light is a wave-motion? It may seem surprising that one can make and defend the conteption, without having answered the question beforehand; but as a matter of fact there are certain properties common to all undulations, and these are the properties which have been verified in the experiments on light. There are also certain properties which are not shared by such waves as those of sound, in which the vibration is confined to a single direction (that normal to the wavefront) and may not vary otherwise than in amplitude and phase, but are shared by transserse or distortional watse in elastic solirls, in which the vibration may lie in any of an intinity of directions (any direction tangent to the waveromet). Vight possesses these properties, and therefore the wate-motion which is
radiation may not be compared with the wave-motion which is sound; but a wide range of comparisons still remains open.

Of course, very many have proposed images and models for "the thing of which the vibrations are light", and many have believed with an unshakable faith in the reality of their models. The fact that light-waves may be compared, detail by detail, with transverse vibrations in an elastic solid, led some to fill universal space with a solid elastic medinm to which they gave the sonorous name of "luminiferous aether". It is not many years since men of science used to amaze the laity with the remarkable conception of a solid substance, millions of times more rigid than steel and billions of times rarer than air, through which men and planets serencly pass as if it were not there. Even now one finds this doctrine occasionally set forth. ${ }^{1}$

In that image of the elastic solid, the propagation of light was eonceived to occur becanse, when one particle of the solid is drawn aside from its normal place, it pulls the next one aside, that one the next one to it, and so on indefinitely. Meanwhile, each particle which is drawn aside exerts a restoring force upon the particle of which the displacement preceded and caused its own. Set one of the particles into vibration, and the others enter consecutively into viloration. Maintain the first particle in regular oscillation, and each of the others oscillates regularly, with a phase which changes from one to the next; a wave-train travels across the medium. One particle influences the next, because of the attraction between them. But in the great and magnificent theory of light which Maxwell erected upon the base of Faraday's experiments, the propagation was explained in an altogether different manner. Vary the magnetic field across a loop of wire in a periodic manner, and you obtain a periodic electric force around the loop, as is known to everyone who has dabbed in electricity. Vary the electric field periodically, and yout ohtain a periodic magnetic field-this a fact not by any means so well known as the other, one which it was Maxwell's distinction to have anticipated, and which was verifiel after the event. In a traveling train of light-waves the electric field and the magnetic field stimnlate one another alternately and reciprocally, and for this reason the wate-train travels. Since the periodic electric field may point in any ohe of the infinity of directions in the plane of the wavefront, the wave-motion possesses all the freedom and variability of

[^41]form which are reduired to .weome for the whersed propertion of light.

Monwell's theory immadiately whered the stmming saceen of preatming at value for the spere of the imaginel electromagnetis
 beds of electric currents, and agreeing preciely with the obersend -pecel of light. Two suppesedly distinct province of physics cath of which hat been organizal on its own particular hasis of experience and in it own particular mamer, were sude enly mited by a soroke of shmese to which iew if any parallels can be fomed in the himery of thought. Ind this is hy means the only achievement of the electromatgetic theory of light; there will shorty be accasion to memtion some of the others.

Sow that there was st much evidence that light travels an a watemonions. and that its-apect and other propertien are thene of eleetromagnetic wase, it became uremely desirable to inquire inte the noture of the sources of lighe. Granted that lighe en route outwards from a hmminou- particle of matter is of the nature of a combination of wave-trains, what in taking place in the luminou- particle? To this quention all our evperience and all our hahits of thought suggest ome alle olvions answer that in the luminous particle there is a vibrating -tmeding, a vibrater, or mare likely an enormous number of vibra-tors- one to cath atom, pos-ibly and the oncillations of these vibratore are the source of the wase of light, at the ostillations of a diolin-string or a tuning-fork are the sources of waves of somud. This amalogy drawn from acoustios, this pieture of the vibrating ioflin-tring and the vibrating tuning-fork, has been prowerful indecel. it legin 16 neem. (ox powerful -ing guiding the formation of nur ideas on light. It is profitable to reflect that the evolution of thought in acon-tios mut have traveled in the opposite sense from the ewolution of thought in eptics. Wheever it was who was the firs to conceive that aund is a wave-motion in air, must certainly hawe arrised st the iflea by moticing that sounding bodien vilerate. One feet- the trembling of the cuning-fork or the bell, we sees the violin-mring apparently aprad out into a hand bo the amplitude of it- menton; it is not difficult to build apparatus which, like a shweddown cinemat litm, makes the vibrations separately visible, or, like the strolumerope, produce an enpuivalent and mot misleading illusion. This was mot prosible in uptios, and never will be. In acoustios, one moly sometime atcept the vibrations of the sounding body as an independembegiven fact of experience, and reaton forward to the wave-motion spreading outwards into the environing dir; in opties,
this entrance to the path is closed, one must reason in the inverse sense from the wave-motion to the qualities of the shining body. Inevitably, it was assumed that when the path should at last be successfully retraced, the shining body would be found in the sentblance of a vibrator.

For a few years at the end of the nineteenth century and the beginning of the twentieth, it seemed that the desired vibrator had been found. Apparently it was the electron, the little corpuscle of negative electricity, of which the charge and the mass were rather roughly estimated in the late nineties, although Millikan's definite measurements were not to come for a decade yet. Maxwell had not conceived of particles of electricity, his conception of the "electric fluid" was indeed so sublimated and highly formal that it gave point to the celebrated jest (I think a French one) about the man who read the whole of his "Electricity and Magnetism" and understood it all except that he was never able to find out what an electrified body was. H. A. Lorentz incorporated the electron into Maxwell's theory: Conceiving it as a spherule of negative electricity, and assuming that in an atom one or more of these spherules are held in equilibriumpositions, to which restoring-forces varying proportionally to displacement draw them back when they are displaced, Lorentz showed that these "bound" electrons are remarkably well adapted to serve as sources and as absorbents for electromagnetic radiation. Displaced from its position of equilibrium by some transitory impulse, and then left to itself, the bound electron would execute damped oscillations in one dimension or in two, emitting radiation of the desired kind at a calculable rate. Or, if a beam of radiation streamed over an atom containing a bound electron, there would be a "resonance" like an acoustic resonance-the bound electron would vibrate in tune with the radiation, absorbing energy from the beam and scattering it in all directions, or quite conceivably delivering it over in some way or other to its atom or the environing atoms. There were numerical agreements between this theory and experience, some of them very striking. ${ }^{2}$ Apparently the one thing still needful was to produce a plausible theory of these binding-forees which control the response of the "loound" electron to disturbances of all kinds. Once these were properly described, the waves of light would be supplied with

[^42]their vibrstors, the electromagnetic theory would receive a most viluable supplement. And, mush as a competent thenry of the binding-forces was to be desired, a continuing failure to produce one would not impugn the electromagnetic theory, which in iteelf was a coherent system, self-sustaining and self-sufficient.

This was the state of affairs in the late nineties. The wave-conception of light hat existed for more than two centuries, and it was seventy-five years since any noticeable opposition had been raised against it. The electromagnetic theory of light had existed for about thirty years, and now that the electron had been discovered to serve as d source for the wases which in their propagation through spate had already been so abundantly explained, there was no effective opposition on it. Not all the facts of emission and absorption had been accounted for, but there was no reason to believe that any particular one of them was unaccountable. Authoritative people thought that the epoch of great discoveries in physics was ended. It was only beginning.

In the year 1900, Max Planck published the result of a long series of researches on the character of the radiation inside a completelyenclosed or nearly-enclosed cavity, surrounded by walls maintained at an even temperature. Every point within such a cavity is traversed by rays of a wide range of wave lengths, moving in all directions. By the "character" of the radiation, I mean the absolute intensities of the rays of all the various frequencies, traversing such a point. The character of the radiation, in this sense, is perfectly determinate; experiment shows that it depends only on the temperature of the walls of the cavity, not on its materjal. According to the electromagnetic theory of radiation, as completed by the adoption of the electron, the walls of the cavity are densely crowded with bound electrons; nor are these electrons all bound in the same manner, so that they would all have the same natural frequency of oscillationthey are bound in all sorts of different ways with all magnitudes of restoring-forces, so that every natural frequency of oscillation over a wide range is abundantly represented among them. Now the conclusion of Ilanck's long study was this:

If the bound electrons in the walls of the cavity (i.e., in any solid body) did really radiate while and as they oscillate, in the fashion prescribed by the electromagnetic theory, then the character of the radiation in the carity would be totally different from that which is observed. ${ }^{3}$

[^43]However, if the bound electrons do not radiale energy while they oscillate, but accumulate it and saie it up and finally discharge it in a single outburst when it attains some one of a certain series of adulues $h \nu, 2 h \nu, 3 h \nu$, etc. (h stands for a constant factor, ν for the frequency of vibration of the electrons and the emitted radiation)-then the character of the radiation will agree with that which is observed, provided a suitable value be chosen for the comstant h.

The value required 'for h in C.(i..S. units (erg seconds) is $6.53 .10{ }^{27}$.
Here, then, was a phenomenon which the electromagnetic theory seemed to be fundamentally incapable of explaining. For this notion of a bound electron, which wsillates and does not meanwhile radiate, is not merely foreign to the classical theory, but very dangerous to it; one does not see how to introduce it, and displace the opposed notion, without bringing down large portions of the structure (including the numerical agreements which 1 cited in a foregoing footnote). However, Planck had arrived at this conclusion by an intricate process of statistical and thermodynamical reasoning. Statistical reasoning is notoriously the most laborious and perplexing in all physics, and many will agree that thermodynamical reasoning is not much less so. Planck's inference made an immense impression on the most capable thinkers of the time; but in spite of the early atherence of such men as Einstein and Poincare, I suspect that even to this day it might practically be confined to the pages of the more profound treatises on the philosophical aspects of physics, if certain experimenters had not been guided to seek and to discover phenomena so simple that none could fail to apprehend them, so extraordinary that none coukd fail to be amazed.

Honour for this guidance belongs chiefly to Einstein. Where Planck in 1900 had said simply that bound electrons emit and alsorb) energy in fixed finite quantities, and shorty afterwards had softened his novel iclea as far as possible by making it apply only to the act of emission, Vinstein in 190.s rushed boklly in and presented the dea that these fixed finite quantities of radiant energy retain their ifentity throughout their wanderings through space from the moment of emission to the moment of absorption. This idea he offered as a "heuristic" one the word, if I grasp its comotation exactly: is an apologetic sort of a word, used to describe a theory which achieses successes though its atuhor feels at heart that it really is too absurd to

[^44]the preentable The implieation is, that the experimenters should penced to serit! the predictions besed upon the irles, gute as if it were aceptable, while remembering alwats that it is absurt. If the succeses continte to monnt up, the absurdite may be contidenty evpered to f.ule gradually out of the public mind. Such wats the desting of this hemristic idea.

1 will now dexcribe some of the wo werfully simple phenomena womberfully simple incleed. for they stand out in full simplecter in dematis: where the elassical electromangetic theory wexld almost or quite certainly impose a serious complevity: If l'anck's inference from the charscter of the rarlistion within a cavity had been deferserl for another tifteen bears, one or more of these phemomena would s-auredly have been disoovered inderendently. What would have happened in that case, what course the evolution of theoretical physies would hase followed, it is interesting to conjecture.

The photodectric effecl is the outhowing of electrons from a metal, oseurring when and becatuse the metal is illuminated. It was discosered by Hertz in Issi!, but several years elapsed hefore it was known to le an efllux of electrons, and several more before the elect rons "ere proved to come forth with speeds which sary from one electron to another, upwards as far as a certain delinite maximum value, and never leevond it.

Here is a rather delicate point of interpretation, which it is well to examine with some care; for all the controversies as to continuity versus discontinuty in Niature turn upon it, in the last analysis, What is meant, or what reasomable thing can be meant, when one salys that the speeds of all the electons of a certain group are confined within a certain range, extending up to a certain limiting topmost value? If one could deteet each and esery electron separately, and separately measure its speed, the meaning would be perfectly clear. For that matter, the statement would degenerate into a truism. The faet is otherwise. The instruments used in work such as this perceise electrons only in great multitudes. Suppose that one intercepts a stream of electrons with a metal plate connected by a wire to an electrometer. If a barrier is placed before the electrons in the form of a retarding potential-drop, which is raised higher and higher, the moment eventually comes when the current into the electometer declines. This happens because the slower electrons are stopped and driven lack before they reach the plate, the faster ones surmount the barrier. As the potential-drop is further magnifiet, the reading of the electrometer decreases steadily, and at hast hecomes inappreciable. Beyond a certan critical value of the retard-
ing voltage, the electrometer reports no influx of electrons. Does this really mean that there are no electrons with nore than just the speed necessary to overpass a retarding voltage of just that critical value? Or does it merely mean that the electrons flying with more than that critical speed are plentiful, but not quite plentiful enough to make an impression on the electrometer? Is there any topmost speed at

Fig. 1-Curves showing thermionic electron-current versus opposing voltage, demonstrating a distribution-in-speed extending over an unlimited range of speeds. Multiply the ordinates of the middle curve by 100 , those of the right-hand curve by 10,000 , to bring them to the same scale and make them merge into a single curve. (L. H. Germer)
all, or should we find, if we could replace the current-measuring device with other and progressisely better ones ad infinitum, that the apparent maximum speed soared indefinitely upwards?

Absolnte decisions camot be rendered in a question of this kind; but it is possible, under the best of circumstances, to pile up indicatory evidence to such an extent that only an unusually strong will-to-disbelieve would refuse to be swayed by it. The judgment depends on the shape of the curve which is obtaned by plotting the electro-meter-reading e's, the retarding potential in other words, the fraction y of the electrons of which the energy of motion surpasses the amount x, determined from the retarding-voltage by the relation $x=e l$. Look for example at the curves of lig. 1, which Pefer to the electron-

Fig. 2 Curves showing photoelectric electron-current versus opposing voltage, demonstrating a distribution-in-sperd extending ower a range limited at the top (R. A. Millikan, Physical Reriew)
stream flowing spontaneonsly out of an incanderemt wire: they are three segments of one single curse, plotted on different scales as the numerals show. This curse beods en gradually around towards tangency whth the axis of abscissate, that one can hardly avoid the inference that it is really approaching that axis an if to an asymptote, and that if the efectrometer at any point ceases to declare a current. it is becatuse the efectrometer is too insensitive to respond to the smaller curremts, and not becaluse there are no faster electrons. Look instead at the curves of liig. 2, which refer to the electrons emerging from an illuminated surface of sodium. These corves slant so sharply towards the avis of albscissae, they bend so slighty in the portions of their courses where the datat of experiment determine them, that the linear extrapolation ower the little interval into the axis commends iteelf as natural and inevitable. Becanse the curves for the thermionic electrons approach the axis so gently, it is agreed that their velocities are distributed continuonsly over an monimited range: hecanse the curses for the photoclectrons cut into it so acutely, it is felt that their velocities are confined below a definte maximum value.

This therefore is the photoelectric effect: waves of light inundate the surface of a metal, and electrons pour out with various velocities. some nearly attaining and none exceeding a particular tophost vahe. I will designate this maximum speed, or rather the corresponding maximum kinctic energy, $\mathrm{l}_{\mathrm{g}} E_{\text {max }}$ Analyang the process in the classical manner, one must imagine the wases entering into the metal and setting the indwelling electrons into forced osciltations: the ascillations grow steadily wider; the seeet with which the electrom dashes through its middle position grows larger and larger, and at last it is torn from its morings and forces its way throngh the surface of the metal. Some of the energy it absorbed during the ose illationsis spent (comerted into potential energy) during the esape; the rest is the kinetic energy with which it lies away. Even if the electron were free whthen the metal and couk sscillate in response to the Wases, unrestraned by any restoring foree, it wotld still have to -pend some of its acquired energy in passing out through the boundary of the metal (the laws of thermionic emission furnish evidence enough for this). It is natural to infer that $E_{\text {max }}$ is the energy absorbed by an electron originally free, minus this amount (let me call it P) which it must sacrilice in ernssing the frontier; the electrons which emerge with energion lower than $E_{\text {max }}$ may be supposed to have mate the same satrilice at the fromtier and others in atdition, whether in tearing themselves away from an additional restraint or in colliding with atome during their amigration. This is mot the only conceivable

ton the mere fart that there in a matimum velocits of the sactpret

 of this quathtit! on the two most important controlable eftalities wh the light on it fittensity and on it- fregwenes which aw.akenthe lirst faint alypucions that something has at has been disowered, whish the elswieal theory is ill adapted to explatin. ()ne wosklel pretiet with a gexel deal of eombedence that the greater the intensity of the lighe, the gresere the energy acpured by the electron in eath racke of is- forcet aseillation would ber, the gratter the energe with whish it would linally break wss, the greater the resiltum of enersy which at the end would be left to it. But $E_{\text {max }}$ is found to be indepement of the intensity of the light. This is strange; it is ats thongh the wate leating upon a beath were doubley in their height and the powerful new wates disturbed four times as many pebbles ats before Lut did nex displate a single one of them any farther nor agitate it aly more violently thatn the original gentle wases did to the pebbles thit they wished abome. Is for the dependence of $E_{\text {max }}$ on the frefremey of the light, it would be neressary to make adtlitional atssmp)tions to cateulate it from the classieal theory: in any case it would probably not be very simple. But the actat relation between $E_{\text {max }}$ and v is the simplest of all relations, short of an alsolute proportionality; this is it:

$$
\begin{equation*}
E_{\mathrm{max}}=h \nu-\Gamma \tag{1}
\end{equation*}
$$

Fis. 3 shon- the relation for sodium, olmerved by Millikan.
The maximm energy of the photoelectrons increases linearly with the fretpenty of the light. P is a constant which taries from one metal to another. In the terms of the simple foregoing interpretation, P is the energy which an electron must spend (more precisely, the energy which it munt invent or comsert into potential energy) when it pases through the frontier of the metal on its way outward. (omparing the valuen of P for neveral metals with the contact pestentials which they di-play relatively to one another, one finds powerful evielence confirming thi- theory: Having discussed this particular s-peet of the gus-tion in the lifth article of this series, I will not enter further into it at this point.

The constamt h is the same for all the metals which have been tued in suth evperiment-. The best determinations have been made upan two or three of the alkali metals, for theee are the only metals

lig. 3 Curve showing the linear relation between the maximum energy of photoelectrons and the frequency of the light which excites them. (Xilikan, Physical Review)
"hieh release deetrons when illnminated with light of wide comenient ranges of frequeney and condor. Moso metals must be irradiated with ultravielet light, and the experiments hecome bery difticult if they must be performed with light of frequencies far from the wisible spectrum. The walues which Millikan wbtained for sothum and for lithium agree within the experimental error with one another and with the mean value

$$
\begin{equation*}
h=10.37 .10: 7 \tag{2}
\end{equation*}
$$

The maximum energy of the electrons releated by light of the frequency v is therefore equal to a quantity $h \nu$ which is the same. whateser metal be illmmated by the light o quantity which is characteristic of the light, note of the metal minus at fumbtiys P which, there is every reason to believe, is the qumta of energy surrendered by cach electron in passing out across the boumbary-surface of the metal. It is as if each of the released electrons had reseived a quantity he of energy from the light. I will go one step, further, and lay down this as a rule, with anoher camionsly-inserted as if to guaral against tee suddenly daring an inmovation:

Photodetric emission occurs as if the energy in the light were concentrated in packets, or units, or corpuscles of amount hv, and one zehole unit zecre delitered oser to each electron.

This is a perfectly legitimate phrasing of equation (1), but 1 doubt whether anyone woukd ever have employed it, even with the guarded and apologetic as if, but for the fact that the value of h given in (2) agreed admirably well with the value of that constant factor involved in Planck's theory, the constant to which he had given this very symbel and a somewhat similar role. Deferring for a few pages one other extremely relesant feature of the photoelectric effect (its "instantaneity") 1 will proceed to examine these other situations.
An effect which might well be, though it is not, called the inverse photoelectric effect, ofecurs when etectrons strike vinlently against metal surfaces. Since radiation striking a metal may elicit electrons. it is not surprising that electrons bombarding a metal should excite radiation. Electrons moving as slowly as those which ultraviolet or blue light excites from soctium do not have this power: or possibly they do, but the radiation they excite is generally $t(x)$ feelle to be detected. Electrons moving with speeds correspmating to kinetic energies of hundreds of equivalent volts, ${ }^{5}$ and especially electrons

[^45]With energies amounting to tens of thousands of equivalent volts, do posses it. This is in fact the process of excitation of X゙-rays, which are radiated from a metal target exposed to an intense bombardment of fast electrons. The protagonists of the electomagnetic theory hat an explanation ready for this effect, as soon as it was discoverel. A fast electron, colliding with a metal plate, is brought to rest ly a stowing-down process, which might be gradual or abrupt, uniform or saccadé, but in any case must be comtinuous. Slowing-rlown entails radiation; the radiation is not uscillatory, for the electron is not oscillating, but it is radiation none the less; it is an outward-ipreading single pulsation or pulse, comparable to the narrow spherical shell of condensed air which diverges outward through the atmosphere from an electric spark and has been phonographed so often, or to at transient in an electrical circuit.

One may object that the pulse is just a pulse and nothing more, while the X-rays are wave-trains, for wherwise the X-ray spectroscope (which is a diffraction apparatus) would not function. The objection is answered by printing out the quite indubitable fact that any pulse, whatever its shape (hy "shape" I mean the shape of the curse representing the electric fied strength, or whatever other variable one chooses to take, as a function of time at a point traversed by the wawe) can he acourately reproduced by superposing an infinity of Wate-1rains, of all frequencies and divers properly-adjusted amplitudes, which efface one another's periodic variations, and in fact efface one another athogether at all moments except during the timeinterval while the pulse is passing over during this interval they coalesce into the pulse. Thence, the argument leads to the contention that the artual pulse is made up of just such wate-traths, and the sappent diffracting crystal recognizes them all and diffracts each of them duly along its proper path. The problem is not new, nor the answer: white light has long been diagmosed as consisting of just such pulsen, and the mether of analyang transient impulses in electrical circuits into their equivalent sums of wate-trains has been strikingly successful.

The application of the method to this case of X-ray excitation enjoyed one qualitative success. The spherical pulse diterging from the place where an electron wats bronghe to rest should not be of equal thickness at all the points of its surface; it should be broader and Hatter on the side towards the direction whence the electron came, thinner and sharper on the side towarels the direction in which the electron was going when it was arrested. Analyoing the pulse, it is found that at the point where it is broat and low, the mose intense of
 the mose interne of the Wase-tratis whieh ramstithte it where it is narrosw and high lis examining and resolving the X-ras- radiated from a target, at ariens inclitations to the direction of the lumbarding chertens, this was weritied verifed in part, not alogether. The X-

Fig. 4 ('urses "istrhromatics") each representing the intensity of \mathcal{X}-radiation of a very narrow ranke of frequenciec, plothed verstes the energy of the hombarding eletrons. Duane \& Hum, Physical Revieze)
lewer propertion of high-freguency wate-tratis, they are softer as the phrase is, than the \mathbb{X}-rass radiated nearly along the prolongation of the deatron-stream. In the speetram of each of these beams of $X-$ raly $=$ there is a wave length where the densit! of radiant energy attains a maximm, and this wave length is longer in the former heam than in the latter one. So much is implied in the classical theory:

But it is newhere implied in the eldsoical theory that the speetrum of an X-ray heam, prexlocel when certents of a constant energy rain down upon a metal, should extend upwards only to a certain
maximum frequency, and then and there come to a sudden end; yet apparently it does. There is a high-frequency limit to each X-ray spectrum, and wave-trains of frequencies exceeding that limit are not detected; whereas the spectrum of the hypothetical pulses ought to include wave-trains of every frequency low or high, the amplitudes indeed declining to infinitely low values as one goes along the spectrum to infinitely high frequencies, but certainly declining smoothly and gradually: To demonstrate this high-frequency limit is a delicate experimental problem, quite like that other problem of demonstrating a sharply definite topmost value for the energies of photoelectrons. That question whether the curves of photoelectric current a's. retarding voltage, the curves of Fig. 2, cut straightly and sharply enough into the axis of abscissae to prove that there are no photoelectrons with velocities higher than the one corresponding to x_{0}, returns again in a slightly altered form.

The most reliable of the methods actually used to demonstrate the high-frequency limit depends on the fact that the high limiting frequency (which I will call $\nu_{\max }$) varies with the energy of the homharding electrons, increasing as their velocity increases. Therefore, if the radiant energy belonging to ray's of a certain fixed wave length or a certain fixed narrow range of wave lengths is separated out from the X-ray heam by a spectroscope, and measured for various velocities of the impinging clectrons, passing from very high velocities step by step to very low ones; it will decrease from its first high value to zero at some intermediate velocity, and thereafter remain zero. But according to the elassical theory also, it must decrease from its first high value to an imperceptibly low one; the descent however will he gradual and smooth. Thus the only question which can be settled by experiment is the question whether the descent from measurable intensities to immeasurably small ones resembles the gentle quasiasymptotic decline of the curve of Fig. 1 or the precipitate slope of the curse of Fig. 2. The data assembled by Duane and Hunt are shown in Fig. 4 plotted in the manner I have described; there is little uccasion for doubt as $i 0$ which sort of curve these resemble most. ${ }^{6}$

Each of the curves in Fig. 4 represents that portion of the total intensity of an X-ray beam, which belongs to rays of wave lengths near the marked value of the frequency ν. This frequency is the high

[^46]limiting frequency $\nu_{\text {max }}$ for that bilue of the energy E of the bombareling electrons, which eorresponds to the paint on the avis of abscissae where the curse (evtrapolated) intersects it. The relation between $v_{\text {max }}$ and E is the simplest of all relations:
\[

$$
\begin{equation*}
E=\|0\| s t .111 t \cdot v_{\text {max }}=h v_{\text {max }} \tag{3}
\end{equation*}
$$

\]

The constant h is the same for all the metals on which the experiment has been performed a few of the least fusible ones, for metals of a low meteing-point wonk be metted before E condel be lifted far conough to give an selequate range for determining the relation between it and

Racios of inionsit as of lines
af 400 kr to chare $\Delta 63 / 8 \mathrm{kV}$ (with geveral rutistion gubiracied), are Vilueg.of h given by there curves. 4swiming 0.477 F10 esu, are alsa0kvo $h=652 \cdot 10^{-n i n}$ erg sec: - $318=$. $h-638 \cdot 10^{\prime \prime}=$ " 292 .. h-639. $0^{\circ \prime}$.
When of all t dipiorminalions on chactum, with thig value of is $639 \cdot 10^{\circ}$ erg sec

Fig. 5-The continuous X-ray spectrum for three values of the energy of the hombarding electrons, intensity leeing plotted versus a quantity varying uniformly with frequeney. Ignore the peaks. (D). L. Wehster,', Physical. Reriew.) See footnote 6
$\nu_{\text {max }}$. The value ${ }^{7}$ given for it by Gerlach, after a critical study of all the determinations, is

$$
\begin{equation*}
h=\left(6.53 .10^{27}\right. \tag{1}
\end{equation*}
$$

The highest frequency of radiation which electrons mosing with the energy E are able to excite, when they are brought to rest by colliding with a metal target, is therefore equal to E divided by a constant independent of the kind of metal. So far as this high limiting frequency is concorned, it is perfectly legitimate to express equation (3) in these words,

Exritation of radiation by electrons stopped in their jlight by collision with a metal occurs as if the energy in the radiation were concentrated in units of amownt hv, and one such wnit were created out of the total energy' which each electron surrenders when it is stopped.

As for the radiation of frequencies inferior to the high limiting freguency, it is very easily explained by asserting that most of the electrons come to rest not in one operation, but in several successive ones, dividing their energy up among several units of freguencies inferior $10 \nu_{\max }$ or E h; or possibly they lose energy in varions sorts of impacts of various other ways before making the first impact of the sort which transforms their energy into energy of X-rays. Nothing about it contradiets the italicized rule. Still it is not likely that anythe would have formulated equation (3) in such language, if the value of the constant h which appears in it were not identical with the value which we have already once encountered in analyoing the photoelectric effect, and with the value at wheh Planck eartier arrived.

I think it is too early in this discourse to fuse these italicined Rules for the release of electrons by radiation and the excitation of radiation by electrons into a single Rule; but by contemplating the two Rules side liy side one arrives without much labor at an inference wheh could be tesed even though we had no way of meisuring the frequency of a radiation, and in fact was verifed before any such way existed. For if efectrons of energy E can excite radiation of freguency $E h$, and radiation of frequency $E h$ striking a piece of metal catn elicit electons of energy $h(E \quad h)-P$; then, if a target is bombareled with electenss, and another metal target is exposed to the radiation which emanates from the lirst one, the fastent of the eleetrons which escape from the second target will move with the same velocity and

[^47]the state energy as the electrons which strike the lirst one (mimns the quantity P whidh, howeser, is immeasurably small and perfoctly negligible in comparison with the energy of the electrons which eveite ordinary X-rays). This fact emerged from as series of evperiments which were performed by varints perple in the first deroule of this century, the results of which were senterally phrated someWhat in this Way, "the energy of the eromblary electrons dependonly ont the energy of the primary electrons, not on the nature of the material which the primary electrons strike or on that from which the secondary electrons issue, nor on the distance ower which the X-rays trawel." 1poul these results sir William Bragg based his corpuscular theory of X-ratys for (he argued) the most sensible interpretation of the farts is surely this, that some of the electrons striking the firm target rebound with their full energy, and reboumt again with their full energy from the second target, each of them carrying with it from the first to the second target a positive particle which neutralizes its charge over that part of its course, and sh elefeats all the methods devised to recognize a flying electron. Nint many years later, Sir William cooperated in the slaying of his own theory, by leveloping the best of all methods for proving that X-rays are undulatory and measuring their wave-lengths; but it was only the imagery of the theory that perished, for its essence, the idea that the energy of the first electron travels as a unit or is carried as a parcel to the place where the second electron picks it up, had to be resurrected. All the mystery of the contrast between wave-theory and quantum-therry is implicit in this phemomenon, for which Sir William found an inimitable simile: "It is as if one dropperl a plank into the sea from a height of 100 feet, ant found that the spreading ripple wats able, after travelling 1,000 miles and becoming infinitesimal in comparisont with itsoriginal amonnt, to act upon a worden ship in such a way that a plank of that ship flew out of its place to a height of 100 feet."

Among the radiations excited from a metal by electrons of a single energy E, there are many of which the frequencies differ from the interpreted frequency $E h$, being lower. Among the electrons expelled from a metal by radiation of a single frequency ν, there are many of which the energies differ from the interpreted energy-value $h \nu$, being lower. These were accounted for by supposing that the electrons are troubled by repeated encounters with closely-crowded atoms. If then a metal sapor or a gas were bombarded with electrons or exponed to radiation, would all the excited radiation have a single frequency conforming to equation (3), would all the released electrons
have a single energy conforming to equation (1)? One could not affirm this a priori, for a solid metal is not a collection of free atoms close together as a gas is an assemblage of free atoms far apart, but rather a structure of atoms which interfere with one another and are distorted, and there are many electrons in a solid of which the bonds and the constraints are very different from those by which the electrons of free atoms are controlled and vice versa. When a plate of sodium or a pool of mercury is exposed to a rain of electrons, not exceeding say 10 equivalent volts in energy, nothing apparent happens. ${ }^{8}$ When the vapor of either metal is similarly exposed, the atoms respond in a manner from which they are inhibited, when they are bound together in the tight latticework of a solid or the promiscuous crowding of a liquid; and light is emitted.

The phenomena are clearest when the bombarded vapor is that of a volatile metal, such as mercury, sodium, or magnesium. The atoms in such vapors are not usually hound together two by two or in greater clusters, as they are in such gases as oxygen or hydrogen, of which the response to electron-impacts or to radiation is not quite understood to this day; and the first radiations which they emit are not in the almost inaccessible far uftra-violet, like those of the monatomic noble gases, but in the near ultra-violet or even in the visible spectrum. Dealing with such a vapor, I will say mercury for definiteness, one observes that so long as the energy of the bombarding electrons remains below a certain value, no perceptible light is emitted; but beyond, there is a certain range of energies, such that electrons possessing them are able to arouse one single frequency of radiation from the atoms. Ordinarily, as when a vapor is kept continuously excited by a self-sustaining electric elischarge throughout it, the atoms emit a great multitude of different frequencies of radiation, forming a rich and complicated spectrum of many lines. But if the energy of the bombarding electrons is carefully adjusted to some value within the specified range, only one tine of this spectrum makes its appearance; under the best of circumstances this single line may be exceedingly bright, so that the absence of its companions-some of which, in an ordinary are-spectrum, are not much inferior to it in brightness-is decidedly striking. The one line which constitutes this single-line spectrom is the first line of the principal series in the complete arc-spectrum of the element; its wave length is (to take a few examples) 253tiA for mercury, 5 silo for sodium (for which it is a (foublet), 4571 for magnesium.

[^48]Does this single line appear suddenly at a prorise value of the energy of the impinging electonn-? This ghestion suggests itself, When one has alreaty studied the excitation of \mathbb{X}-ritys from solids by electrons and the ewitation of electrons from solids by light. Itere again we meet that tiresome but ineluetable problem, as to what constitutes a sudden appearance, and low we should reoognize it if it really occurred. The only consistent way to meet it (eonsistemt, that is, with the ways already employed in the prior cases) would be to mensure the intensity of the line for various values of the energy of the electrons. plot the curse, and decide whether or mot it cuts the asis of absicisse at a sharp angle. This is in principle the same method as is used in determining whether a given X-ray frequency appears sudklenly at a given value of the energy of the electrons bombarding a solid; the curses of Fig. I were so obtained. Attempting to apply this same method to such a radiation as 2,536 of mercury, one has the solitary advantage that the frequency of the light is sharp and definite (it is not necessary to cut an arbitrary hand of radiations out of a continuous spectrum) and two great counteracting disadvantages: the intensity of the light cannot be measured accurately (one has to guess it from the effect upon a photographic plate) and the impinging electrons never all have the same energy: Owing probably to these two difficulties, there is no published curve (that I know of) which cuts down across the axis of abscissae with such a decisive trend as the curses of Figs. 2 and 4. Still it is generally accepted that the advent of the single line is really sudden. The common argument is, that one can detect it on a photographic film exposed for a few hours when the energy of the bombarding electrons is (sty) is equivalent volts, and not at all on a plate exposed for hundreds of hours when the bombarding voltage is (say) 4.5 volts. In this manner the energy of the electrons just sufficient to excite 25.36 of mercury has heen located at 4.9 equivalent volts. Dividing this critical energy (expressed in ergs) by the frequency of the radiation, we get

$$
\begin{equation*}
\left(1.9 e^{\prime} 300\right) /(c .00002 .535)=6.59 \cdot 10^{-27} \tag{i}
\end{equation*}
$$

It agrees with the values of the constant which I designated by h in the two prior eases, and the data obtained with other kinds of atoms are not discordant. Gerlach arrises at $6 . .51 \cdot 10^{-27}$ as the mean of all values from experiments of this type upon many vapours. The evidence is not guite so strong as in the prior cases, but fortunately it is supplemented and strengthened by textimony of a new kind.

When electrons strike solids and excite X゙-rays, it is impossible to
follow their own later history, or the adventures of a beam of radiation after it sinks into a metal. We have inferred that the electrons which collide with a piece of tungsten and disappear into it transfer their energy to X-rays, but the inference lacked the final support which would have been afforded by a demonstration of these very electrons, still personally present after the collision but deprived of their energy. Now when electrons are fired against mercury atoms, this demonstration is possible, and the results are very gratifying. I have already several times had occasion to remark, in this series of articles, that when an electron strikes a free atom of mercury, the result of the encounter is very different, according as its energy of motion was initially less than some 4.9 equivalent volts, or greater. In the former case, it rebounds as from an elastic wall, having lost only a very minute fraction of its energy, and this fraction spent in communicating motion to the atom; but in the latter case, it may and often does lose 4.9 equivalent volts of its energy en bloc, in a single piece as it were, retaining only the excess of its original energy over and above this amount. Thus if electrons of an energy of 4.8 equivalent volts are shot into a thin stratum of mercury vapor, nothing but electrons of that energy arrives at the far side; but if electrons of an only slightly greater energy, say 5.0 equivalent volts, are fired into the stratum, those which arrive at the far side will be a mixture of electrons of that energy, and very slow ones. The very slow ones can be detected by appropriate means, and the particular value of the energy of the bombarding electrons, at which some of them are for the first time transformed into these very slow ones, can be determined. Once more we meet that question as to whether the transformation does make its first appearance suddenly, but in this case the indications that it does are rather precise and easy to read. Furthermore it is possible to measure the energy of the slow electrons, and one finds that it is equal to the initial energy of the electrons, minus the amount 4.9 equivalent volts. (These measurements are not so exact as is desirable, and it is to be hoped that somebody will take up the task of perfecting them.)

We, therefore, see both aspects of the transaction which occurs when an electron whereof the energy is 4.9 equivalent volts, or greater, strikes a mercury atom. It loses 4.9 equivalent volts of energy, and we measure the loss; the atom sends forth radiation of a certain frequency, and no other; the atom does not send forth even this frequency of radiation, if none of the electrons fired against it has at least so much energy. Wie have already compared the energy transferred with the frequency radiated, and as in the case of X-rays
eveited from a solid target by very fast eleatrons, it is legitimate to saly for these radiations which form the single-line spectro of metallic atoms, that

Pixcitation of the ray forming a single-line spectrom, by the collision of ant clectron against an atom, oceurs as if the energy in the radiation were concentrated in units of amount hy, and one such unit were createat out of the total energy which the electron surrenders.

There are yet several phenomena which 1 might treat by the same imductive method, arriving after each exposition at a Rule which would resemble one or the other of those which I have thus far written in italies; but it is no longer expechent, 1 think, to pass in each instance through the sume doborate inductive detour. These three phemomena which I have discusied already combine into an impressive and rather formidable obstacle to the classical manner of thinking. Here is a mercury atom, which receives a definite quantity of energy \mathscr{C} from an electron, and distributes it in radiation of a definite frequency $l^{\prime} h$. Here again is a multitude of atoms locked together into a solid, and when an electron conveys its energy U to the solid, it redistributes that energy in radiation of a delinite frequency U / h. (It is true that many other radiations issue from the solid, but they are all explicable if one assumes that the electron may deliver over its enersy in stages, and there is no radiation of the sort which would controvert the theory by virtue of its frequency exceeding U / h.) And when that radiation of frequency U, h in its turn strikes a metal, it is liable and able to release an electron from within the metal, conferring upon it an energy which is apparently equal to U. Apparently there is some correlation between an energy U and a frequency $L^{\prime} h$, between a frequency v and an energy $h \nu$. Apparently a block of energy of the amount U tends to pass into a radiation of the frequency L / h; apparently a radiation of the frequency ν tends to deliver up energy in blocks of the amount $h \nu$. The three italicized Rules coalesce into this one:

Photoelectric emission, and the excitation of X-rays from solids by electrons, and the excitation of single-line spectra from free atoms, occur as if radiant energy of the frequency ν were concentrated into packets, or units, or corpuscles, of energy amounting to $h \nu$, and each packet zere created in a single process and were absorbed in a single process.

If the neutralizing as if were omitted, this would be the corpuscular theory rediviza. It is good policy to leave the as if in place for awhile yet. But conservatism such as this need not and should not deter allyone from using the idea as basis for every prediction that can be founded upon it, and testing every one of the predictions that
can be tested by any possible way. Just so were the three phenomena cited in these Rules discorered. All of them involve either the emission or the absorption of radiation, and so do all the others which I could have quoted in addition, if this accomnt had been written three years ago. Reserving to the end the one new phenomenon that transcends this limitation, I must explain the relation between this problem and the contemporary Theory of Atomic Structure.

The classical notion of a source of radiation is a vibrating electron. The classical conception of an atom competent to emit radiations of many frequencies is this: a family or a system of electrons, each electron remaining in an equilibrium-position so long as the system is not disturbed, one or more of the electrons vibrating when the system is jarred or distorted. A system with these properties would have to contain other things than electrons, otherwise it would fly apart; it would have to contain other things than particles of positive and particles of negative electricity intermixed, otherwise it would collapse together. One would have to postulate some sort of a framework, some imaginary analogue to a skeleton of springs and rods and pivots, to hold the electrons together in an ensemble able to vibrate and not liable to coalesce or to explede. This would not be satisfying, for in making atom-models one wants to avoid the elaborate machinery and in particular the non-electrical components; it woukd be much more agrecable to build an atom out of positive and negative electricity associated with mass, omitting all masses or structures not electrified. Nevertheless, if anyone had succeeded in devising a framework having the same set of natural frequencies as (say) the hydrogen atom exhibits in its spectrum if anyone expert in dynamics or acoustics had been able to demonstrate that some peculiar slape of clrumhead or bell, if anyone versed in electricity had been able to show that some particular arrangement of condensers and induction-coils has such a series of natural vibrations as some one kind of atom displays-then, it is quite safe to say, that framework or that membrane or that circtit would today be either the accepted atom-model, or at least one of the chief candidates for acceptance. Nobody ever succeeded in doing this; it is the consensus of opinion today that the task is an impracticable one. ${ }^{9}$

[^49]This set of matural frequencies which boffled dill the efforts th explain it, the set comstituting the two simplest of all spectra (the spectrum of atomic hydrogen and the spectrum of ionized helium), is givell by the formula

$$
\nu=R\left(\begin{array}{c}
1 \tag{ii}\\
m^{2}
\end{array}-\frac{1}{n^{2}}\right)
$$

the different lines being whtained hy assigning different integral values to the parameters m and n; lines corresponding to values of m ramging from 1 to 5 inclusive, and to values of n ranging from 2 to 10 inclusive, have already been observed, and there is no reason to doube that lines corresponding to much higher values of m and n actually are emitted, but are too faint to be delected with our apparatus. The constunt R hats one walue for hyidrugen, another almost exactly four times as great for ionized helium.

Here, then, is the problem in its simplest presentation: How cam a model for a hydrogen atom be constructed, which shall emit rays of the frequencies given by the furmula (t), only these and no others? The obvious answer "By constructing a mechanical framework hasing precisely these natural frequencies" is practically excluted; it seems infeasible. Something radically different must be done. The achievement of Niels Bohr consisted in doing a radically different thing. with such a degree of success that the extraordinary divergence of his ideas from all foregoing ones was all but unisersally condoned. I do not know how Bohr first approached his theory; but it will do no harm to pretend that the manner was this.

Look once more at the formula for the frequencies of the hydrogen spectrum. It expresses each frequency as a difference between two terms, and the algelbaic form of each term is of an extreme sim-

[^50]plicity. Multiply now each member of the formula by h, that same constant h which we have encountered three times in the course of this article; and reverse the signs of the terms. ${ }^{10}$ The formula becomes
\[

$$
\begin{equation*}
h \nu=\left(-h R / n^{2}\right)-\left(-h R^{\prime} m^{2}\right) \tag{7}
\end{equation*}
$$

\]

In the left-hand member there stands $h \nu$. The reader will have become more or less accustomed to the notion that, under certain conditions and circumstances of Nature, radiant energy of the frequency ν apparently goes about in packets or corpuscles of the amount $h \nu$; now and then, here and there, energy is absorbed from such radiation in such amounts, or energy is converted into such radiation in such amounts. Suppose that this also happens when a hydrogen atom radiates, whatever the cause which sets it to radiating. Then the left-hand member of the equation (5) represents the energy which the hydrogen atom radiates; so also does the right-hand member; but the right-hand member is obviously the difference between two terms; these terms are respectively the energy of the atom before it begins to radiate, and the energy of the atom after it ceases from radiating.

The problem of the hydrogen atom has now experienced a fundamental change. The proposal to make a mechanical framework, having the natural vibration-frequencies expressed by (6), has been laid aside. The new problem, or the new formulation of the old problem, is this: how can a model for a hydrogen atom be constructed, which shall be able to abide only in certain peculiar and distinctise states or shapes or configurations, in which varjous states the energy of the atom shall have the various values $-h R,-h R 4,-h R 9$, -hR 16, and so forth?

Bohr's own model has become one of the best-known and mosttaught conceptions of the whole science of physics, in the twelve years of its public existence. He based it upon the conception, then rapidly gaining ground and now generally accepted, that the hydrogen atom is a microcosmic sun-and-planet system, a single electron revolsing around a much more massive nucleus bearing an electric charge repual in magnitude and opposite in sign to its own. This is really a most unpromising conception, very ill adapted to the modification we need to make. We want an atom which shall be able to assume only those delinite values of energy which were listed above: $-h R$, $-h R I,-h R, 9$ and the rest. Now the energy of this sun-andplanet atom depends on the orbit whieh the electron is describing.

[^51]If the energy may dssume only those definite wilues, dive electron may dencribe asly ecrtan detinite orbits. But there is no obvious reaton why the electron should not describe any of an intinity of other orbits, circular or elliptical. To consider only the circular orhits: if the atom may have mo other values of energy than -h R. and -hK 4 , and $-h K$! and the rest of the series, then it maly not revolse in any other circular orhits than those of which the radii are $e^{2} 2 h R$, and $e^{2} 2(h K+)$, and $e^{2} 2(h K!)$, and an forth; but why just these? What prevents it from revolving in a circular orbit of radius $e^{2} \geqslant(h R 2)$, or athy other value not in the series? And for that matter how can it revolve in a closed orbit at all, since arcording to the fundamental notions of the electromagne tic theory it must be radiating its energy at it revolves, and so must sink into the nucleus in a gradually narrowing spiral?

Bohr did not resolve these difficulties, and no one has ever resolved them except by ignoring them. The customary procedure is 10 select some common feature of these permitted orhits, and declare that it is this feature which makes these orbits permissible, and forbids the electron to follow any other. For example, there is the fact that the angular momentum of the electron in any one of the permitted circular orbits is an integer multiple of the constant quantity $h 2 \pi$. h being the same constant as we have met hitherto, which is hardly an accidental coincidence. If one could only think of some plausible reason why an clectron should want to rewolse only in an urbit where it can have some integer multiple of $h 2 \pi$ for its angular momentum, and should radiate no energy at all while so revolving, and shoukl refuse to revolve in an orbit where it must have a fractional multiple of $h 2 \pi$, the model would certainly le much fortified. Failing this it is necessary to put this assertion about the angular momentum as a downright assumption, in the hope that its value will be so great and its range of usefulness so widespread that it will commend itself as an ultimate basic principle such as no one thinks of questioning. So far this bope las not been thoroughly realized. On the one hand, Sommerfeld and W. Wilson did succeed in generalizing it into a somewhat wider form, and using it in this wider form they explained the fine structure of the lines of hydrogen and ionized helium, and Epstein explained the effect of an electric field upon these lines. These are truly astonishing successes, and no one, I think, can work through the details of these applications to the final triumphant comparisons of theory with experiment, and not experience an impression amounting almost or quite to conviction. Set on the other hand this generalization does not account
for the frequencies forming the spectra of other elements. ${ }^{11}$ There is the spectrum of neutral helium, for example, and the spectrum of sodium, and the spectrum of mercury; in each of these there are series of tines, of which the frequencies are clearly best expressed each as the difference between a pair of terms, and these terms should be the energies of the atom before and after radiating. But we have not the shadow of an idea what the corresponding configurations of the atom are; it may be that the outermost electron has certain permissible orbits, but we do not know what these orbits are like nor what common feature they possess.
Is it then justifiable to write down a Rule such as this: the frequencies of the rays which free atoms emit are such as to confirm the idea that radiant energy of the frequency y is emitted in packets or corpuscles of the amount hy? Very few men of science, I imagine, would hesitate to approve this. However one may fluctuate in his feelings about Bohr's model of the atom, there always remains that peculiar relation among the frequencies emitted by the hydrogen atom, which is so nearly copied by analogous relations in the spectra of other elements. When one has once looked at the general formula

$$
\begin{equation*}
h \nu=\left(-\frac{h R}{n^{2}}\right)-\left(-\frac{h R}{m^{2}}\right) \tag{i}
\end{equation*}
$$

and has once interpreted the first term on the right as the energy of an atom before radiating, the second term on the right as the energy of the atom after radiating, and the quantity $h \nu$ as the amount of the packet of energy radiatel, it is tery difficult to admit that this way of thinking will eser be superseded; particularly when one remembers the auxiliary facts, such as that fact about the electrons transferring just 4.9 equivalent volts to the mercury atoms which they strike, no more and no less. Analyzing the mercury spectrum in the same way as the hydrogen spectrum was analyzed, we find the frequencies expressible as differences between terms; interpreting the terms as energy-values, we find that between the normal state of the mercury atom and the next adjacent state, there is a difference in energy of 1.9 equivalent volts, and between this and the next allacemt state there is a further difference of 1.8 volts. This then is the reason why an electron with less than 4.9 equivatent volts of

[^52]enargy can communicate me entergy it all to at merenty atom ; and an
 of them. It is conceivable that other conditions mas be found to govern the orbits of the electenns, so that the atoms shall hate only the prescriber energy-values ant no others: it is exen conceivable that the conception of electron-orbits may be discarded; lout the interpretation of the terms in the formula (7) as energies will, in all human probability, be permathent.

The foregoing Rule is thus very strongly based; but let us nevertheless rephrase it in a somewhat milder form as follows: The idea that radiant energy of frequency ν is emilled in packets of the amount $h \nu$, and the contemporary theory of alomic structure, between them give a allractive and appeding account of spectra in general, and a convincingly exact explanation of two spectra in parlicular.

But what has happened meanwhile to the Vibrator, to the oncillating electron, to the postulated electrilied particle of which the vibrations cansed light-waves to spread out from around it like sound waves from a bell? It has disappeared from the picture; or rather, since the attempt to accomnt for the frequencies of a spectrum as the natural frequencies of an elastic framework was abandoned, no one has tried to re-insert it. But there are some who will neser be quite happy with any new conception, until the vibrator is estab)lished as a part of it.

Ionization, the total removal of an electron from an atom, affords another chance to see whether radiant energy behases as though it could be absorbed only in complete packets of amount $h \nu$. That it requires a certain definite amount of energy to deprive an atom of its loosest electron, an amount characteristic of the atom, may now be regarded as an experimental result quite beyond question, and not reguiring the support of any special theory: Thus, a freeHying electron maty remove the loosest electron from a free mercury atom which it strikes, if its energy amounts to 10.4 equivalent volts, not less: or the loosest electron from a helimm atom if its energy amounts to at least 24.6 equivalent volts. If radiant energy of frequency ν goes doout in parcels of magnitude $h v$, the frequency of a parcel which amounts just exactly 1010.4 equivalent volts is $\nu_{o}=2.53 .10^{16}$, corre--ponding to is wave length of 11 ssi. Light of inferior frequency shoukd be unable to ionize a mercury atom; light of just that frequency should just be able to ionize it ; light of a higher frequency ν should be able 10 ionize the atom, and in addition confer upon the released electron an additional amount of kinetic energy equal to $h\left(\nu-\nu_{o}\right)$. The same could be said, with appropriate numerical changes, for every other
kind of atom. Of all the phemomena which might serve to illuminate this difficult question of the relations between radiation and atoms, this is the one which has been least studied. The experimental material is scanty and dubious. There is no reason to suppose that light of a lower frequency than the one I have called ν_{o} is able to iomize; but it is not clear whether perceptible ionization commences just at the frequency ν_{o}, although it has been olserved at frequencies not far beyond. The energy of the released electrons has not been measured.

The removal of deep-lying electrons, the electrons lying close to the nuclei of massive atoms, is much better known; and the data confirm in the fultest manner the idea that radiant energy of the frequency ν is absorbed in units amounting to $h \nu$. When a beam of X-ray's of a sufficiently high frequency is directed against a group of massive atoms, various streams of electrons emanate from the atoms, and the electrons of each stream have a certain characteristic speed. The kinetic energy of each electron of any particular stream is equal (1) $h \nu$, minus the amomnt of energy which must be spent in extracting the clectron from its position in the atom; for this amount of energy is independently known, being the energy which a free-flying electron must possess in order to drive the bound electron out of the atom, which is measurable and has been separately measured. Here again I touch upon a subject which has been treated in an earlier article of this series the second-and 10 prevent this article from stretching out to an intolerable length, I refrain from further repetition of what was written there. The analogy of this with the photoelectric effect will escape not reater. Here as there, we observe electrons released with an energy which is admittedly not $h \nu$, but $h v$ minus a constant; the idea that this constant represents energy which the electrons have already spent in escaping, in one case through the surface of the metal and in the other case from their positions within atoms, is fortified by independent measurements of these energies which give values agreeing with these constants.

We have considered various items of evidence tending to show that radiant enorgy is born, so to speak, in units of the amount $h \nu$, and dies in unts of the amotnt hy. Whether encrgy remains sub)divided into these units during its incarmation as radiation remans unsedted; to setale this question absolutely, one would hate to devise some way of testing the enorgy in a beam of radiation, otherwise than by aborbing it in matter; and such a way has not yet been discovered. There is, however, abother quality which rachant energy possesses. Conceive a stream of radiation in the form of an extremely long
train of plane waves, flowing against a blackened phate facing mormally against the direction in whith they advane, which utherly abourls them. This wave-train shall have din intensity I; by which it is meant, that an amoment of energy I appears, in the form of heat, in unit area of the blackenet plate in mit time. Finthermore, the radiation is found to evert a pressure p agatiot the blackened plate; by which it is meant, that unit areat of the plate (or the framework upholding it) acquires in unit time all amome of momentum p. Aconeling to the elassical cheromagnetic theory, werified by experience, p is equal to $/ c$. Unit area of the plate acpuires, in unit time, cnergy to the amonnt I and momentum to the amount $I \mathrm{c}$.

Where is this energy, and where is this momentum, an instant before they appear in the plate? One might say that they did not evist, that they had vanished at the moment when the rarliation left its somrce, not to reappear until it arrived at the plate; but such an answer would be contrary to the spirit of the electromagnetic theary, and we have long been accustomed to think of the energy as existing in the radiation, from the moment of its departure from the source to the moment of its arrival at the receiver; the term "radiant energy" implies this. Domentum has the same right to be conceived as existing in the radiation, during all the period of its pasange from source to receiver. In the system of equations of the classical electromagnetic theory, the expression for the stream of energy through the electromagnetic field stands side by side with the expression for the stream of momentumflowing through the fied. If the second expression is not so familiar as the first, and the phrase "radiant momentum" has not entered into the language of physics together with "radiant energy." the reason can unly be that the pressure which light exerts upon a substance is very much less conspicuous than the heat which it communicates, and seems correspondingly less important, - which is no valid reason at all. Radiant energy and radiant momentum deserve the same standing; it is admitted that the energy I is the energy which is brought by the radiation in unit time to unit area of the plate which blocks the wave-train, and with it the radiation brings momentum I. c in unit time to unit area of the plate. The density of radiant energy in the wave-train is obviously $I c$, the elensity of radiant momentum is $I c^{2} .1$

Cow let that tentative idea, that ratiant energy of the frequency ν is emitted and absorbed in packets of the amount $h \nu$, be completed by the iflea that these packets travel as entities from the place of their birth to the place of their death. Let me now introdnce the word "quantum" to replace the alternative words packet, or unit, or
corpuscle; I have held to these alternative words quite long enough, I think, to bring out all of their connotations. Then the energy I is brought to unit area of the plate, in unit time, by $I / h \nu$ of the quanta; which also bring momentum amounting to $I^{\prime} c$. Shall we not divide up the momentum equally among the quanta as the energy is divided, and say that each is endowed with the inherent energy hv and with the inherent momentum $h v_{i} c$?

The idea is a fascinating one, but not so easy to put to the trial as one might at first imagine. None of the phenomena I have described in the foregoing pages affords any means of testing it. In sturlying the photoclectric effect, we concluded that each of the electrons released from an illuminated sodium plate had received the entire energy of a packet of radiation; but this does not imply. that each of them had receised the momentum associated with that (energy; the momentum passed to the plate, to the framework supporting it, eventually to the earth. The same statement holds true for the release of electrons from the deep levels of heavy atoms, such as de Broglie and Ellis observed. Even if the same experiments should be performed on free atoms, as for example on mercury vapor, no clear information could be expected; for the momentum of the abserbed radiation may divide itself between the released electron and the residumm of the atom, and this last is so massive that the speed it wouk! thus acquire is too low to be noticed. Only one way seems to be open; this is, to bring about an encounter between a quantum of ratiation and a free electron, so that whatever momentum and whatever energy are transferred to the electron must remain with it, and camos he passed along to more massive objects where the momentum, so far ats the possibility of oberving it goes, is lost. A priori one could not be certain that even this way is open; radiation might ignore electrons which are not tightly bound to atoms.

Arthur 11. Compton, then of Washington University, is the physicist whone experiments were the first that clearly and strikingly disclosed such encounters between quanta of radiation and sensibly free electrons. Others hat observed the effeet which reveals them, but his were the first measurements acourate enough for inference. Sthaware at the moment of the meaning of his data, he realized it almost immediately afterward, and so established the fact and the explanation both a twofold achievement of a very mosual magnitude, whence the phenomenon received the name of "Compton effect" by a universal acoeptance, and deservedly.

What Compton whervel was not the presence of electrons possessed of momentum acquired from radiation-these electrons were
however to be disonered later, ats I shall presently mention -but the presence of radiation of a new surt, come into being by virtue of the encomaters between the original radiation and free clectrons. We hase not encountered atbything of this sort heretofore. When a ghantum of radiant energy releases an chetron from ant dom, is dies completely and confers its entire energy upm the electen. The disposal of its momentum gives no tromble, for as I have mentioned the atom takes care of that. When the electron is intiatly free. and there is no atom to swallow up the momentum of the radiation. it remmet be ignored in this simple fashion. For if the quantum did utterly dismpear in an encounter with a free electron, the wheloty which the electron acquired womld have to be such that its kinctic energy and its momentum were separately equal to the energy and momentum of the quantum; Jut these distinct (wo conditions would generally be impossible for the electron to fulfil. Ilence in generat, a quantum possessel of momentum cannot disappear by the process of transferring its energy to a free electron, whateser may be the case with an electron bound to a massive atom. This reflection might easily have led to the condusion that radiation and free electrons can have nothing to do one with the other.

What actually happens is this: the energy and the momentum of the quantum are partly conferred upon the electron, the residues of each go to form a new quantum, of lesser energy and of lesser and differently-directed momentum, hence lower in frequency and deflected obliquely from the direction in which the original ruantum was mowing. The encounter occurs much like an impact between two elastic balls; what prevents the analogy from being perfect is, that when a moving elastic hall strikes a stationary one, it lones some of its speed but remains the same ball, whereas the quantum retains its speed but changes over into a new and smaller size. It is as though a billiard-ball lost some of its weight when it touched another but rolled off sidewise with its original speed. I do not know what this innovation would do to the technique of billiards, but it would at all events not make technique impossible; the result of an impact would still be calculable, though the calculations would lead to a new result. The rules of this microcosmic billiard-game in which the struck balls are electrons and the striking balls are quanta of radiant energy are definite enough to control the consequences. The rules are these:

Conservation of energy requires that the energy of the impinging quantum, $h v$, be equal to the sum of the encrgy of the resulting quantum, $h \nu^{\prime}$, and the kinetic energy K of the recoiling electron. For
this last quantity the expression prescribed by the special relativitytheory ${ }^{12}$ is used, viz.

$$
K=m c^{2}\left(\frac{1}{\sqrt{1}-\beta^{2}}-1\right)
$$

in which m stands for the mass of the electron and $c \beta=v$ for its speed. The equation of conservation of energy is then

$$
\begin{equation*}
h \nu=h \nu^{\prime}+m \epsilon^{2}\left(\frac{1}{\sqrt{1-\beta^{2}}}-1\right) . \tag{a}
\end{equation*}
$$

Conseration of momentum requires that the momentum of the impinging quantum be exual to the sum of the momenta of the resulting quantum and the recoiling electron. Momentum being a vector quantity, this rule requires three scalar equations to express it, which three may be reduced to two if we choose the x-axis to coincide with the direction in which the impinging quantum travels, and the y-axis to lie in the plane common to the paths of the recoiling electron and the resulting quantum. Designate by ϕ the angle between the paths of the impinging quantum and the recoiling electron; by θ the angle between the paths of the two quanta. The magnitude of the momen-tum-sector is, by the special relativity-iheory, me $\sqrt{1-\beta^{2}}$. Conservation of momentum then requires:

$$
\begin{align*}
h y^{\prime} c & =\left(h \nu^{\prime} c\right) \cos \theta+\frac{m z^{\prime}}{\sqrt{1-\beta^{2}}} \cos \phi \tag{Sh}\\
(& =\left(h \nu^{\prime} c\right) \sin \theta+\frac{m z^{\prime}}{\sqrt{1-\beta^{2}}} \sin \phi .
\end{align*}
$$

Eliminating ϕ and z^{\prime} between these three equations, we arrise at this relation between ν and ν^{\prime}, the frequencies of the impinging quantum and the recoiling quantum -or, as I shall hereafter say, between the frequencies of the primary X-ray and the scattered X-ray and the angle θ between the diections of the primary X-ray and the scattered N-ray:

$$
\begin{equation*}
\frac{\nu^{\prime}}{\nu}=\frac{1}{1+\frac{h \nu}{m c^{2}}(1-\cos \theta)} \tag{9}
\end{equation*}
$$

[^53]The relation between λ^{\prime} and λ, the wavelengths of the primary beam and of the scattered besm, is still simpler, being

$$
\begin{equation*}
\lambda^{\prime}-\lambda=\frac{h}{m c}(1-\cos \theta) . \tag{10}
\end{equation*}
$$

The intrusion of this angle θ into the final equation may seem to contradict my earlier statement that the results of the impact are calleulable; for it is true that there are not equations enongh to climinate θ, and yet I have offered no additional means of calculating it. In fact it cannot be calculated with the dita at our command. . III that we are able to say is that if the resulting quantum goes off in the direction θ, then its frequency is given by (9). What determines θ in any particular case? Reverting to the image of the billiardb, llls, it is easy to see that the direction in which the rebounding ball rolls away depends on whether it gave a central blow, or a glancing blow, or something in between, to the intially stationary ball. If we knew just which sort of a blow was going to be given, we could calculate θ; otherwise we can only apply our conditions of conservation of energy and conservation of momentum to ascertain just how much of its energy the rebounding ball retains when θ has some particular value, and then produce or, if we cannot produce at will, await - a collision which results in that value, and make our comparison of evperiment with theory: S_{0} it is in this case of the rebounding quantum. When a beam of primary electrons is scattered by encountering a picce of matter, some quanta rehound in each direction, and all the values of θ are represented. We cannot know what determines the particular value of θ in any case; but we can at least select any direction we desire, measure the frequency of the quanta which have rebounded in that direction, and compare it with the formula. Fig. f is a diagram illustrating these relations. ${ }^{13}$

The comparison, which has now been made repeatedly by Compton, repeatedly by 1 '. A. Ross, and once or oftener by each of several other physicists-notably de Broglie in Paris-is highly gratifying. The value of the frequency-difference between the primary X-rays and the scattered X-rays, that is 10 say, between the impinging quanta and the rebounding quanta, is in excellent accord with the formula, whether the measurements be made on the quanta recoiling at 45°, at 90° or at 13.3°, or at intermediate values of the angle θ. The method consists in receiving the beam of scattered X-rays into an X-ray spectroscope, whereby it is deflected against an ionizationchamber or a photographic plate at a particular point, of which the
location is the measure of the wave-length. An image can be made on the same plate at the point where the beam would have struck it, if it had retained the frequency of the primary beam. The two images then stand sharply and widely apart. Indeed it is not necessary to make a special image to mark the place on the plate where a scattered beam of unmodified wave-length would fall, for there

Fig, 6. Diagram showing the energy-relations ensuing upon an impact between a quantum and a free electron. (. Ifter Debye.) Sice footnote 13
nearly always is such a heam and stuch an image. A platusible explanation is easy to find; one has only to assume that the quanta composing this beam have rebounded from electrons so rigidly bound into atoms: that they did not budge when the impinging quanta struck them, and these were reflected as from an immovable wall. ${ }^{14}$

[^54]In the photographs whith I reprentuce ${ }^{\text {s }}$ the imprints of these two
 of the primary rots - is specially depicled on the eyper half of the plate: ane see the α, β, and \boldsymbol{r} lines of the K-series of molytulentim. three lines the lirst at dotblet) of which the watelengh are resper-

Fig. 7 - Ahove, the K-spectrum of molyhdenum a-doublet, β-line, γ-line from left to right); below, the spectrum of this same radiation after scattering at 90° (rom aluminum (each line doubled). (1). I. Russ:
 secondary rays scattered at the angle θ is spreasl out: 1 each of the primary rays there correspond a scattered ray of the same wavelength, and beade it another ray of which the warelength exceed. that of its companion by the reguired amount.
thing. The Compton effect has twen demonstrated only where there are electrons asociated with atoms. It may be that the rebound occurs only from an electron which is connerted to an itom by somu peotior li,dison, weak so far as the energy required to break it is concernerl, but able to commol the response of the clectron to an impact. Something of this surt may have to fre assumed to explain why the effect is apparently not greater for conductive subataners that for insulating ones and is certainly feebler for massive atoms with numerous lomely-hound electrons than for lighe atems with few:
${ }^{15} 1$ am indehtel to Professor Russ for these photographs.

Another series of photographs, in Fig. S, shows the two scattered rays produced when a beam of the K α-radiation of molyblemum falls upon varions scattering substances: carbon (the sixth element of the periodic table), aluminium (the thirteenth), copper (the twenty-ninth), and silver (the forty-seventh). The relative intensity of the two rays-that is to say, the proportion between the momber of quanta which rebound as from free electrons, and the mumber of quanta which recoil as from immobite obstacles varics in a curions mamer

Fig. 8 - Above, the K a-line of molybdenum; below, the same radiation after scattering at 90° from carbon, aluminium, copper and silver. (P. . . Ross)
from one of these elements to another. Nost of the quanta scattered by lithium undergo the atteration in wavelength which we have calculated; nearly all of the quanta scattered by lead emerge with the same frequency as the incident quanta. Apparently, the heavier the atoms of a substance are, the less conspicuous does Compton's c⿵fect become. Further, the relative intensity of the two rays assumes different values for one and the same substance, depending on the direction of scattering. This is illustrated in Fig. 9, the curves of which may be interpreted as graphical representations of photographs like those of the foregoing Figure, the ordinate standing for the density of the image on the photographic plate. (Actually, the ordinate stands for a quantity which is much more nearly proportional to the true intensity of the rays-that is, the amount of ionization which they produce in a dense gas.) These curves show, in the lirst place, that the separation between the two scattered rays has the proper theoretical values at the angle 45°, at 90°, and at 135°; in the second place, among the quanta scattered at 45°, those that
redain the primary wavelength are more , dhand.ant than the altered
 hase the prestomithate: Why the relative commomeso of these twe kimbs of xettering, of there two moxles of illteration betwern qu.met.

Fig. 4
Fis. 9 The morlified and unmolified scattered rays, at various inclimations, recordel in the unization-chamber methorl. The vertical line 7 represents the position (alculaterl from (4) for the monlitied ray: (A. H. ('ompton, Physical Reriece)
and matter, should depend on the substance and on the angle θ is a deeper question than any we have considered.

The recoiting electrons also have been detected; and lïgs. 10 and 11 . whith are photographs of the trails left by flying electrons as they

Fig. 10 -Trails of recoiling electrons, mingled with long sinuous trails of electrons ejectect from atoms
liv totally-alisorlleel quanta.

 for these. ${ }^{16}$ The hong simons trails ate those al f.al electrons, which "rere liberated from their atoms by high-freguency quent.1 procereding acros the gas; each of these electrons prosemses the entire energy of a vamished quatutum (minus such part of it as was satribed when

the electron emerged from its atom). The small slighty-elongated comma-like "blobs", the "fish tracks" as C. T. R. Wilson called them, are the trails of very slow electrons these are the electrons from which quanta rebounded, transferring in the rebound a litule of their energy and a little of their momentum. These appear only when the Frequency of the \mathcal{X}-ray quanta exceeds a certain minimum amoumt a circumstance which, combined with others, shows that the com-

[^55]momess of the compton effect depends not merely on the nature of the atoms and on the angle at which the seattering is observed, but also upon the frequency of the radiation. High-frequency quanta are liable to rebound in the manner preseribed ly Compton's assumptions, but low-frequency quanta are not. Light of the visible spectrum suffers no change in wavelength when it is scattered.

Must we now concede that radiant energy travels about through space in the form of atom-like units, of corpuscles, of quanta every one of which, for a radiation of a specific frequency ν, possesses always the same energy $h \nu$ and always the same momentum $h v c$? How indeed can we longer avoid admitting it? The phenomena which I have cited do certainly seem to close the case beyond any possibility of reopening it. Yet they might be interpreted in another way a way which will probably seem extremely elaborate and artificial (0) the reader, a way which will seem like a mere excuse to avoid a simple and satisfying explanation; and yet this would not be sufficient to condemn it utterly. We might lay the whole blame and lurden for all these "quantum" phenomena upon the atom. We might saty that there is some mysterious mechanism inside every atom, which constrains it never to emit radiation of a frequency ν muless it has a cuantity of energy $h \nu$ all packed up and ready to deliver, and never to albsort, radiation of a frequency ν unless it has a special storeroom reatly to receive just exactly the quantity of energy $h \nu$. This indeed is not a bad formulation of Bohr's theory of the atom. It would he necessary to go much further, and to say that not only every atom, but likewise every assemblage of atoms forming a liquid or a solid boxly, contains such a mechanism of its own; for the phenomena which I have called the "photoelectric effect" and the "inverse photelectric effeet" are qualities not of individual atoms, but of pieces of solicl metal. ${ }^{17}$ And it woukl be necessary to go much further ret, and make medhanisms to account for the transfer of momentum from radiation to electrons.

Vet even this would not be sufficient; for the most surprising and inexplicable fact of all is still to be presented. Here is the crux of the great dilemma. lmagine ratiation of the frequency v emerging from an atom, for a length of time determined by the condition that

[^56]the total energy ratiated shall te he evatety. Weroting to the wartheory, it emerges as apherical wave-trath, of which the w.arfronts are a series of expmoting spheres. widening in all directions whey from the atom at their common contre. Place amother atom of the s.mme kind some little distance awdy. Apparently it com . 1 sesorls no radiant energy at all, untess it absorls the whold amonan he radiated from the first atom. But how ean it don this, weding that only a very small portion of cath wavefront touched it or came amswhere near it, and mach of the ratiant energy went oft from the first atom in a diametrically opposite direction? Hon can it reach and suck up all the energy from the entire wavefont, so little of which it actually intercepts? And the difticalty with the momentum is even greater.

But, of course, this experiment is umrealizable. In amy haboratory experiment, there are always great multitudes of radiating atoms close together, and the stoms exposed to the radiation are bathed in myriads of wave-trains proceeding from myriads of sources. Does then the atom which absorts the amount hy of energy take it in little bits, one from this wavetrain and another from that, until the proper capital is lad up? But if so, it surely would require some appectable time to gather up the separate amounts. According to the classical electomagnetic theory, a bound electron placed in a wavetrain of wavelength λ will gather up energy from an area of each wavefront. of the order of magnitude of the quantity λ^{2}. Hence we should not expeet that the exposed atom would linish the task of assembling the amount of energy hy from the various wavetrans which pass by it, until the lapse of a time-interval sufficiont for so much energy to How against a circle of the area λ^{2}, set up facing the rays at the point where the atow stands. Set up a mercury are, or better still, an X-ray tube, and meanure the intensity of the radiation from it at various distances. Vou will easily find a position sutticiently near to it for consenience, and vet sufficiently far from is, so that if a circular target of this area were set in that position, the ratlant energy falling upon it would not menunt up in one minute bor in one day nor in one year, to the amomet $h \nu$. let eower the source of rays with a shutter, and then put a piece of matter in that position, and then lift the shutter; and you will mot have to wat a year, nor a day, nor a minute, for the lirst electron which emerges from the matter with a whole quantum of energy; it will come ont ad quickly that no experimenter has, as yet, demonstrated a delay: What pemsible assumptions about the structure of the atom catn aceount for this?

More and more the evidence is piled up to compel us to concede
that radiation travels around the world in corpuscles of energy $h \nu$ and momentum $h \nu c$ ，which never expand，or at all events abways remain small enough to be swallowed up in one gulp by an atom，or to strike an electron with one single concentrated blow．

But it is unfair to close the case without pleading once more the cause of the undulatory theory－the more so because，in the usual fashion， 1 have understated the old and presumptively familiar arguments in its favor，and given all the advantages to the arguments of the opposition，which still have the force and charm of novelty． Furthermore，I may have producel the impression that the conception of the quantum actually unites the corpuscular theory with the wase－ theory，mitigating discord instead of creating it．Why are we not really weicing a perfectly competent wate－theory of light，when we imagine wave－trains limited both in length and in breadth，so narrow that they can dive into an atom，but so long that they contain $h \nu$ of encrgy altogether？filamentary wase－trains，so to speak，like the tracing of a sine－wase in chalk upon a blackboarl，or the familiar picture of a sea－serpent？

Well，the difficulty is that the phenomena of interference and of diffraction，which are the basis of the wave－theory，imply that the wave－trains are broad，that they hate a considerable cross－seetional area；these phenomema shoukt not occur，if the wate－trains were lilaments no thicker than an atom，or even so wide that their cross－ sectional area amounted to λ^{2} ．Let me cite one or two of thene phenomena，in tardy justice to the undulatory theory，ats a sort of a makeweight to all the＂quantum＂phenomena I have described． Imagine an opaque screen with a slit in it；light flows against the screen from bohind，some passes through the slit．The slit may be supposed to be half a millimetre wide，or even wider．If light consists of guanta only ats thick as an atom，or even as thick as the wase－ kengeh of the light，they will shoot though the slit like raindrops or atad－grains through a wide open skylight．If they are all mosing in parallel directions before they reach the slit，they will continue so to move after they pass through it for how shall they know that the slit has any boundaries，since they are so smatl and the slit is so large？ The beam of light which has passed through the slit will always retain the same cross－section as the slit．But we know that in truth the beam widens after it goes through the slit，and it deselops a peculiar dimeribution of intensty which is accurately the same as we thould expect，if the wavefront is wider than the slit－so much wider， that the slit cuts a piece out of it，which piece spreads ontwards inde－
pemtently in its own fishiom. ${ }^{14}$. Therefore the quantum mas be witer than the widest slit which diephlys clear dilfration-phenomend and this makes it at ledst a millimetre wille! But this is not the limit! Cout another slit in the sereen, patallel to the firat ane, a distance d .way from it. Where the widening diflracted light-heoms from the two slits interpenetrate one another, they will produce interferencepatterns of light and shade, accurately the same ats we should evpeet if the wolvefont is wider than the distance d. The quantum must therefore be wider that the gredest distance between two slits, the light-beoms phasing through which are able to interfere with onesmother. The slits may be put quite far apart, and the light-beams brought together by systems of prisms and mirrors. This is the principle of Michelson's famous method of determining the diameters of stars. He obtained interference fringes when the two beams of light were taken from portions of the wavefront heenly feet apart. ${ }^{19}$

Therefore the quantum is twenty feet wide! This is the object from which an atom one ten-millionth of a millimetre wide can suck up all its energy! this is what enters as a unit into collision with an electron ten thousandfold smaller yet!

The evidence is now before the reater: not the entire evidence for dither of the two eonceptions of radiation, but, I think, a fair sampling for buth. If either view has been inequitably treated, it is the undulatory cheory which has lieen underrated; for, as I have said already but cannot sily ton often, the evidence that light partakes of the nature of a wave-motion is tromendously extensive and tremendously compelling; it seems the less powerful only because it is st thoroughly lamiliar, and through much repetition has hast the force of nowelty. Still, it is not necessary to hold atl the relevant facts continually in mind. If one could reconcile a single typical fact of the one sort, such as the interference between beams of light brought together from parallel courses far apart, with a single outstanding fact of the other sort, swels as the instamtaneous emergence of electrons with great energy from atoms upon which a feeble beam of light hats only just been directed-if one could unify two such phenomena ats these, all of the whers would probably fuse spontaneously into a harmomious system. But in thinking about these things, there is one more all-important

[^57]fact that must never be forgoten: the quantum-theory involves the wave-thenry in its root and basis, for the quantum of a gizen radiation is defined in terms of the frequency of that radiation, and the frequency is determined from the wavelength, and the wavelength is determined by applying the wave-theory to measurements on interference and diffraction patterns. Was there ever an instance in which two such apparently contradictory theories were woven so intimately the one with the other!

The fusion of the theories is not likely to result from new experimental evidence. Indeed there are already indications that further experiments will merely accentuate the strangeness, moch as happened with the numerous experiments devised and performed three or four decades ago in the hope of settling whether the earth does or does not move relatively to the aether. More probably what is required is a modification, indeed a revolutionary extension in the art of thinking such a revolution as took place among a few mathematicians when nonliuclidean geometry was established by the side of Euclidean, as is taking place today among the disciples of Einstein who are striving (0) unlearn the habitual distinctions between time and space-such a revolution, to go centuries back into the past, as occurred in the minds of men generally when they learned to realize that the earth is round, and yet at every place npon it the sky is above and the ground in below: Our descendants may think pityingly of as as we of our ancestors, who could not comprehend how a man cam stand upright at the Antipodes.

Wave Propagation Over Parallel Tubular Conductors: The Alternating Current Resistance

By SALLIE PERO MEAD

Abstract

Swapsis: On the basis of Maxwell's laws and the conditions of continuity of electric and magnetic forces at the surfaces of the conductor, the furndamental equations are established for the axial electric force and the tangental magnetic force in a non-magnetic tubular conductor with parallel return. The alternating current resistance per unit Iength is then derived as the mean dissipation per unit length divided by the mean square current The general fermula is expressed as the product of the alternating current resistance of the conductor with concentric return and a factor, termed the "proximity effect correction factor." which formulates the effect of the provimity of the parallel return conductor. The auxiliary functions which appear in the eseneral formula are each given by the proxluct of the corresponding function for the case of a solid wire and a factor involving the variable inner boundary of the conductor. In general, the resistance may be calculated from this formula, using tables of P self functions. The most important practical cases, however, ustalle itioulve only the limiting forms of the Bessel functions. Special tormulae of this kind are given for the case of relatively large conductors, with ligh impressed frequencies, and for thin tuhes. I set of curves illusurates the application of the formulae.

1. Intronection

WHERE circular conductors of relatively large diameter are under consideration, the effect on the alternating current resinance of the tubular as distinguished from the solid cylindrical from leromen of prattical importance. Mr. Herbert B. Iwight has worked on a special case of this problem atnd developed a formula for the ratio of alternating to direct current resistance in a circuit composed of two parallel tulies when the tubes are thin. ${ }^{1}$ As infinite sums of infinite series are involved, however, his result is not well adapted to computation.

Mr. John R. Carson has given a complete solution for the alternating current resistance of two parallel solid wires in his paper "Wave Propagation Over l'arallel Wires: The Proximity Effect," Phil. Mag., April, 1921. The analysis of that paper may readily be extonded to the more general case of propagation over two tubular conductors by a parallel method of elevelopment. This is done in the present paper. As the underlying theory is identical in the two problems, familiarity with the former paper will be assumed and the analysis will merely be sketched after the fundamental equations are (stablished.

[^58]In this paper formulae for the alternating current resistance have been worked out in detail with particular reference to the case of relatively large conductors at high frequencies and to relatively thin tubes. In general the auxiliary functions involved are expressed as the product of the corresponding functions for solid wires by a correction factor which formulates the greater generality due to the variable inner houndary of the conductors. As far as possible the symbols are the same as in the solid wire case but refer now to the sistem of tubular conductors. Primes are added where the letters denote the corresponding functions for the solid wire case. This will hardly leat to confusion with the primes used in connection with the Bessel functions to denote differentiation.

The general solution is developed in section II. The alternating current resistance of one of the tubular conductors is expressed as the product of the alternating current resistance of the conductor with concentric return and a factor which formulates the effect of the proximity of the parallel return conductor. Section 111 is a summary of the general formula, special asymptotic forms and forms for thin conductors.

11. Mathematical Anabsisis and Derivation of Formulade

We require the expression for the axial electric force, E_{z}, in the conductors. Since the tubular conductor does not extend to $r=O$, the electric force must be expressed by the more general FourierBessel expansion,

$$
E_{z}=\sum_{n=0}^{\infty} A_{n}\left[J_{n}(\rho)+\lambda_{n} K_{n}(\rho)\right] \cos n \theta_{,}
$$

where

$$
\begin{aligned}
\rho & =i r \sqrt{4 \pi \lambda \mu i \omega} \\
& =\xi=x i \sqrt{i} \text { when } r=a \\
& =\zeta=y i \sqrt{i} \text { when } r=\alpha,
\end{aligned}
$$

a and α being the outer and inner radii, respectively, of the conductors. The additional set of constants $\lambda_{n}, \lambda_{1} \ldots \lambda_{n}$ is to be determined by the conditions of continuty at the inner boundary of the conductor. It is necessary to satisfy the boundary conditions at the surface of one conductor only, since the symmetry of the system insures that they will then be satisfied at the surface of the other also.

In the dielectric space inside the tube where $r<\alpha$, the axial electric force may be writen

$$
\begin{equation*}
E_{3}=\sum_{n=1}^{\infty} C_{n} I_{n}(\rho) \cos n \theta_{0} \tag{1}
\end{equation*}
$$

or replacing the Bessel functions by their values for vanishingly small argiments.

$$
\begin{equation*}
E_{\mathrm{s}}=\sum_{n=1}^{\infty} D_{n} r^{n} \cos n \theta \tag{2}
\end{equation*}
$$

where $D_{\ldots}, D_{1} \ldots D_{n}$ are constants determined by the boundary conditions. Ipplying Maxwell's law relating the normal and tangential magnetic forces $I I_{r}$ and H_{θ} to the axial electric force, gives

$$
\begin{align*}
& \mu i \omega I I_{\theta}=\frac{\rho}{r} \sum_{n=1}^{\infty} A_{n}\left[J_{n}{ }^{\prime}(\rho)+\lambda_{n} K_{n}^{\prime \prime}(\rho)\right] \cos n \theta, \tag{3}\\
& \mu i \omega / I_{r}=\frac{1}{r} \sum_{n=0}^{\infty} A_{n}\left[J_{n}(\rho)+\lambda_{n} K_{n}(\rho)\right] \sin n \theta, \tag{4}
\end{align*}
$$

for the space inside the conductor, and

$$
\begin{align*}
& i \omega I I_{\theta}=\sum_{n=0}^{\infty} n D_{n} r^{n-1} \cos n \theta^{\prime} \tag{5}\\
& i \omega I I_{r}=\sum_{n=0}^{\infty} n I_{n} r^{n-1} \sin n \theta_{1} \tag{6}
\end{align*}
$$

for the inner dielectric $(\mu=1)$. Equating the two expressions for the tangential magnetic force H_{θ} and for the normal magnetic induction μH, term by term at the surface $r=\alpha$,

$$
\begin{equation*}
\left[\zeta J_{n}^{\prime}(\zeta)-\mu n J_{n}(\zeta)\right]+\lambda_{n}\left[\zeta K_{n}^{\prime}(\zeta)-\mu n K_{n}(\zeta)\right]=0 \tag{1}
\end{equation*}
$$

Whence, for the practically important case of non-magnetic conductors in which $\mu=1$, we have

$$
\begin{equation*}
\lambda_{n}=-\frac{J_{n+1}(\zeta)}{K_{n+1}(\zeta)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\mathrm{s}}=\sum_{n=0}^{\infty} A_{n}\left[J_{n}(\rho)-\frac{J_{n+1}(\zeta)}{K_{n+1}(\zeta)} K_{n}(\rho)\right] \cos n \theta \tag{9}
\end{equation*}
$$

In the subsequent analysis $J_{n}(\xi)$ of the solution for the solid wire casc is replaced by

$$
\begin{equation*}
J_{n}(\xi)-\frac{J_{n+1}(\zeta)}{K_{n+1}(\zeta)} K_{n}(\xi)=M_{n}(\xi) \tag{10}
\end{equation*}
$$

and $J_{n}{ }^{\prime}(\xi)$ is replaced by

$$
\begin{equation*}
J_{n}^{\prime}(\xi)-\frac{J_{n+1}(\zeta)}{K_{n+1}(\zeta)} K_{n}^{\prime}(\xi)=M_{n}^{\prime}(\xi) \tag{1I}
\end{equation*}
$$

Otherwise the formulation of the alternating current resistance of the conductor proceeds exactly as in the solid wire case. For the electric force at the surface $r=a$ in the conductor, we write

$$
\begin{equation*}
E_{z}=A_{0}\left[M_{o}(\xi)+h_{1} M_{1}(\xi) \cos \theta+h_{2}, M_{2}(\xi) \cos 2 \theta+\ldots\right] \tag{12}
\end{equation*}
$$

and determine the fundamental coefficient A_{0} in terms of the current in the conductor. The resistance R of the tubular condluctor per unit length is defined as the mean dissipation per unit length divided by the mean square current where the mean dissipation is calculated by l'oynting's theorem. Accordingly, we get

$$
\begin{equation*}
R=\text { Real } \frac{2 \mu i \omega}{\xi}\left\{\frac{M_{o}(\xi)}{M_{o}^{\prime}(\xi)}+\frac{1}{2} \sum_{n=1}^{\infty}{h_{n}}^{\prime 2} \frac{M_{n}(\xi)}{M_{0}^{\prime}(\xi)} \mathrm{conj} \cdot \frac{M_{n}^{\prime}(\xi)}{M_{o}^{\prime}(\xi)}\right\} \tag{I3}
\end{equation*}
$$

To determine the harmonic coefficients $h_{1} \ldots h_{n}$ or $A_{1} \ldots A_{n}$, the total tangential magnetic force and the total normal magnetic induction at the outer surface of a conductor are expressed in terms of the coordinates of that conductor alone, and the conditions of continuity at the surface are applied. This leads to the set of equations

$$
\begin{equation*}
q_{n}=(-1)^{n 2} \rho_{n} k^{n}-\frac{(-1)^{n}}{(n-1)!}{\left.\underset{n=1,2.3}{\rho_{n} k^{n}} \varliminf_{n}^{n}(q)\right)}_{n} \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { ปn }_{n}(q) & =\frac{n!}{1!k q_{1}-\frac{(n+1)!}{2!} k^{2} q_{2}+\ldots,} \\
\sigma_{n} & =\left(\xi M_{n}^{\prime}(\xi)-n \mu M M_{n}(\xi)\right), \xi M^{\prime}(\xi), \\
\rho_{n} & =\left(\xi \cdot M_{n}^{\prime}(\xi)-n \mu \cdot M_{n}(\xi)\right)\left(. M_{n}^{\prime}(\xi)+n \mu \cdot M_{n}(\xi)\right), \\
q_{n} & =\sigma_{n} M_{n,} \\
a & =k .
\end{aligned}
$$

When the permeability is unity, the solution, to the same order of approximation ats in the solid wire case, is

$$
h_{n}^{2}=\begin{array}{cc}
u_{1}^{2}+r_{1}^{2} & 1+\lambda_{1} K_{1}(\xi) J_{1}(\xi)=2 \tag{11i}\\
u_{n}^{1}+r_{n-1}^{2} & 1+\lambda_{n} K_{n},(\xi) J_{n}(\xi) \quad P_{n}^{2}\left(1+2 n g k^{2} s^{n-1}\right)
\end{array}
$$

where

$$
\begin{align*}
& g=\begin{array}{c}
\backslash 2 \\
x
\end{array} \tag{17}\\
& p+i q=\begin{array}{ll}
1+\lambda_{1} K_{1}(\xi) & J_{1}(\xi) \\
1+\lambda_{1} K_{0}(\xi) & J_{0}(\xi)^{.}
\end{array} . \tag{1.8}\\
& J_{n}(\xi)=U_{n}+i i_{n}, \\
& p_{n}=(-1)^{n} 2 k^{n} s^{n}, n=1,2 \ldots \infty \text {, } \\
& s=2 \xrightarrow[(2 k)^{2}]{1-11-(2 k)^{2}} .
\end{align*}
$$

Since the resistance R_{o} of an isolated (ubular conductor is given by

$$
\begin{equation*}
R_{o}=\operatorname{Real}^{2 \mu i p} \frac{M_{0}(\xi)}{\xi} \quad M_{o}^{\prime}(\xi) \tag{19}
\end{equation*}
$$

equation (13) becomes equation (1) of the formulae in the next section. This is the general solution for the case of non-magnetic conductors.

In general R may be calculated from this formula and tables of Beselfunctions. The ber, bei, ker and kei functions ${ }^{2}$ and the recurrence formulae are sufficient to evaluate the Bessel functions but the process is long. In the most important practical cases, the conductors are rather large and the applied frequencies fairly high. When this is true as well as when the tubes are sery thin the formulae usually involve only the limiting forms of the Bessel functions. These -pectial results are given in the next section.

1II. Alternitin; Current Riesistance Formulate for Nox-Masinetic Condtoctors

The symbols used are:
$a=$ outer radins of conductor in centimeters,
$\alpha=$ inner radins of conductor in centimeters.
$c=$ interaxial separation between conductors in centimeters.
$k=a \quad c$
$\lambda=$ conductivity of conductor in electromagnetic c.g.s. units,

[^59]$\mu=$ permeability of conductor in electromagnetic c.g.s. units,
$\omega=2 \pi$ times frequency in cycles per second,
$i=\sqrt{-1}$
$x=a \sqrt{4 \pi \lambda \omega}$
$y=\alpha \sqrt{4 \pi \lambda \omega}$
$\xi=x i \sqrt{i}$
$\zeta=y i \backslash^{\prime} \bar{i}$
$\lambda_{n}=-J_{n+1}(\zeta), K_{n+1}(\zeta)$
$J_{n}(\xi)=u_{n}+i i_{n}$
$=$ Bessel function of first kind of order n and argument xis $\sqrt{ }$,
$J_{n}{ }^{\prime}(\xi)=\frac{d J_{n}(\xi)}{d \xi}$
$u_{n}^{\prime}+i \imath_{n}^{\prime}{ }^{\prime}=\frac{d J_{n}(\xi)}{d x}$
$K(\xi)=$ Bessel function of second kind of order n and argument si \sqrt{i},
$$
K_{n}^{\prime}(\xi)=\frac{d K_{n}(\xi)}{d \xi}
$$
$R=$ resistance per unit length of tubular conductor with parallel return,
$R_{o}=$ resistance per unit length of tubular conductor with concentric return in electromagnetic e.g.s. units,
$C=$ proximity effect correction factor,
\[

$$
\begin{equation*}
R=C R_{0} . \tag{1}
\end{equation*}
$$

\]

The auviliary functions involved are:

$$
\begin{equation*}
{ }^{3} R_{o}=R_{0}{ }^{\prime} m\left(1-\frac{n}{m} \frac{u_{0} u_{0}^{\prime}+i_{0}^{\prime} i_{0}^{\prime}}{u_{o} i_{o}^{\prime}-u_{0}^{\prime} i_{0}^{\prime}}\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{0}^{\prime}=\frac{1}{u} \frac{\omega \quad u_{0} i_{0}^{\prime}-u_{0}^{\prime} z_{0}}{\pi \lambda} u_{1}^{2}+v_{1}^{\prime}{ }^{2} \tag{21}\\
& =\text { resistance of solid wire with coneentric return, } \\
& m+i n=\frac{1+\lambda_{o} K_{o}(\xi) J_{0}(\xi)}{1+\lambda_{0} K_{o}^{\prime}(\xi) J_{o}^{\prime}(\xi)} . \tag{22}\\
& g=g^{\prime} p\left\{1-\frac{q\left[u_{1}\left(u_{0}-i_{0}\right)+i_{1}^{\prime}\left(u_{0}+i_{0}\right)\right]}{p\left[u_{1}\left(u_{0}+i_{0}\right)-i_{1}\left(u_{0}-i_{0}^{\prime}\right)\right]}\right\} . \tag{23}
\end{align*}
$$

${ }^{3}$ The ratio $R_{0} R_{0}^{\prime}$ oscillates about unily which it approaches more and more closely ats the freque ine increases. It is slue bo the fact that the phase of the current in the inner portion of the solid conductor maty be such as to oppose the current in the omber portion, that the resistance of the solid conductor may be greater than th.11 of the tuhe even though the heating effect in the latter is the greater.
where

$$
\begin{align*}
& g^{\prime}=\frac{\boldsymbol{V}^{\prime} \underline{2}}{x} \frac{u_{1}\left(u_{0}+r_{0}\right)-u_{1}\left(u_{1 .}-r_{1}\right)}{u_{0}^{3}+r_{0}{ }^{2}} . \tag{24}\\
& p+i q=\frac{1+\lambda_{1} K_{1}(\xi)^{\prime} J_{1}(\xi)}{1+\lambda_{1} K_{0}(\xi) J_{0}(\xi)^{\prime}} \tag{25}
\end{align*}
$$

where

$$
\begin{align*}
& u_{n}^{\prime}=\frac{u_{n} i_{n}^{\prime}-u_{n}^{\prime} v_{n}^{\prime}}{u_{n-1}^{2}+v_{n-1}^{2}}, \tag{27}\\
& a_{n}+i b_{n}=\left(1+\lambda_{n} \frac{K_{n}(\xi)}{J_{n}(\xi)}\right) \operatorname{conj} .\left(1+\lambda_{n} K_{n_{n}^{\prime}}{ }^{\prime}(\xi)(\xi)\right) \text {. } \tag{28}\\
& s=2^{1-\sqrt{\prime} 1-(2 k)^{2}} . \tag{29}
\end{align*}
$$

The formula for the correction factor (' is then

$$
\begin{equation*}
C^{\prime}=1+{ }_{{ }_{2} R_{0}}^{2} \sqrt{\omega \lambda}\left(S_{1}+2 g k^{2} S_{2}\right) \tag{II}
\end{equation*}
$$

where

$$
\begin{align*}
& S_{1}=\sum_{n=1}^{\infty} u_{n} k^{2 n} s^{2 n} \tag{30}\\
& S_{2}=\sum_{n=1}^{\infty} n w_{n} k^{2_{n}} s^{n+1} . \tag{31}
\end{align*}
$$

For large values of the argument

$$
\begin{equation*}
R_{o}=R_{o}^{\prime}\left[m-n\left(1-\frac{1}{\sqrt{2 x}}\right)\right] \tag{32}
\end{equation*}
$$

and the correction factor is

$$
\begin{equation*}
C=1+2 \frac{\sqrt{2}-1 / x}{m-n(1-1 \sqrt{/ 2 x)}}\left(S_{1}-\frac{2 \sqrt{2}}{x}\left[p+1\left(1-\frac{1}{\sqrt{2 x}}\right)\right] k^{2} S_{2}\right) \tag{III}
\end{equation*}
$$

When x and y are both large quantities, the auxiliary functions are as follows, provided terms of the second order in $1^{\prime} x$ and $1 / y$ are negligible, n in d and h below being equal the number of terms in which S_{1} and S_{2} converge to a required order of approximation.

With the notation

$$
\begin{align*}
\cos & =\cos \sqrt{2}(x-y) \\
\sin & =\sin \sqrt{2}(x-y) \\
{ }^{\prime} \times p & =\exp [-\sqrt{2}(x-y)] \\
R_{o} & =R_{0}^{\prime} \frac{1+[(1+a) \sin -(1-a) \cos] \exp -a \text { exp }^{2}}{1-[(1-b) \sin +(1+b) \cos] \exp +b \exp ^{2}} \tag{33}
\end{align*}
$$

where

$$
\begin{align*}
& a=1-\frac{1}{2 \sqrt{2} x}-\frac{3}{2 \sqrt{2} y^{\prime}} \\
& b=1+\frac{3}{2 \sqrt{2} x}-\frac{3}{2 \sqrt{2} y^{\prime}} \\
& \frac{1}{a R_{o}^{\prime}} \sqrt{\frac{\omega}{\pi \lambda}}=\sqrt{2}-\frac{1}{x}, \tag{34}\\
& g=g^{\prime} 1+[(1-c) \cos -(1+c) \sin] \exp -c \exp ^{2} \tag{35}\\
& 1-[(1+c) \cos +(1-c) \sin] \exp +c \exp ^{2}
\end{align*}
$$

where

$$
\begin{align*}
& c=1-\frac{1}{2 \sqrt{2} x}-\frac{15}{2 \sqrt{2} y}, \\
& g^{\prime}=-\sqrt{2} / x, \tag{36}\\
& w_{n}^{\prime}\left.=w_{n}^{\prime} n^{1}-[(1-d) \cos -(1+d) \sin] \exp -d \text { exp }\right)^{2} \tag{37}\\
& 1-[(1+h) \cos +(1-h) \sin] \exp +h \text { exp } 2^{\prime}
\end{align*}
$$

where

$$
\begin{align*}
d & =1+\frac{4 n^{2}-1}{2 \sqrt{2} x}-\frac{4(n+1)^{2}-1}{2 \sqrt{2} y}, \\
h & =1+\frac{4(n-1)^{2}-1}{2 \sqrt{2} x}-\frac{4(n+1)^{2}-1}{2 \sqrt{2} y}, \\
U_{n}^{\prime} & =\frac{1}{\sqrt{2}}-\frac{2 n-1}{2 x} . \tag{38}
\end{align*}
$$

At frequencies sufficiently high to afford practically skin conduction． the following formulae indicate the way in which the resistance of the tubular conductor approaches its limit，the resistance of the solicl wire．

$$
R_{o}=R_{o}^{\prime} \begin{align*}
& 1+2 \sin e x p \tag{39}\\
& 1-2 \cos \\
& \hline
\end{align*}
$$

$$
\begin{align*}
& { }_{a} R_{0}{ }^{\prime}{ }_{\frac{1}{\pi \lambda}}^{\bar{\omega}}=\sqrt{2}-\frac{1}{x} \text {, } \\
& C=C_{m}(1-\lambda x) \text {, } \tag{IN}\\
& C_{m}=\frac{1+k^{2} s^{2}}{1-k^{2} s^{2}} \tag{40}\\
& A=2 \sqrt{2} \frac{k^{2} s^{2}}{1-k^{4} s^{4}}\left\{1+2 k^{2}\left(1-k^{2} s^{2}\right)^{2} \frac{1-2 \sin \exp }{\left(1-k^{2} s\right)^{2}} \frac{1-2 \operatorname{cosexp}}{1-2}\right\} . \tag{41}
\end{align*}
$$

When the conductors are very thin tubes, i.e., thin as compsared to the rations, $(a-a)$ a is mecesobily simall dmel, in gemeral, $x-y$ is small. ()f enurse, when the frequency is high emough, $x-y$ becomes large in ally cose. When this in true with reapere to thin tubes, however, x athly will usmally be lage enongh to make the asympotic formulae applicable: but, if $x-y$ is small, the apposimations

$$
\begin{aligned}
& J_{n}(\zeta)=J_{n}(\xi)-(\xi-\zeta) J_{n}^{\prime}(\xi)+\begin{array}{c}
(\xi-\xi)^{2} \\
2! \\
J_{n}^{\prime \prime}(\xi)
\end{array} \\
& K_{n}^{\prime}(\zeta)=K_{n}(\xi)-(\xi-\zeta) K_{n}^{\prime}(\xi)+\begin{array}{c}
(\xi-\zeta)^{2} \\
2!
\end{array} K_{n}^{\prime \prime}(\xi),
\end{aligned}
$$

reduce the eorrection fistor to

$$
\begin{align*}
& \left.C=1+2 \beta^{2} f \int_{1} \sum_{n=1}^{\infty} k^{2 n_{s} n^{2} n_{n}} D_{n}-2 k^{2} \quad D_{1} \quad \sum_{n=1}^{x^{4}}-\beta^{3} c_{1} k^{\infty} k^{2 n_{s} n+1} n \frac{d l_{n}}{D_{n}}\right\} \\
& \text { where } \beta=\frac{a-\alpha}{a} \text {, } \\
& f=\frac{(1+\beta \cdot 2)^{2}}{1+\beta+\alpha^{2}}=c_{0}^{2}, \\
& 1)_{n}=\beta^{2} i n^{2}+\frac{1 n^{2}}{x^{4}} d n^{2} \text {, } \\
& c_{n}=1+\frac{2 n+1}{2} \beta \text {. } \\
& d_{n}=1+(n+1) \beta+\frac{(n+1)(n+2)}{2} \beta^{2} .
\end{align*}
$$

and the resistance with concentric return to

$$
\begin{equation*}
R_{o}=\frac{1}{2 \pi \lambda a(a-\alpha)} \frac{1+\beta+\beta^{2}}{1+\beta, 2} \tag{42}
\end{equation*}
$$

$12 \pi \lambda a(a-\alpha)$ is, of course, the direct current resistance of a very thin conductor.

If $(a-\alpha) a$ is very small and negligible compared with $2 n^{\prime} x^{2}$, where n is the number of terms in which the series of (V) converge to a required oreter of approximation,
$C=1+\frac{x^{4}}{2}\left(\frac{a-\alpha}{a}\right)^{2}\left\{\begin{array}{c}\left(1-\frac{a-\alpha}{a}\right)\left\{\begin{array}{l}\sum_{n=1}^{\infty} \frac{k^{2 n} s^{2 n}}{n^{2}}+2 k^{2} s \log \left(1-k^{2} s\right) \\ \\ +\frac{a-\alpha}{a},\end{array} \log \left(1-k^{2} s^{2}\right)+2 \frac{k^{4} s^{2}}{1-k^{2} s}\right\}\end{array}\right\}$
and the resisance with concentric return wo

As a check on formulae (V) and (VI), the limiting cases may be arrived at directly as follows. If the conductors are thin tubes, the harmonic cocfficients are given by

$$
\begin{align*}
& h_{n}=(-1)^{n+1} 2 k^{n} \frac{\xi-\zeta}{\frac{2 n}{\xi}-(\xi-\zeta)\left(1-\frac{2 n(n+1)}{\xi^{2}}\right)} \\
& -(-1)^{n+1} \frac{\xi-\zeta}{\frac{2 n}{\xi}-(\xi-\zeta)\left(1-\frac{2 n(n+1)}{\xi^{2}}\right)} k^{n}\left[n k h_{1}-\frac{n(n+1)}{2!} k^{2} h_{2}+\ldots\right] . \tag{43}
\end{align*}
$$

When ξ is very large

$$
\begin{align*}
h_{n} & =(-1)^{n} 2 k^{n}\left[1-\frac{1}{2}\left\{n k h_{1}-\frac{n(n+1)}{2!} k^{2} h_{2}+\ldots\right\}\right] \\
& =(-1)^{n} 2 k^{n} S^{n}, \tag{44}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{M_{n}}{M_{0}}=\frac{M_{n}^{\prime}}{M_{0}^{\prime}}=1 \tag{45}
\end{equation*}
$$

so that

$$
\begin{align*}
C & =\text { Real }\left[1+\frac{1}{2} \sum_{n=1}^{\infty}\left|h_{n}\right|^{2} \frac{M_{n}}{M_{o}} \operatorname{conj} \cdot \frac{M_{n}^{\prime}}{M_{o}^{\prime}}\right] \\
& =\frac{1+k^{2} s^{2}}{1-k^{2} s^{2}} \tag{46}
\end{align*}
$$

the same result as for the corresponding limiting case of a solid conductor.

On the other hand, if ξ is not large and $\xi-\zeta$ is very small,

$$
\begin{align*}
h_{n} & =(-1)^{n+1} \frac{k^{n}}{n} \xi(\xi-\zeta), \tag{47}\\
\frac{M_{n}}{M_{0}} & =1 \tag{48}\\
\frac{M_{n}^{\prime}}{M_{o}^{\prime}} & =-\frac{i n}{x(x-y)} \tag{49}
\end{align*}
$$

so that

$$
\begin{equation*}
C^{\prime}=1 \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
R=R_{o}=R_{d . c,}, \tag{51}
\end{equation*}
$$

where K_{d}, is the direct current resistance of the thin tubular con-
 formolate 1 Vand V' respectisely.

The curse of the acompaming figure do not prefemd to reperemt the prosimity elfet correction factor with precision. They are, hewever, acourate for thin wheo, dat indicate the order of magnitule of the factor fur varions when of the thickness of the tubular eomductor and show the mature of its sariation with respert to the applied

frequency: They are computed from formula (V^{*}) which is valid for quite high frequencies when the tubes are thin. When the thickness of the tubes is greater, however, the range of validity with respect to frequency is smaller, the dotted portions indicating a doubtful degree of precision. It was previously pointed out in connection with formula (1 V) and is inmediately deducible from physical considerations, that all of the curves eventually conincide with the curse for the solid wire which approaches the salue 1.15 .5 asymptotically.

Is a simple application, suppose the resistance is required of a tubular conductor with an outer radius of $0.412 . \mathrm{cm}$. (that of No .1) gallge 1.11 : copper wire) whose resistivity is 1696.5 elertromagnetic
units per cm., where there is an equal parallel return so situated that $k=0.25$ and a frequency of 5,000 cycles per second is applied to the circuit. Then $m=\sqrt{4 \pi \lambda \omega}=15.26$ and $x=m a=15.26 \times 0.4125=6.30$. When the ratio of the thickness of the conductor to the radius is greater than about 0.01 the proximity effect correction factor C is appreciahle. If the ratio is 0.05 , reading C from the curves, gives $C=1.064$. From formula (42), $R_{0}=5.24$ ohms per mi. which makes the resistance $R=5.23$ ohms per mi.

Abstracts of Bell System Technical Papers Not Appearing in this Journal

Voice-Frequency Carrier Telegraph System for C'ables. ${ }^{1}$ B. 1'
 telegraph systems using freepuencies above the voice range have been in use for a mumber of years on open-wire lines. These system, however, are not suitable for long toll cable operation becattee cable circuits greatly attentate eurrents of high frequencies. The system destribed in this paper uses freguencies in the voice range and is specially adapted for operation on long four-wire cable circuits ten or more telegraph circuits leing obtalinable from one four-wire circuit. The same carrier frefuencies are nsed in looth directions and are spaced 170 eyeles apart. The carrier currents are supplied at earh terminal station by means of a single multi-frequency generator.

Melallic Polar-1)uplex Telegraph System for Long Small-Gage Cables.: Jons H. Bebl, R. B. SHNik, and 1). E. Br.Nison. In connection with carrying out the toll-cable program of the Bell System, a metalliccirenit polar-duplex telegraph system was developed. The metallicreturn type of circuit lende itself readily to the cable conditions, its frectom from interference allowing the use of low potentials and currents so that the telegraph may lee superposed on telephone cireuts. The new system represems an unusual relinement in direct current telegraph circuits. the operating current leing of the same order of magnitude as that of the telephone circuits on which the telegraph is superposed.

The following are some of the outstanding features of the present system. Sensitive relays with closely halanced windings are employed in the metallic circuit, and "vibrating circuits" are provided for minimizing distortion of signals. Repeaters are usually spaterd about 100 miles apart. Thirty-four-volt line batteries are used and the line current is four or five milli-amperes on representative circuits. superposition is atcomplisher by the compositing method which depends upon Irequency discrimination, the telegraph oceupying the frequency range below that of the teleplonese New local-circuit arrangements have been designet, employing polar relays for repetition of the signals; these arrangements are suitable for use in making up circuits in combination with carrier-current and ground-return polar-duplex telegraph sections. New forms of mounting are em-

[^60]ployed in which a repeater is either built as a compact unit or is made up of several units which are mounted on l-beams, and subsequently intercomecterl. In the latter case the usual arrangements for sending and receiving from the repeater are omitted, and a separate "monitoring" unit provided for connection to any one of a group of repeaters.

The metallic system is suitable for providing circuits up to $\mathrm{I}, 000$ miles or more in length, the grade of service being better than that usually obtained from ground-return circuits on open-wire lines for such distances. About 5,000 miles of this type of telegraph circuit are in service at present.

Polarized Telegraph Relays. ${ }^{3}$ J. R. Fry and L. A. Cardiner. This paper discusses two forms of polarized telegraph relay which have been developed by the Bell System for metallic telegraph circuits and for carrier current telegraph circuits. Both relays are of the same general construction except that one is more sensitive and carries an auxiliary accelerating winding. The more sensitive relay is reguired to operate on reversals of line current of one milliampere, and at the same time retain its adjustment over long periods and faithfully and accurately repeat signals. It is interesting to note that under average conditions the ratio of power controlled by the contact circuit to that required by the line windings is about 5,000 to one. The parts entering into the magnetic circuit of this relay exeept for a permanent magnet, are made of the new magnetic alloy (permalloy) recently developed in the Bell Telephone Laboratories. Permalloy lends itself to use in this relay because of its high permeability and very small residual effects. The design of the relay armature and the support for the moving contacts is such that contact chatter is practically eliminated. Ihoto-micrograms showing practically no destructive action are given of the contacts of a relay. which was in continuous service for $\$ 1 / 2$ months, during which time each contact made and broke its circuit approximately $45,000,000$ times.

Supereisory Systems for Remote Control. ${ }^{4}$ J. C. Fielb. With the great growth in power distributor systems and especially with the advent of the antomatic sulstations with no attendant there has arisen need for a supervisory system to indicate to the central load dispatcher the position or operating condition of each important power unit in the outlying stations and abo to give him means to operate promptly these power units when desired.

[^61]By the turning of a key the dispatcher can upen or dome any swite h or eireuit loreaker, start or stoplany of the machines and reveive back .Imost instantly a visnal and continuous sigas of a real or erown lamp. The present systems provide in effect a key and two lampe, ane red, one green, for each unit supervised mounted in easy aceess of the dispateher.

Two main systems known as the distributor sumervisory and the selector supervisory have been developed to meet the varying conditions of service.

The distributor system is recommended when there is a large number of units to be supervised in a given station. It consists essentially of two motor-driven distributors, one in each station, running in synchronism. Brushes on each distributor pass over corresponding regments of two sets of 50 segments at the same instant. Thas ly means of only four conneeting wires between the stations the comtrol and continuous indication of 50 power units is possible.

The selector system is recommended when there is only a few switches to be supervised in a single station or in several stations located some distance apart. It consists essentially of hand operated keys to send predetermined coles of impulses toperate selectively step by step selectors at the distant stations. After the selector has operated the power unit, an auxiliary contact on this unit operates a motor-driven key to send coded impulses to operate a selector at the dispatcher's station to indicate the condition of the unit by lighting a red or green lamp. Several stations can be supersised over the same three-line wires.

The dispateher, by looking at the lamps on his control board, can thus tell at all times the electrical and mechanical conditions at all points in the system and has means to change the operating conditions at any substation according to the demand for power.

Note on Dr. Louis Cohen's Paper on Alternating Current Cable Telegraphy. ${ }^{5}$ 1. A. MacColl. This is a criticism of two papers which were published in the Journal of the Franklin Institute ly Dr. Louis Cohen. It is shown that Cohen's development of the theory of cable telegraphy contains many defects and errors, and in particular that his criticisms of H. IV. Malcolm's bork, "The Theory of the Submarine Telegraph and Telephone Cable," are without foundation.

Telephone Circuit Unbalances, Determination of Magnitude and Locution. ${ }^{6}$ I. P. Ferris and R. G. McCurdy. This paper dis-

[^62]cusses the effects of unbalatnces of telephome circuits on moise and crosstalk, and describes methods for detecting the presence of these unbatances and locating them when detected. The maintename of telephone circuits in a high state of efficiency with respect to balance is important since unbalances contribute to crosstalk betwern telephone circuits and to noise when sueh circuits are involved in inductive exposures. Different types of unbatances are included and their effects under different conditions of energization of the mbablanced circuit and neighboring conductors are discussed. Methots are describer for determining:
(1) The general condition of circuits with rempect to balance by crosstalk measurements from their terminals.
(2) The approximate location of mbalances along a line by measurements over a range of frefuencies with a britge at one end of the line.
(3) The final location of unbalances by field measurements with an unbalance detector which may be operated by a heman and which usually does not reguire interruption of telephone arervier, except momentarily:

Toll cerenit office unbalances are briefly disonsed and a special britge for detecting and measuring the unbatances of composite sets is described. A mathematical treatment of the bridge method for locating mbalances and a discussion of the necessity of terminating the circuits involved in the tests in their characteristic line impedances are given in an appendix. The methods and apparatus described are widely used in the Bell System and afford operating telephone companies means for mannaining their circuits in the condition of minimum practicable mbalance.

The Theory of Probability and Some Applications to Engineering Problems. ${ }^{7}$ F. C. Monsss. The purpose of this paper is 10 suggest a wieler recognition by engineers of a body of principles which, in its mathematical form, is a powerful instrument for the solution of practical prohlems. Certain fundamental principles of the theory of probabititis are stated and applied to three problems from the held of whephone engincering.
. Wole on the heast Mechanical Equizalent of Light. ${ }^{8}$ Herbert li. Whes. In this paper the value for the brightness of the back botly at the molting fuint of platioum recently obtained by the writer is

* Journal A. 1. Fi. E.., Vol. H, p. 122, 1925.
"Juornal of the Hpical Sociew of Amorican and Rev. of Seientific Instruments, Viol. 10 , No. 3, March, 1925, 13. 289.
 the latent values for the hlack laxly eomatate athe the melting point
 Tyndall and bibson is emploged. It is fonnd that were the entire range of probable values of the hatek baxly constants, the values for the lease meehanical equisalent of light may be plotted ats at staighe line in terms of $\frac{?}{?}$? an that the prexent computations may be er preseed in a simple expution in which aty desired values of the blatk bexpy constants may be inserted. I sing the latest values the beast merhanical equivalemt of light is foume to be .001til watts per lumen. This is practically identical with the value obtained by using the athtor's earlier experimental determination using the monochomatio green mercury light, when combined with the (Bibsen and Tyndall luminous efticiency curve.

Photoclectric Properties of Thin Films of Alkali Mctals. ${ }^{9}$ IIERBERt 1:. Wrs. The thin tilms of alkali metals which deposit spontaneonsly on clean metal surfares in highly exhansted inclosures are studed. The alkali metals, sedium, potassium, rubidium, and caesium, in the thin film form all exhibit, to a striking degree, the sedective photoelectric effect lirat diseovered in sorlium-potassium alloy. Veperiments on varying the thickness of the depositerl film show that the selective effert only orcurs at a certain stage of the film's development; for very thin films the selective effect is absent, and it disappears again for thick latyers of the pure alkali metal. The wavelength maxima of emission previonsly ascribed to the selective effect in the pure alkali metals on the basis of observations with rough or colloidal surfaces are absent in these thin films.

The . .iormal and Selective Pholoelectric Etfects in the Alkali Metals
 photoelectric currents from spectalar surfaces of molten sodiam, patasoium, rubidium, and cacesim, and their alloys are studied at barious angles of incidence for the two principal planes of polarization. The edective photerectric defee is clarly exhbited only in the ase of the liguid alloy of sodium and potassimm. Wiae-length distribution curve slow maximat of cminsion, which are usally, but not always, most pronomed for light polarized with the electrie vectur parallel to the plate of incerence. The wave-length maxima presionsly assigned to the several elements are unt confirmed; the

[^63]maxima vary in position for the same element with the condition and monle of preparation of the surface.

Theory of the Schroteffekt. ${ }^{11}$ T. (. Fri. The current from a vacuum tube is composed of discrete particles of electricity which emerge according to no regular law but in an accidental, statistical fashion. The current therefore fluctuates with time. If the fluctuations are amplified sufficiently they may be heard in a telephone receiver ats "noise" -a type of noise which is due to the mechanism of electron emission itself and not to outside interference. This noise is called the "Schroteffekt."

The effect is of certain importance from the telephone standpoint, for it appears that signals, the intensity of which is lower than that of the accidental current fluctuations, can neser be rendered intelligible ly vacuum tube amplification since the noise due to the statistical fluctuations of space current would be amplified to the same extent and would mask the signals. Fortunately, however, the . Ifeet is much less pronounced under operating conditions than it is under the conditions which are most favorable for laboratory study: This is due to the fact that the presence of space charge under operating conclitions smooths out the electron stream to a very material extent, and thus reduces the tube noise. The limitation imposed upon amplification is therefore not serious.

The present paper deals with what we have termed "laboratory conditions" as distinet from "operating conditions." lts principal resule, arrived at by theoretical consideration, is: That if the electrons are emited independently of one another the intensity of the noise in the measuring instrument is

$$
S=\nu \overline{w^{\prime}},
$$

Where ν is the mamber of electrons emitted per unit time and w_{1} is the average over all eleetrons of the energy that eath would hase cansed to be dissipated in the meaburing device if not other had ever been emitterl.

When this formula is applied to the type of simply tuned eirenit that was ronsidered by carlier writers, it leads to substantially the the same results as they had obtained. It is more general than these earlior results, howerer, and rests on less questionable methods of derivation. It is, in fact, more general than the problem of the shoteffekt itself and applies equally well to the absorption of energy from any type of accidental disturbance which satisfies the condition that the individual electromotive impulses occur inde-
"Journai of Franklin Institute, Vol. 199, p. 203, 1925.
pemelenty of one another. Statie in radio telephony and certais "ypes of crosstalk probably satisfy thea conditions.

The Transmission Unif.12 R. V. L. Hartiev. The Bell System has recoutly adoped a new transmission unit, abbreviated $T U$, for expresing those quantities which heretofore have leen expressed in miles of standard cable, or in Furope in terms of the βl unit. It is show that units of this type measure the logarithon of a ratio, and that the present art requires that this ratio be that of two amounts of power. Any of the proposed units may he so defined. Their essemtial difference is in the ratio chosen to correspond to one unit. The ration chosen for the $T U, 10^{0.1}$, makes it wearly the same in size as the soo-cycle mile, which has advantages. It also facilitates the wse of cummon logarithms in preference to natural logarithms for which the ratio e of the βl unit is adapted. A distortionless reference system calibrated in TU is discussed, and conversion tables for the various units are given.

The Thermionic IIork Function of Oxide Coated Platinum. ${ }^{13}$ C. D.ivisson and L. H. Germer. Measurements of the thermionic work function of pure platinum coated with oxides of barium and strontium have been made simultaneousty by two methods for the same segment of a uniformly heated filament. The theory of the measurements and the experimental arrangements are the same as used in an earlier experiment on the thermionic work function of pure tungsten. ${ }^{14}$ Filament temperatures accurate to $\pm 5^{\circ}$, were found from the resistance of the filament at $0^{\circ} \mathrm{C}$. in conjunction with the temperature coefficients of resistance. (1) In the Calorimetric methot the equivalent voltage of the work function was computed from the sudden voltage change resulting from switching off the space current. tue to the cooling effect of the emission. The determination was much more difficult that in the case of the tungsten filament, and measurements were made at the sigule temperature, $1004^{\circ} \mathrm{K}$. At this temperature the work function ϕ was found to be equal to 1. -9 ± 0.3 volts. (2) In the temperature variation methot it was found that, after the temperature had been changed suddenly from onle value to another, the emission changed approximately exponentially from an initial value to a final steady value. The half value periox\} of this change varied from a few scconds at high temperature to over a quarter of an hour at low temperature. Interpreting this

[^64]phenomenon as due to a progressive and reversible change of the character of the filament with temperature, the initial emissions after temperature changes from $1001^{\circ} \mathrm{K}$, were used to determine the b constant of Richardson's equation corresponding to the equilibrium character of the filament at $1064^{\circ} \mathrm{K}$, and similar measurements were made for the b constant corresponding to the character of the filament at $911^{\circ} \mathrm{K}$. The two determinations lead, through the relationship $\phi=b k / e$, to 1.79 wolts and 1.60 volts for the corresponding values of ϕ. For $\left[06 I^{\circ}\right.$ K, then, the two methods give values for ϕ in agreement. The measurements are, however, not sufficiently accurate to give any indication whether or not an electen within the metal possesses the thermal energy $3 k T / 2$. The various corrections made and possible errors are thoroughly discussed. It is pointed out that if the transition from the equilibrium state at one temperature to that at another had occurred so rapidly as 10 avoid observation, a disagreement of 25 per cent. between the values of ϕ given by the two methods would have been ohtained which might have been misinterpreted.

Contributors to this Issue

 Johns Ilophins, loms; assistant and asoistant physicist. Bureath of

 Electric Company (Bell Telephone Lahoratoriow) B!1! 10 date. Dr. Wese work has had to do principally with the production, measurement and utilization of light.
 instructor in physies, 191-16; Engineering Department of the Wisitern Eloctric Compans, 1911i . Mr. Horton has been chasely connected with the development of apparaths for carrier current commumication.
 1901; instruetor in Flectrical Figgineering, I niversity of Michigan, 1906-09; assistant professor, 1909 13; Engineering Department. American Telephone and Telegraph Company, 1913-19: I epartment of Development and Researeh, 19t! . Mr. Parker's work has related particularly to telegraphy, included the development of printing telegraph apparatus, carrier, and metablic circuit systems for fine wire cables.
A. 13. Čark, B.E.E.. University of Michigan, 1911; American Telephone and Telegraph Company, Engineering Department, 1911-19: Department of Developmont and Research, 1919-. Mr. Clark's work has been connected with toll telephone and telegraph systems.
11. II: Nuchors, 13. S., 1908, E.E., 1911, Armour Institute of Technology: M.S., 1909, Ph.1)., 1918, I niversity of Chicago; Assistant Professor of Electrical lingineering, Armeur Institute of Technology, 1909 11: Figineering Department, Western Flectric Company (Bell Tef(ephone Lalmoratories), 1911 -. Since 1916 Mr. Nishols has been in charge of the laburatories researeh in ratio communication.
J. C. Sthetatesci, A.B., 1915; instructor in physics, Cornell U'niversity, 1915 は: Engincering Department, Western Electric Company (Bell Telephone Laboratories), 1919- Since 1915, Mr. schelleng has been engaged in research in ratlio communication.

T．（．Smon，B．S．，Purlue L＇niversity，1910；Plant Engineering， New Vork Telephone Company，1910 14；engineering construction of high tension lines and municipal electric light pants，1915；Ontside Plant Engineering，Now Sork Telephone Company，1916 19：Auto－ motive Engineering，New Vork Telephone Company，191！21；Au－ tomotive and Construction Apparatus Engincering，American Telephone and Telegraph Company，1921

Jons R．Čaroos，B．S．，Princeton，1907；E．E．．1909；М．．．．，1912； Research Department．Hestinghouse Electric and Manufacturing Company，1910－12；instructor of physics and electrical engineering， Princeton， 1912 14；American Telephone and Telegraph Company： Engineering Department，1914 15；1＇atent Department，1916－17： Engineering Department，1918；Department of Development and Research，1919－．Mr．Carson＇s work has been along theoretical lines and he has published several papers on theory of electric circuits and electric wate propagation．

Karl Ki．D．arrow，S．B．，University of（hicago，1911；University of Paris， 191112 ；University of Berlin， 1912 ；Ph．1）．，in physies and mathematics，I niversity of Chicago，1917；Engineering Department， Western Electric Company，1917 24；Bell Telephone Laboratories， Inc．，192．：－Mr．Darrow has been engaged largely in preparing studies and analyses of published researeh in various helds of physics．

Sadiae Plero Mead，A．B．，Barnard College，1913；M．A．，Cohmbia University，1911：American Telephone and Telegraph Company， Engineering Department，1915 19；Department of Development and Research，1！91！．Mrs．Mead＇s work has been of a mathematical character relating to telephone transmission．

Courtesy of "Electrician," London
THE LATE OLIVER HEAVISIDE, F.R.S.

The Bell System Technical Journal

 July, 1925Oliver Heaviside

By F. GILL

A1.1HOt (ibl abler pens hase expressed apprectation of the late Oliver Heaviside, it is perhaps permissible for an English telephone engineer to present a note regarding him. Of his life-history wot wery much is known; but he may have been influenced in his choice of a career by the fact that he was a nephew of the famous telegraph engineer Sir Charles Wheatstone. Heaviside was born in London on May 13, 1850; he entered the service of the Great Northern Telegraph Company, operating submarine cables, and he remained in that service, at Neweastle-nn-Tyne, until 187t. While he was with the Telegraph Company, he published in 1873 a paper showing the possibility of guadruplex telegraphy:

At the age of about 21, owing, it is suggested, to increasing deafness, he left the service of that Company and took up mathematical research work. How he acepuired his mathematical training does not seem to be known;: perhaps he was self-taught,-in some of his l'apers he implies it. By whatever means he mastered the principles, it is evident that he was an ardent student of Maxwell, for constantly in Heaviside's own writing runs a vein of appreciation of Maxwell. For some time he lised in London, then he moved to Paignton in Devonshire; his Electrical Papers are written from there, and he died at the neighboring town of Torguay on February 4, 1925, in his inth year.

That is about all the personal history at present available, and yet it gives a clue to a dominant note in his character, viz., reluctance to come into prominence, originating, perhaps, in a kind of shyness, which uhtimately led to the recluse state. It is strange that so remarkable an investigator shonld, in his carlier manhood, have convinced so few, notwithstanding the fact that his voluminous writings made his name well known. It must, however, be remembered that his articles were very difficult, ewen for adsanced mathematicians to follow, for be used a system of mathematics which, at that time

[^65]was unusual. Whatever the cause, the fact remains that until about the year 1900 few engineers understood him.

Coming to his work, what was it that Heaviside did, and upon what does his fame rest? That is too large a subject for a telephone enginecr to answer fully, but as regards commanication engineering something may be said. His great achievement was the discovery of the laws governing the propagation of energy in circuits. He recognized the relationship between frequency and distortion; he illustrated it by numerical examples, and he showed what was required to make a "distortionless circuit." Further, he showed the effects of "attenuation" and the result of "inductance" (these words were his own coinage) in improving telephony: He also explained how the inductance of circuits could be increased; he suggested the use of continuous loading, of lumped inductance in the form of coils, and he pointed out the difficulty of obtaining sufficiently low resistance in such coils. He investigated the effect of sea and land and the upper atmosphere on the propagation of radio energy and how it was that this energy could be transmitted ower the mountain of earth intervening between two distant places.

His activity in these matters can best be illustrated by extracts from his writings, as follows:

In his "Electrical Papers," V'ol. II, written in 1887, p. 161, he gives numerical examples of frequency distortion and of its correction, and says:
"It is the very essence of good long distance telephony that inductance should not be regligible."

In his "Electromagnetic Theory," Vol. I, published in 1893, he considers in Section 218, p. 441.
"various ways, good and bad, of increasing the infuctance of circuits"

He suggests, page 445, the use of
". . . inductance in isolated lumps. This means the insertion of inductance coils at intervals in the main circuit. That is to say just as the effect of uniform leakage maty be imitated by leakage concentrated at distinct points, so we should try to imitate the inertial effects of uniform inductance by concentrating the inductance at distinct points. The more points the better, of course . . . The lilectrical diffieulty here is that inductance coils have resistance as well, and if this is $t 00$ great the remedy is worse than the disease.

> To get large inductance with small resist, mere, or, bure gen erally, to make coils having large time constants, requires the use of plenty of eopper to get the conductance, and plenty of iron to get the inductance, employing a properly clomed magnetic circuit properly divided to prevent extra resistance and cancellation of the increased inductance . . . This plan . . . is a straightforwarel way of increasing the L largely without too much increatsing the resistance and mey be worth working out and development. But I should add that there is, so far, no direct evidence of the beneficial action of inductance brought about in this way:."

In "Electrical Vapers," Vol. II, p. 311, he deals with rellected waves, and on page 347 he says:
. . . . but the transmitter and the receiving telephone distort the proper signals themselves. The distortion due to the electrical part of the receiver may, however, he minimized by a suitable choice of its impedance.
"Filectromagnetic Theory;" Vol. I, p. 404 :-
"We have seen that there are four distinct quantities which fundamentally control the propagation of "signals' or disturbances along a circuit, symbolized by R, K, L, and S, the resistance. external conductance, inductance, and permittance;"
"Electromagnetic Theory," Vol. I, p. 411 :-
"It is not merely enough that signals should arrive without being distorted 100 much; but they must also be big enough to be useful

Nor can we fix any limiting distance ly consideration of distortion alone. And even if we could magnify very weak currents, say a thousandfold, at the receiving end, we should simultancously magnify the foreign interferences. In a normal state of things interferences should be only a small fraction of the principal or working current. But if the latter be ton much attenuated, the interferences become relatively important, and a source of very serious distortion. We are, therefore, led to examine the influence of the different circuit constants on the attenuation, as compared with their influence on the distortion."
"1ilectrical I'apers," Vol. II, p. 402 :-
"I was led to it (the distortionless circuits), by an eximination of the effect of telephones bridged across a common circuit (the proper place for intermediate apparatus, removing their impedance) on wases transmitted along the circuit."

With regard to Radio Communication, one extract must suffice writing on The Electric Telegraph in June, 1902, for the Encyctopedia Britannica, he siys--"Electromagnetic Theory," Vol. 111, p. 335:-
"There is something similar in 'wireless' telegrajhly. Sea water, though transparent to light, has quite enough conductivity to make it behave as a conductor for Hertzian waves, and the same is true in a more imperfect manner of the earth. Hence the waves accommodate themselves to the surface of the sea in the same way as waves follow wires. The irregularities make confusion, no doubt, but the main waves are pulled round by the curvature of the earth, and do not jump off. There is another consideration. There may possibly be a sufficiently conducting layer in the upper air. If so, the waves will, so to speak, catch on to it more or less. Then the guidance will be by the sea on one side and the upper layer on the other. But obstructions, on land especially, may not be conducting enongh to make waves go round them fairly. The waves will go partly through them."
Probably due to his fong sectusion, his approach to certain subjects was rather critical. At one time I tried to get a portrat of him for the Institution of Electrical Engineers, but failed;-he did not wish to have his photograph exhibited, he thought that "one of the worst results (of such exhibition) was that it makes the public characters think they really are very important people, and that it is therefore a principle of their lives to stand upon doorsteps to be photographed."

On another occasion when I sent him a copy of an article by a distinguished telephone engineer on "The Heaviside Operational Calculus," he replied that he had "looked through the paper . . . with mach interest, to see what progress is being made with the academical lot, whom I have usually found to he very stubhorn and sometimes wilfully blind."

Some have held that Heaviside was not recognized as he ought to have been. This was probably the case some time ago, but not in recent years. The same is true of many very great men who were much in advance of their time, for the English have the national characteristic that they do not make much fuss about their great men. So if Heaviside suffered, he shared this experience in common with other pioneers who deserved higher recognition. See, for example, what Ifeaviside himself said about one of these, in a footnote in "Electromagnetic Theory," Vol. III, p. s!?:
"George Francis Fitzgerald is dead. The premature loss of a man of such striking original genius and such wide sympathies
will be comsidered by those who knew hint and his work to be a national misfortune. I)f course, the 'Hation' knows mothing about it, or why it should be sos."

Daring the last 20 years or more the significance and haminoms quality of the work of Iteaviside has been increasing by acknowledged mathematicians and by practical telephone, welegraph and radio engineers. To other alectrablenginers his treatment of wavetransmission has not yet appealed quite so strongly.

Probably his first recognition came from his contribution to the problem- "Electromagnetic Indaction and its Propagation" in the Electrician. It appeared ats a series of articles between January, 188.5 and December, 15sit. His "Electrical Papers" were written at various times and were published in two whomes in 1892. Then foltowed his three volumes on "lilectromagnetic Theory"-on the basis of the Electrician articles published in 1893, 1899 and 1912. He also wrote, in 1902. the articte on the "Theory of the Electric Telegraph" in the "Enevelopedia Britannica."

In Is91, the Royal Society made him a Fellow. In 1899, the American Academy of Arts and Sciences elected him an Honorary Member. In 190s the Institution of Electrical Engineers did the same, followel by the American Institute of Electrical Engineers in 1917. The Literary and Philosophical Society of Manchester also elected him an Honorary Menber. He was an Hon. Ph.D. of the I niversity of Cottingen, and in 1921, the Institution of Electrical Fingineers conferred upon him the highest award in their gift-the Faraday Medal. He was the first recipient of this Medat which wats e-stablished to commemorate the 50th anniversary of the founding of the original Society of Telegraph Engineers and of Electricians, and since then the medal has been bestowed upon Sir Charles Parsons, Dr. S. Z. de Ferranti, and Sir J. J. Thomson.

From time to tinte there were reports of his living in great poverty: and attempts were made to help him. These reports lacked proportion, but it is true he had not much money and perhaps still less comfort; he was a difficult man to help. Towards the end of his life he received from the British Gowernment a Civil Pension. His independent character rendered it necessary that offers of assistance should be tactfully made and apparently this was not always the case, as I believe help was sometimes refused; but there were those who sucreedecł. Another difficulty was his unconventional mode of living which catsed him, in his last years, to live as a recluse, cooking and looking after his honse alone.

Just what other work Heaviside did, in addition to his published writings, is not at present known to me. I believe he left a good deal of manuscript, but whether it is in such a state that it could be completed by another, I do not know. Let me conclude this note by an extract from his last chapter of his last book, "Electromagnetic Theory:" Vol. III, page 519 :-
"As the universe is boundless one way, towards the great, so it is equally boundless the other way, towards the small; and important events may arise from what is going on in the inside of atoms, and again, in the inside of electrons. There is no energetic difficulty. Large amounts of energy may be very condensed by reason of great forces at small distances. How electrons are made has not yet been disc:svered. From the atom to the electron is a great step, but is not finality.
"Living matter is sometimes, perhaps generally, left out of consideration when asserting the well-known proposition that the course of events in the physical world is determined by its present state, and by the laws followed. But 1 do not see how living matter can be fairly left out. For we do not know where life begins, if it has a begimning. There may be and probably is no ultimate distinction between the living and the dead."

The Loaded Submarine Telegraph Cable'

By OLIVER E. BUCKL.EY

Abstract

 that of corrembating cathes of the previnus art, the Sew Vork Wares permatlow-leatent cable marks a rewolution in submarine cable practace. This cable represent- the firs pratetical application of imdective londing a han haser oh the new mand ti material, permallos, which servesto increase is induetame and conseguenty its ability to fransmit a rappil sureession of telegraph signals.

This paper explaine the part played be lowding in ehe operation of a cable of the new type and dixaness some of the problems which were involved in the develomem leading ins tos the first commerci,s installation. Particular athention is given to thesie features of the transmission problem wherein a pratical cable differs from the ideal cable of previos- theoretical discustions.

Brief mention is mate of means of operating hauted cablus atm the posisible trend of future development.

P'EkMaleoy Lomblis;

THE announcemen on september 2!, 1924, that an uperating speed of ower 1 , jeft letters per minute had been obtained with the new 2,30 mile New lork-izores permabloy-lated cable of the Western ['nion Telegraph Company, brought to the attention of the publie a development which promises to revolutionize the art of sub)marine cable telegraphy. This announcement was based on the result of the first test of the operation of the new cable. A few weeks later, with an improwed adjustment of the terminal apparatus, a speed of ewer 1,960 letters per minute was obtaincel. Since this speed represents about four times the tralfic capacity of an ordinary cable of the same size and length, it is clear that the permalloy-loaded cable marks a new cra in transoceanie communication.

The New lurk-Azores cable represents the lirst practical attempt (6) secure increased speed of a long submarine telegraph cable by inductive loading and it is the large distribmed inductance of this cable which is principally responsible for its remarkable performance. This inductance is secured by surrounding the conductor of the cable with a thin layer of permalloy. Fig. I shows the construction of the deep sea seetion of the cable. In appearance it differs from the ordinary type of eable principally in having a permalloy tape 13.00); inch thick and 0.125 inch witle, wrapperd in at close helix around the stranded copper conductor.

Permalloy, which has been eleseribeel ly Armold and Elmen, is an alloy consisting principally of nickel and iron, characterized hy very

[^66]high permeability at low magnetizing forces. The relative proportion of nickel and iron in permalloy may be varied through a wicle range of additional elements as, for example, chromium may be added to secure high resistivity or other desirable properties. On account

Fig, 1 Permalloy-l.oaded Cable. Thove, section of deep sea type showing construction. Below, section of core showing permalloy tape partly unwound.
of its extremely high intial permeabilite a thin layer of permalloy wrapped around the copper conductor of a cable greally increases its inductance even for the smallest currents.

In the case of the New York-Azores cable the permalloy tape is composed of approximately $78 \frac{1}{2}$? 6 nickel and $21 \frac{1}{2} \mathrm{C}$ iron and gives the cable an incluctance of about it millihenries per nautical mile. An approximate value of the initial permeahility of the permalloy in that cable may be got by assuming the helical tape replaced by a continuous cylinder of magnetic material of the same thickness. ${ }^{3}$ This material would have to have a permeability of about 2,300 to give the observed inductance. A better appreciation of the extraordinary properties of the new bading material may be obtained by comparing this permeability with that which has previously been obtained with iron as the loating matterial. The Key West-Havana relephone cables are lated with 0.010 inch diameter soft iron wire. The permeability of this wire, which was the besi which could be whained commercially when that cable wats mate, is only about 115 ,

[^67]or approximately one-twemticth th.11 of the permolloy t.pe of the New Vork- Jares cable.

I'romatis ENonterertis

The proposal to ase permaltoy lowding wincerase the speed of long telegraph eables was one outcome of an insestigation tombertaken by the anthor soon alter the war to determine whe ther some of the new methots and materials developed primarily for telephony might not find important appliation to submarine telegraphy. In the subsequent development of the permalloy loated eable a large number of new problems, both theoretical and practical, had to be solved before the manufacture of a cable for a commercial project could be undertaken with reasmable assurance of success. The problems encomotered were of three principal kinds. Fïrst wats that of the tramsmission of signals ower a cable having the charmeteristics of the trial conductors mate in the laboratory: Alhough the theory of transmission over a loaded cable had been previously treated by others, the problem considered had leen that of an ideal loaded cable with simple assumptions as to its electrial constants and without regard to the practical limitations of a real cable. The second class of problems had to do with the practical aspects of design, manufacture and installation. In this eonnection an extensive series of experiments was conducted to determine the means required to seenre at the ocean bottom the characteristies of the latoratory samples on which the tramsmission studies were based. Among the numerous problems which arose in this comection wore those concerned with protecting the copper eonductor from any possible damage in the heat-treating operation which was neressary 10 secure the desired magnetic eharacteristics, and those concerned with protecting the strain-sensitive permalloy tape from being damagerl by submerging the cable to a great depth. The third class of problem had to do with terminal apparatus and methols of operation. The prospective speed of the new cable was gute beyond the eapabilities of standard cable equipment and accordingly new apparatus and operating methods suited to the loaderl cable had to be worked ont. In particular it was necessary to develop and construct instruments which could be used to demonstrate that the speed which had been predicted could actually be secured. The success of the investigations along all three lines is attested by the results which were obtained with the New York-Azores cable. I ig. 2 shows a section of cable recorder slip, the easily legible messige of which Was sent from

Horta，Fayal，ind received at New York at a speed of 1,420 letters per minnte．

It is principally with regard to the first of these clasien of problems， that of the transmission of signals，that the following discussion is concerned．No attempt will be made bere to discuss the details of

FRESIIEST	E1；ib	1 T	BOT［OM	M．\RK゙にT	

SHE IS IISS SISTER
Fig． 2 Test Message．Western［＂nion New Vork－hzores Permalloy－Loaded Cable，Sent from florta（Azores）and received at New York，Nowember 14， 1924. Speed 1920 letters per minute．Recorded with special high speed siphon recorder
design and development of the physical structure of the cable，nor will there be given a detailed description of the operating results or how they were obtained．These subjects must be reserved for later publication．It is desired in what follows to explain how inductive loading improses the operation of a submarine cable and to point out some of the problems concerned with the transmission of signals which had to be considered in engineering the first long loaded cable．

Factors Lametini，speed of Nox－Lomben（＂abte

In order（o）understand the part phayed by loading in the trans－ mission of signals it is desirable first to review briefly the status of the cable art prior to the introduction of loading and to consider the factors then limising cable speed and the pessible means of wer－ roming them．I cable of the ordinary type，withont loading，is essentially，so lar as its electrical properties are concerned，a resist－ ance with a capacity to carth distributed along its lengeth．Ahbough it does have some inductance，this is 100 amall 10 affect transmission at orelinary speeels of opreration except on cables with extremely heavy
conductors. The operating spere of a non-tasted cable is approximotely insersely proportionsl the the prexlect of the total resistance by the total capacity: that is.

$$
S=\frac{k}{\left(K R r^{\prime}\right.}
$$

where (' is eapatity and R resistance per mit lengeth, and l is the length of the cable. The cenetticient k is gencrally referred to as the speed constant. It is, of course, not a constant since it depends on such factors at terminal interference and method of operation, but is a combenient basis for comparing the efficiency of operation of cables of different electrical dimensions. As the technique of operating cables hats improsed the accepted value of k has increaserl, its value at any time being thependent on the factor then limiting the maximum speed obtainable. This factor has at times been the sensitiveness of the receiving apparaths, at other times the distortion of signals, and in recent years interference. During a great part of the history of submarine cable telegraphy distortion was considered the factor which limited the speed of operation of long cables and on this account most of the previous discussions of submarine cable transmission have been concerned principally with distortion and means for correcting it. As terminal apparatus was gradually improved means of correcting distortion were developed which practically eliminated distortion ats an important factor in the operation of long cables. With distortion thus eliminated the speed was found to be limited primeipally by the semsitiveness of the receiving apparatus. This limit was, however, climinated in turn by thedevelopment of signal magnifiers. During recent years, in which numerous cable signal magnifiers have been available and methods of correcting distortion hawe been understond, the only factor limiting cable speed has been the mutilation of the feetse received signals by interference. Most cable are operated duplex, and in these the speed is usually limited by interference between the outgoing and incoming signals. In cables operated simplex, and also in cables operated duplex where terminal conditions are unfavorable, speed is limited by extrancous interference which maty be from natural or man-made sources and which varies greatly in different lexations. The strength of the received current must in either case be great enongh to make the signals legible through the superposed interference current. Owing to the rapidity with which the receised signal amplitude is decreased as the speed of sending is increased, the limiting speel is quite sharply defined by the interference to which the cable is subject.

Means of Increasing Spebi)

With the speed of operation thus limited there were two ways in which the limiting speed could be increased: the interference coukl be reduced, or the strength of signals made greater. No great reduction in interference due to lack of perfect duplex balance could be expected, as balancing networks had already been greatly refined. Extraneots interference in certain cases could be reduced by the use of long, properly terminated seatearths. The signal strength coukl be increased either by increasing the sending voltage or by decreasing the attenuation of the cable. However, with duplex operation nothing at all is gained by increasing the voltage in cases where lack of perfect duplex balance limits the speed, and with simplex operation any gain from raising the voltage is obtained at the cost of increased risk to the cable, the sending voltage being usually limited to about 50 volts by considerations of safety. The attenuation of the cable could be reduced and the strength of the signal increased ly use of a larger copper conductor or by using thicker or better insulating material. None of these possihle improwements, however, seemed to offer prospect of very radical adwance in the art.

In telephony; both on land and submarine lines, an advantage hat been olstained loy adding inductance ${ }^{3}$ in either of (wo ways, by coils inserted in series with the line or by wrapping the conductor with a layer of iron. The insertion of coils in a long deep-sea cable was practically prohibited by difficulties of installation and maintentance. Accordingly, only the second method of adding inductance, commonly known as Krarup or continuous loading, could be considered

[^68]for a transoceanic wegraphs cable and it is primarily with regard to continuous loaleng that the following distassion is concerned.

> FFF:C IT OF: I.OMDN:

Most of the proposals to load telegraph cables hase hatd the whject of reducing or eliminating distortion, and accordingly most of the mathematical treatments of loading have been from that point of view. The reduction of distortion is, however, not the only benefot to be obtained from loading and, in fact, may not always be secured in the high speed operation of a loaded cable. The principal benelit of loading from the practical standpoint is to decrease the attennation of the signals so that for a given frequency more current will be received or so that the minimum permissible current may be received with a greater speed of signalling. From the mathematical standpoint there are two ways of treating the problem of the loaded cable, lirst with regard to the transmission of a transient impulse, and second with regard to setting up steady alternating currents of definite frequency: In the ultmate analysis the solution of either problem can be got from the other. However, for practical purposes they are two distinct means of attack. Which should be used depends on the object to be secured. If one is concerned primarily with the effect of the cable on the wave shape of the signal transmitted over it, it is fairly obvious that the transient treatment has alvantages. If, however, one is concerned only with the strength of the received signal, as is the case if there is assurance that the signal shape can in any event be corrected by terminal networks, then the steady state treatment is sufficient and much more cowsenient to apply. In the case of the real loaded cable the complete transient solution is extremely complex and the steady state treatment relatively simple. The solution of the transient problem of an ideal loaded cable is, however, very valuable to give a physical picture of how inductive loading aids the high speed transmission of signals.

The transient solution of the problem of an iuleal heavily loaded cable has been worked out by Malcolm ${ }^{4}$ and more rigorously by Carson ${ }^{5}$, who have determined the curve showing the change of current with time at one end of the cable if a steady e.m.f. is applied at zero time between the cable and earth at the distant end. Such a curve is called an "arrival curve" and for an ideal loaded cable comprising only constant distributed resistance, capacity and inductance may have a form like that shown in C urve bof Fig. 3, which is to be

[^69]compared with Curve a which is the arrival curve of a mon-loaded cable. The straight vertical part of Curve b represents the "head" of the signal wave which has travelled ower the cable at a definite speed and with diminishing amplitude. The definite head of the arrival curve is the most striking characteristic difference between the ideal loaded and the non-loaded cable. In the latter, as is evident from Fig. 3, the current at the receiving end starts to rise slowly almost as soon as the key is closed at the transmitting end. When an e.m.f. is applied to the sending end of the non-loaded cable a charge spreads out rapidly over the whole length, the receiving end charging up much more slowly than the sending end on account of the resistance of the intervening conductor. Hence, if a signal train consisting of rapidly alternating positive and negative impulses is applied to the sending end, the effect at the receiving end of charging the cable positively is wiped out by the succeeding negative charge before there has been time to build up a considerable positive potential and the successive alternating impulses thus tend to annul each other. In the loaded cable the effect of inductance is to oppose the setting up) of a current and to maintain it once it has been established, and thus to maintain a definite wave front as the signal impulse travels over the cable. Hence, with inductive loading the strength and individuality of the signal imputses are retained and a much higher speed of signalling is possible. It shoukl be noted that by speed of signalling is meant the rapidity with which successive impulses are sent and not the rate at which they travel over the cable. This speed of travel is actually decreased by the addition of inductance, about onethird of a second being required for an impulse to traverse the New York-Azores cable from end to end.

It should be noted that Curve b of Fig. 3 is for an icleal loarled cable in which the factors of resistance, capacity and inductance are constant. In a real loaded cable none of these factors are constant and the arrival curve cannot be simply and accurately computed. Even the rapacity which is usually assumed as constant for real cables varies appreciably with frequencies in the telegraph range, and owing to the fact that gutta perchat is not a perfect dielectric material its conductance, which is also variable with frequency, must be taken into account. Although the inductance of the cable is substantially constant for small currents of low frequency, it is greater for the high currents at the sending end of the cable on account of the increase of magnetic permeability of the loarling material with field strength and is lese at high frequencies than at low on account of the shiedding cffect due to edfly currents. The resistance is highly
variable since it compriaes, in adtition th the resiot. at ee of the copper comblactor, elfertive resistance due ter edy vurrents dull hysteresis in the loading material, both of which vary with frepuency and current amplitule. Furthermore, there is bariable inductance abll resistance in the recurn circuit outside the insulated emmbertor which must low

Fig. 3 -Irrival (urves. a. Non-loaded cable. b. Iteal loaded cable. c. Real loaded cable (approximate)
taken into account. Although it is very difficult to compute the exact arrival curse of a cable subject to all of these variable factors, an approximate calculation in a sperific case like that of the New lork-dzores cable shows that the arrival curse has the general hape of Curse e of liig. 3. It will be noticer that although this arrival curse lack, the sharp definite head, characterintic of the ideal loaded cable, it still hats a relatively sharp rise and that the time reguired for the impulse in traterse the cable is unt greatly different from that of the ideal loaded cable.

Althongh it is difficult to take exact account of the variable characteristics of the loaded cable in the solution of the transient problem, it is easy to take account of them in the steady state or periodic analysis by means of well-known methots. If a steady sinusoidal voltage. J_{s}, is applied at one end of the cable the resulting voltage, \therefore 'r, at the distant end will be given by the equation

$$
V_{r}=k V_{s} \epsilon^{-P l},
$$

where l is the length, P, the propagation constant of the cable and k, a constant which depends on the terminal impedance and which is unity in case the cable is terminated at the receiving end in its socalled characteristic impedance. The propagation constant is given by the formula,

$$
P=\sqrt{ }(R+i p L)(G+i p C)=\alpha+i \beta
$$

where R is the resistance, L, the inductance, G, the leakance and C, the capacity per unit length and p is 2π times the frepuency. The real part of the propagation constant, α, is called the attenuation constant and the imaginary part, β, the wave length constant. By separating α and β the amplitude and phase displacement of the received voltage relative to the sent voltage may be computed for any particular frequency and the behavior of a complex signal train may be worked out by analyzing it into its Fourier components and treating them separately. The phase shift is, howeser, of importance mainly as regards the shape of the received signals and their amplitude may, in general, be obtained from the attenmation constant alone. Thus if it is known that the signal shape can in any case be corrected by terminal networks there is no need to be concerned with more than the attemation constant to compute the speed of the cable.

In the case of a cable of the permalloy loaded type, α is given with an approximation ${ }^{6}$ sufficiently dose for the purposes of this discussion hy the equation,

$$
\alpha=\frac{1}{2} \sqrt{\frac{C}{L}}\left(R+\frac{G}{C} L\right)
$$

For the purpose of computing R it is consenient to separate it into is components, giving

$$
\alpha={ }_{2}^{1} \sqrt{\frac{C}{L}}\left(R_{c}+R_{e}+R_{s}+R_{h}+\frac{G}{C} L\right),
$$

[^70]Where $\quad R$. expper resistance per nait length
$R_{r}=$ eddy current resistame per unit lensils
$R_{\mathrm{t}}=$ eed return resistance per unit length
$R_{h}=$ hysteresis resistance per mit leugh
The eopper resistance R_{i} is that determined by at direet current measurement of the loaded conductor since the resistance of the loading tape is so high and its length is so great that the current Howing longitudinally through it may be safely neglecterl.

The eddy current resistance R_{e} is given approximately by the formula,

$$
R_{e}=\begin{aligned}
& m \mu^{2} \beta^{3} \rho^{2} \\
& \rho(l-l)^{\prime}
\end{aligned} .
$$

where l is the thickness or diameter of the loatling tape or wire, d, the outside diameter of the lowed conductor, f. the frequency, ρ, the resistivity of the loading material, μ, its magnetic permeability and m, a constant which depends on the form of the lowling material and is in general greater for tape than for wire lowding. Although it is possible to compute a value of m, the value found in practice is always larger that the theoretical value which is necessarily based on simple assumptions and does not take into acconent such a factor as variation of permeability through the crons-aection or length of the loading material. Accordingly it is necesairy to determine m experimentally for any particular type of haded conductor.

The sea-return resistance may be safely neglected in the computation of slow speed non-loaded cables, hat it is a factor of great consequence in the hehavior of a loaded cable. By sea-return resistance is meant the resistance of the return circuit including the effect of the armor wire and sea water surrounding the core of the cable. Although the exact calculation ${ }^{7}$ of this resistance factor is ton complex to be discused here, the need for taking it into account may be quite simply explained. Since the cable has a ground return, current must flow outside the core in the same amount as in the conductor. The distribution of the return current is, however, dependent on the structure of the cable as well as on the freguencies insolved in signalling. If a rlirect current is semt through a long cable with the earth as rewern combuctor the return curremt -preads out through such a great volnme of earth and sea water that the resistance of the return path is negligible. On the other hand if atl alternating current is sent through the cable the return current tends in concentrate

[^71]around it, the degree of concentration increasing with the frequency: With the return current thus concentrated the resistance of the sea water is of considerable consequence. It is further augmented by a resistance factor contributed by the cable sheath. This may be better understood be considering the cable as a transformer of which the comduetor is the primary and the armor wire and seal water are each closed secondary circuits. Obviously the resistances of the secondary circuits of armor wire and sea water enter into the primary circuit and hence serve to increase the attentation. The presence of the armor wires may thas be an actual detriment the transmission of signals.

To take account of the hysteresis resistance, R_{h}, and also of the increased inductance and eddy current resistance at the sending end of the calse it is most convenient to compute the attenuation of the cable for currents so small that R_{h} may be safely neglected. The attenuation thus computed is that which would be olntained over the whole cable if a very small sending voltage were used. The additional attenuation at the sending end for the desired sending voltage may then be approximated by computing successively from the sending end the attenuation of short lengths of cable over which the current amplitude may be considered constant, the attenuations of separate lengths being added together to give the attenuation of that part of the cable in which hysteresis cannot be neglected. In this computation account must, of course, be taken of the increased inductance and eddy current resistance accompanying the higher currents at the semeling end.

Having calculated or obtained by measurement the several resistance factors and knowing the capacity, leakance and inductance, the whole attentation of a cable for any desired frequency may be computed and a curve drawn showing the variation of received current with frequency for a given sending voltage. This relation for a particular case is shown in Curse c of Fig. 4. Curve a shows for comparison the relation between frequency and received current of a non-loaded cable of the same size, that is, a cable having a conductor diameter the same as that of the loaded conductor and having the same weight of gutta percha. Curve b shows the behavior of an ideal haded cable having the same inductance, capacity and d.c. resistance as the real haded cable of Curve c, but in which the leakance and alternating current increments of resistance are assumed to be zero.

N゙ow, if the level of interference through which the current must be receised is known, the maximum speed of signalling for the loaded cable may be obtitined from ("urve c. It is that speed at which the
 with sulliciont amplitule to stels aseride the superpusel interference. Just what the relation of that lrequency is to the speed of signolling camm he dedintely stated, sime it deperds on the methot of operatom and cenle employed ds wrll in on the desired perfeetion

Fig. 4 Received Current vis. Frequency, a. Non-loaded cable. h. Ideal loaded rable. e. Real loaderl cable
of signal shape. j. W. Milnor" has suggested that for cable code operation and siphon recorder recepetion a fair value is about $1 . \mathrm{s}^{5}$ times the fundamental frepuency of the signals, that is, the fundamental freguency when a series of alternate dots amel dhohes is being sent.

By referring again to the equation for α, abobe, it can now be explained why high permeahility is a necemary charateristic of the

[^72] p. 20, 1922.
loading material if a benefit is to be obtained from continuous loading. The addlition of the loading material has two oppositely directed effects; on the one hand it tends to improve transmission by increasing the inductance and consequently decreasing the attenmation, and on the other hand it tends to increase the attenuation by increasing the effect of leakance and by the addition of resistance. Not only are the hysteresis and eddy-current factors of resistance added by the loading material but it must also be looked upon as increasing either the copper resistance or the capacity on account of the space it occupies. Generally it is more convenient to look upon the loading material as replacing some of the copper conductor in the non-loaded cable with which comparison is made, since by so doing all of the factors outside of the loaded conductor are unchanged. Now, if the lading material is to be of any benefit, the decrease in attenuation due to added inductance must more than offeet the increase due to added resistance, including the added copper resistance due to the substitution of loading material for copper. In the limiting case the lowest permeability material which will show a theoretical advantage from this point of view is that which, as applied in a vanishingly thin layer, gives more gain than loss. For any particular size and length of cable there is a limiting value of permeability which will satisfy this condition, this limiting value being greater the longer the cable and the smaller the diameter of its conductor. ${ }^{9}$ For transatlantic cables of sizes laid prior to 1923 the minimum initial permeability required to show an advantage is higher than that of any material known prior to the invention of permalloy: Actually a considerably higher permeability than this theoretical minimum was, of course, required to make loading an economic advantage since there are practical limits to the thickness of loading material and since the cost of applying it has also to be taken into account. Further, there are limits on methods of operation imposed by loading which necessitate still higher permeability to make loading worth while.

Since the addition of loading has two opposite tendencies in its effect on attenuation, the practical design of the cable must be based on a compromise between them. Thus, to secure the maximum gain from loading a rable of a given size, the hading material should be chosen of such a thickness that the gain due to increased inductance from a slight increase of thickness just offsets the loss due to increased resistance and dielectric leakance. In practice, of course, economic considerations of the cost of varions thicknesses of loading nust alsu be taken into account.
"See Brilisk I'atent No. 181,774 1923, to O. E. Buckley.

In designing the New lork-dzores cable asme dssumption had (1) tre made as to the everaneons interference whieh would be enenumtered. Theoretical eomsiderations led as to Inelieve that the lowterl eable woukl be no more subjeet to extermal interference than non-lodeled eahles. It even appeated that it would be less affeeted by some types of interference, for, owing to the shorter wave-length for a given frequency, a disturbance which affects a great many miles of cable simultaneously is less cumulative in its effect at the terminal of a loaded than a non-loaded cable. A reasomable assumption seemed to be that the total owerall attenuation which could be tolerated for the loaded cable was at least as great as that which experience had shown to be permissible for simplex operation of non-loaded cables. This maximm promissible attemation depends, of course, on conditions of terminal interference and no lixed value can be given as applicable to all cables. However, for average conditions of terminal interference in locations free from power line disturb)ances and where the cable lies in relatively deep Water near to its terminal landing, a reasonable value of total attenuation constant for the fundamental frequency of cable code is about 10 (86.9 T.I .) for recorder operation and about 9 (5S.2 T.U.) for relay operation. These were the approximate values assumed for the New York-Azores cable and later experience has demonstrated that they were well justified. .

Throughout all of the preceding discussion it has been assumed that the relation between attenuation and terminal interference would limit the speed of simplex operation rather than that distortion of signal shape would be the limiting factor. Alhough this is, in fact. ${ }^{10}$ the case with mon-loaded cables it was not self-evident as regards the loaded cable, and to make reasonably certain that the speed could be determined from the attenuation-frequency relation required a demonstration that the signal distortion of a real loaded cable could be corrected by suitable terminal apparatus. One of the merits long claimed for loading was that it would reduce distortion and, indecd, an ideal loaded calble with constant inductance and without magnetic hysteresis, eddy current losis, dielectric leakance and sea return resistance would have very little distortion and would give a speed limited only by terminal apparatus. However,

[^73]a real loaded cable, the inductance of which varies with both current and frequency and in which all the above noted resistance factors are present, may give, and in general will give when operated at its maximum speed, greater distortion of signals than a non-- Inaded cable.

To solve the question of distortion on a purely theoretical basis required consideration of the transmission of a transient over the loaded cable. This was made extremely difficult by the existence of numerous possible causes of signal distortion, the effects of which could only be approximated in the solution of the transient problem. In addition to the distortion resulting from the rapid increase of attenuation with frequency due to the various sonrces of alternating current losses, distortion peculiar to the magnetic characteristics of the loading material had also to be taken into accoumt. There are several types of magnetic distortion to be concerned about. First, there is the production of harmonics as a result of the non-linear magnetization curse of the Ioarling material; second, there is a possible asymmetrical distortion due to hysteresis, and third, there is a possible moxtulation resulting from the superposition of signals on each other, that is, in effect, a modulation of the head of the wave of one impulse by the tail of the wave of a preceding impuls.e. The first two of these are eflective at the sending end of the cable and the third near the receiving end.

A computation of distortion, including the peculiar magnetic effects, by a steady state ace. method based on measurements of short loaded conductors indicated that the cable should operate satisfactorily with ordinary sending voltages. Further evidence that none of these various types of distortion would be of serious consequence and that the distortion of a loaded cable could be corrected by terminal apparatus, wats obtained by experiments with an artificial line constructed to simulate closely, with regard to electrical characteristiss, the type of loaded conductor with which we were then experimenting. This artificial line was loaded with iron dust core coils which served the purpose aclmiralsly, not only as regards inductance and alternating currem resistance but also as regards magnetic distortion. Iron dhst is, of course, very different in its magnetic characteristios from permatloy. However, owing to the large mumber of turns on a coil, it is operated at much higher fiedel strengths and on a part of the magnetization curve corresponding approximately that at which permatloy is operated on the cable. The case for magnetir distortion was in fart a little worse with the
artiticial line thats with the then propenat cable. Fïg. \bar{s} shows a photegraph of the artificial line, the coils of whieh are in the large iron pots and the resistance amt paper condenser capraty mats of which are in the sted cises. This line was equivalent to a 1 , , on mantical mile cable lawerl with 30 millibenres per $8 . m$. and wer it legible

Fig. 5 Lomalerl Irtifici.t Line
signals were secured at speeds up to more than 2.600) letters per minute. Such a speed of operation was quite beyond the range of the then available telegraph instruments, and aceordingly special transmitting and receiving instruments were reguired. The multiplex distributor of the Wistern Electric printing telegraph system proved an excellent transmitter for experimental purposes and, for receiving,
use was made of a rombined vacuum tube amplifier and signal shaping network, the signals being recorded on a string oscillugraph. Fig. 6 shows part of a test message received over the loaded artificial eable at a speed of 2,210 letters per mintute.

The results of the tests with the artificial foaded cable were entirely in agreement with our calculations and showed that it was

li.ig. 6-Test . Nessage. Signals received April 16, 1920, over coil-loaded arlificial line equivalent to a $1700 \mathrm{n} . \mathrm{m}$, cable with $30 \mathrm{~m} . \mathrm{h}$. $\mathrm{n} . \mathrm{m}$. Speed 2240 letters per minute
pussible to obtain satisfactory signal shape with a coil-loaded cable having alternating current resistance and distortion factors approximating those of the permalloy-loaded cable. The exact behavior of the proposed cabte, including such factors as sea-return resistance and a somewhat variable distributed inductance, could not, of course, be duplicated without prohibitive expense. The approximation was considered, however, to be sufficiently good to justify proceeding with a loaded cable installation su far as questions of signal shaping were concerned. It is interesting to note that the factor which limited the operating speed of the artificial loaded cable was one which is not present in a continuously loaderl cable but which would possibly the a serious factor in the operation of a coil loaded cable, namely he ascillations ${ }^{18}$ resulting from the finte size and separation of the inductance units.

Opleration of Lonthel) (Ables

W'ith the completion of the artificial loaded cable tests there was still one principal question of transmission which had to remain unanswered until a cable had been installed. This was the question of balancing the cable for chuplex uperation. Ordinary submarine cables are gencrally operated duplex, the total speed in the two directions being usually from about 1.3 to 2 times the maximum simplex or one-way spect. Exept in cases where the external interference is sery bad, the limiting speed of duplex operation is determinct by the arcuracy with which an artilicial line can be made the electrical equivalent of the cable. Ordinarily the artificial line is
"Carson, Trans. A. I. E. E., Vol. 38, p. 345, 1919.
male up only of units of resistance and capsotity arranged to appronimate the distributed resistance and capacity of the cable. Sometimes inductance mits are added to balance the stmall inductance which even a mon-loated cable has, In the actall operation of cables, artilicial lines are adjusted with the greatest care and a remarkable precision of balance is obtained. This is necessary hecaluse of the great difference in current amplitude of the outgoing and incoming -ignals, the former being of che order of 10,000 times the latter. It is quite obsious that it will be much more difficule to socure duplex operation with a loaded than with an ordinary cable, since not only do the copper resistance and the dielectric capacity have to be batanced, but the artificial line must also be provided with inductance and alternating current resistance. Also the sea-return resistance ded inductance which vary with frequency must be halanced.

In view of these difliculties it will probably le impossible to get is great a proportionate gain from duplex operation of loaded cables Is is secured with ordinary cables. However, $i t$ is quite evident that it will be possible to secure duplex uperation at some speed, since, with losided as with non-laaded cables, the ratio of received to sent current increases rapidly as the speed is reduced and on this account it is much easier to duplex the cable at low speeds than at high. To make duplexing worth while on a cable with approximately equal traffic loads in both directions it is in general only necessary to get a one-way duplex speed half as great as the simplex speed. In fact in some cases the uperating adrantages of duplex would warrant even a slower duplex speed. (n) the other hand, there are cables on which the traffic is largely undirectional through most of the day and which would accordingly require a one-way duplex speed somewhat higher than half the simplex speed to justify duplex operation. Whether a sufficiently great speed of duplexing could be secured (1) justify designing a cable on the basis of duplex operation could not be judged in advance of laying the first cable, and accordingly it was decided to engineer that cable on the basis of simplex operation.

Athough it was expected that the new cable might at first have to be operated simplex it should not be supposed that any great difficulty or loss of operating elficiency was anticipated on this account. The speed of the New York-Azores cable is so great that to realize its full commercial advantage practically requires working it on a multi-channel basis as, for example, with a Baudot code, multiplex system, similar to that used on land lines. Such a system may be conveniently adapted to automatic direction reversal and with this modification most of the common objections to simplex operation are
removed. Indeed, simplex operation may in this case possess a real advantage over duplex from the commercial point of view since it permits dividing the carrying capacity of the cable most efficiently to handle the excess of traffic in one direction.

Athough means have been made available for making efficient use of the loaded cable it should be recognized that the method of operation liest suited to satisfy commercial demands must be determined from future experience with cables of the new type. This is especially true with regard to relatively short cables. The discussion of the loaded cable problem in this paper has been confined wholly to the realm of long ocean cables where the limitations of the cable rather than terminal equipment or operating requirements determine the best design. This is the simplest case and the one which at present seems to show the greatest gain from loading. Where traffic requirements are limited and where there is no prospect of ever requiring higher speed than can be obtained with a non-loaled cable of reasonable weight, the advantage of loading is less and becomes smaller as the weight of non-loaded cable which will accomplish the desired result decreases. It should not be concluded, however, that loading will not find important application to short cables. Many short cables are parts of great systems and must be worked in conjunction with long cables. In such cases it may pay to load short sections where otherwise loading would not be justified. Permalloy loading also offers great possibilities for multiple-channel carrier-telegraph operation ou both long and short cables and with this type of operation in prospect it is 100 early, now, to suggest limits to the future applications of permalloy to cables or to predict what will be its ultimate effect on transoceanic communication.

Useful Numerical Constants of Speech and Hearing

By HARVEY FLETCHER

Abstract

Sort: The material given in this patper was prepareal in a more conNerame form for publication in the International Critical Tables. In orter to make it avalable in convenient form for the use of telephone enginerers if was dermed advisalile to publish it in this journal. The amthor is indebted to Wr. J. C. Steinherg for able assistance in collecting and arranging the material.

1. BimlumiR.hehy

AB1BBIJO(iRAP'H of papers on Pitch Discrimination, Intensity Discrimimation, Whalute Sensitivity of the Ear, Lpper Limit of Audihility: Lower Limit of Audibility, Theories of Hearing and other miscellaneous works on Speech and Ilearing are given in a paper by 11. Fletcher, Bell Tech. Jour., Vol. II, 4. p1, 178 1so, Oct., 1923.

The ensitivity is the minimum atudible rms pressure in dyes cm^{-2} in ear canal. The values below are the average of the results of Wien (Arch. f. ges. Physiol. (17, p. 1. 1!10:3), Fletcher and Wegel (Phys. Ref., 19, p, 553. June, 1922), and Kranz (Phys. Ree., 21, p. 573, May, 1923) weighted 3.72 , and 14 , re-pectively accoreling to number of ears tested
T.IBI.E 1

Frequency (dy)	64	128	256	512	1024	2048	4096
Sensitivity (dynes)	12	021	$.00,39$.001	00052	06041	00042

1II. Mtimicy Aconble Power for a Normal Eidr

The power in microwatts passing through each square centimeter in the wave front of a free progresise wave in air under average conditions is related to the rms pressure in dyes ly the formula

$$
p=20.5, \mathrm{~J} .
$$

The figures of Table I may be converted by this formula to minimum audible powers. It is thus seen that the minimum audible accoustical power is at frequencies between 2,000) and 1,000 vibrations per second and is equal to 1×10^{10} microwatts per square centimeter
${ }^{1}$ The symbol $d x$ is used to denote "double" or complete vilrations.

IV. Range of Audition in Frequexcy and Intensity

ln Fig. 1 the lower curve is a plot of the average sensilivity values given in Table 1. The upper curve gives the pressures that produce a sensation of feeling and serves as a practical limit to the range of auditory sensation. (Wegel, Bell Tech. Jour., 1, p. 5f,

Fig. 1
November, 1922.) Investigators vary from about \& to 40 dv for the lower pitch limit and from about 12,000 to 35,000 d. for the upper limit. (See 1.) The values of 20 and $20,000 \mathrm{~d}$, shown on the chart were taken as being most reprementative. Half of the observations lie within the dotted curves. The pitch is equal to $100 \log _{2} N$ and the sensation units equal $1020 \log P$ where N is the frequency and P is the pressure. (Fletcher, Jour. lirank. Inst., 194,

> V. Minimum Perceitmber Increase in Intensity anis Frequency (Kinudsen, Phys. Ree. 21, p. St, Jan., 1923)

Sensation Level in Sensation Units or TU's

10
20
30
40
50
60 to 100

Frequency

64
128

| -.50 |
| :--- | :--- |

256 . 40
512 . 32
768 to 4000

Per Cent Increase in Intensity to be Just Perceptible

23
14
12
11
116
10
Per Cent Increase in Frequency to be Just Perceptible
.93
.59
. 30
p. 2s:9, Sept. 1923.) The sensation level S of a sound is defined by $S=00 \log \frac{P}{P} \quad$ where $P_{\text {I }}$ is the threshold pressure, or it is the number of semsation units alowe the threshokl of amblibity. These semsation units are the sambe as the transmission umits used in telephone engineering.

The per cent increase in frequency to be just perecpetible varies with sensation level in about the same way ats does the per cent increase in intensity to be just pereeptible. The values are for monaural rereption the tones being heard successively.

 Determine l'iten

(Bucle, Psychol. Stud., 2. p. 2!!3, 1907)

TABIE: 11

Freq. dv-	Weak Tones		Merlium Tones	
	Time (see.)	Nis. of ds	Time (ser.)	No. of dv
128 256	00.4%	121	006908	17.6
3.84	0672	2418	00445	17.1
512	0579	2964	004274	21.8

V'll. Tife Masking Effect of One Solvi Ifon the Audibility of INotifer Souvid

(Wegel and Lane, Phys. Rec., 23, p. 26i6. Feh., 192.ł)
If the ear is stimulated by a pure tone of frequency \boldsymbol{N}_{1}, it is in general rendered less sensitive in other pure tones. The tone that constantly stimulates the ear is called the masking tone. The tone that is heard in the presence of this stimulating tone is called the masked tone. The masking is measured in sensation units or TU's. It is equal to $20 \times \log _{\text {in }}$ of the ratio of the pressures necessary to perceive the masked tone with and without the presence of the masking inne. In other words it is equal to the number of units that the threshold has heen shifterl. Fig. ? shows the amoment of masking (ordinate) of tones of various frequencies as a function of the sensa-

Figg. 2 Masking for Tones in Same Ear

Fig. 3 - Masking of Varions Frequencies lay 1,200 Cycles at Sensation Levels of S 10 , 60, , and it [inits, Respectively
tion level (abseissat) and frequeney X_{1} of the masking wore In Figg. 3 data for a masking tone of 1,200 ds is plotted in which the frepuencies of the masked tones are plotted on the abseissia. In order to get satisfactory curves of this kind it is necessary to take more

Fig. 4-Masking D.1ta. Tones in Opposile Ears. Masking Tone 1,200 Cycles
comprehensive data than that shown in Fig. 2. The solid curves of Fig. \& show the masking when the masked and masking tones are introduced into opposite ears. The dotted curves were taken from Fig. 2.

vill. Conducthon of Skull Betweex the Two Ears

A comparison of the two curves in Fig. $\&$ shows that the attenuation introduced by the skull from one ear to the other when the tone is introduced by a telephone receiver is between 1) and 50 sensation units corresponding to an intensity ratio of from 10^{4} to 10^{5}. This becomes 7 TU greater when rubber caps are interposed between the head and the receiver cap.

1N. Localization of Pure Tones as a Function of the Phase

 Difference at tie Two Ears(G. IW. Stewart, Phys. Ret., 25., p. 425, May, 1920)

The experimental results can be represented by the formula
$\frac{\Phi}{\theta}=0.003 \cdot 4+. s$ (approx.)
Φ is the phase difference in degrees of the tones at the two ears.
θ is the number of degrees to the right or left of the median plane that an observer locates the source of somud. The direction of location is toward the ear leading in phase.
N is the frequency of the tone in ds. The relation applies only for frequencies of 100 to 1,000 dr., inclusive.
N. Constants I'sed in the Confltation of the loudeness of a Complea Socna
(Fletcher and Steinberg, Phys. Ret., 21. p. 306, Sept., 1924)
(Steinberg, Phys. Rect. To be published sonn)
If l be the loudness an judged ly an arerage normal ear, then

$$
L=3.33 \log _{10}\left[\sum_{n=1}^{n=k}\left(11_{n} p_{n}\right)^{r}\right]^{r}
$$

where

```
\(p_{n}=\) rims pressture of the \(n\)th componemt,
\(\mathrm{IV}_{n}^{\prime}=\mathrm{a}\) weight factor for the \(n^{\text {th }}\) component (1ïg. \(\overline{\text { a }}\) )
    \(r=a\) root factor (Fig. .i)
```

The sensation levels (Gee \boldsymbol{N}) given in the chart are for the complex tone.
 (Howell, IV: H.. ". I Texbook of Ihysiology"
(W'rightsom, Sir Thomns, "Analytical Mechanism of the Internal Ear")
(a) Ear C'anal
l.ength, 2. 12.6 cm .

Volume, $1 \mathrm{~cm}^{3}$.
Areat at Opening, .33 to .50 cm^{2}.

Fig. 5
(b) Drim

Vertical Diameter, .sis cm.
Horizontal Diameter, 1.00 cm .
Area, (6.5 cm^{2}.
(c) Hammer
length, .8 0.9 cm .
Weight, 23 mg .
(d) Anvil

Weight, $2^{5} \mathrm{mg}$.
(e) Stirrup

Weight, 3 mg .
(f) Mechanical Impedance of the Ear Drum
(1)ata by Wegel and Lane, Bell Telephone Laboratories)

The order of magnitude is 20 to 30 mechanical ohms (cgs units) over the frequency range from $200 \mathrm{to} 4,000 \mathrm{dv}$.

Nll. Spleenh Exergy

A. Speech l'ower

(1)ata furnished by (. F. Sacia and I.. J. Sivian, Bell Telephone L.aboratories)

1. The average speech power delivered $b y$ an average speaker is about 10 microwatts. In the process of obtaining the average the silent intervals were included. If they are excladed the average increases about $50{ }^{2}$. The peak power frequently rises to 2.000 microwatts.
2. V'ariation of awerage speech power delisered by different persons during conversation. (Fig. 6.)
B. Energy Freguency Distribution of Average Speech
(Crandall and MacKenzie, Phys. Rez., 19, 1. 221, March, 1922) (Fig. 7)
C. Acoustic Power in Vowel Sonnds
(I)ata furnished by C. F. Sacia of the Bell Telephone Laboratories.

This data together with a description of the apparatus and methorls used in ohtaining it will be given in a paper soon to be published.)

Table 111 contains data on the power of individual vowels obtained from analyang the fowed portions of the syllables shown in the keyword. The first two colmms give the average power in microwatts
of 8 males and 8 females during the particular cyele of the fumbamental containigg the maximmon energy for materented vowels. A rough estimate of the corresponding tigures of typical accented

DISTRIGUTION OF SPEECH POWE?
AWV AgSEIJSA P GIVES THE PERCENT OF SPEARERS AMOSL SPECLH POWER IS LESS THAN OR EQUAL TO THE CORRESPONDING GRDINATE Q T NES TME ALERHD POWLR FOR ALL SPEAAERS. CUVVE BASED JN NURMAL TELEPHENE TA, 4 'जै LEVELS OF 87 MEN AND 59 NOMEM. SPEECH POWER HE HE MEAYS

Fig. 6

Fig. 7
vowels may be ohtained by multiplying these values by a factor of 3 . The third and fourth columns give peak factors which convert the power figures of the first two columns into maximum insfantaneous powers. Columns 5 and 6 give the maximum values of these peak factors found among the male and female voices, respectively.

TABLE III
I Ionstic Power in Microvalts of the Ionvel Sounds

Vowel	Kicy	$\begin{gathered} (1) \\ P_{m} \\ 8 \text { males } \end{gathered}$	$\begin{aligned} & (2) \\ & P_{m} \\ & 8 \text { fem. } \end{aligned}$	(3) II. Peak Factor 8 males	(4) Iv. I'eak Fartor 8 fcm .	5) Max. Peak Factor 8 males	(6) Max. Peak Factor 8 fem.
$\overline{4}$	tool	27	41	2.6	2.8	38	34
u	took	32	49	40	31	49	34
\bar{o}	tone	3.3	44	$+1$	34	64	$4{ }^{19}$
o^{\prime}	talk	37	49	45	3.3	57	36
0	ton	29	38	$+6$	39	68	57
a	top	50	48	4.2	36	42	47
a^{\prime}	tap	43	39	5.4	47	7.4	5.2
e	ten	25	30	5.6	38	6.3	46
$\bar{\square}$	tape	21	30	53	45	60	51
i	tip	25	31	41	38	58	5.7
$\overline{\mathrm{c}}$	team	32	2.3	47	2.6	5.8	36

Alli. Frequency of Occurrence of English Spelich Sounds
(Table IV contains data from a book by Godfrey Dewey; "The Relative Frequency of English Speech Sounds," Harvard University Press)

TABIE IN
Relative Frequency of Occurrence of English Speech Sounds

Speech Sound	Kiey	Rel. Fireq.	Speech Sound	Key	Rel. Freq.
a	top	3.3	${ }^{1}$	hang	0.74
ลิ	tape	1.84	h		1.81
a^{\prime}	tap	3.95	j		0.44
e	len	3.44	k		2.71
è	cat	2.12	1		374
er	term	0.63	m		2.78
;	tip	8.53	12		7.24
i	dike	1.59	ng		096
0	ton	63.3	$\mathrm{p}^{\text {a }}$		2.04
$\overline{0}$,	lone	103	,		6.88
\%'	talk	135	S		4.55
11	look	(1) 71	sh	shell (thin) then	0.87
$\overline{11}$	tool	189	th		. 37
OU	our	059	th		3. 43
1.	chalk	181	,		7.13
ch		() 52	v		2.28
d		431	w		2.08
1		184	y		0.60
					2.97

NiV. Interpretation of Speech

(1'letcluer, W., Jour. Frank. Insf., 193, 6, Junc, 1922)
I measure of the interpretation of speech was obtained by means of articulation tests. Meaningless syllables were pronounced and observers were reguired to record the syllables. The articulation is

Fig. 8

Fig. 9
the per cent of syllables that were correctly recorded. The articulation depends upon the sensation levet of the speech (Fig. 8), and upon the width of the frequency band transmitted (Fig. 9).

The syllables that were recorded in these tests were analyzed to show the articulation of the fundamental speeds sounds. Fig. 10
shows these articulations as functions of the sensation level of the speech. In Fig. 11 they are shown as functions of the width of the transmitted frequency band. It shoukl be noted that the term articulation as here employed denotes only the correct interpretation of unrelated speech sounds and is not a measure of voice naturalness which is also an important factor in the telephonic transmission of speceh.

Fig. 10

Fig. 11

Graphic Representation of the Impedance of Networks Containing Resistances and Two Reactances

By CHARLES W. CARTER, Jr.

Abstract

Iu-tкut: The driving-point impedance of an electrical network composeal of any number of resistances, arranged in any way, ant two pure reactances, of any degree of complication within thensedves but not retated to each orther by mutual reactance, inserted at any two points in the resistance network, is limited (o) an excentrie annular region in the complex plane which is determined by the resistance net work alone

The loundaries of this region are non-intersecting circles centered on the anis of reals. The diameter of the exterior broundary extends from the value of the impedance when beth reactances are short-circuited to its value when loth are open-circuited. The diameter of the interior boundary extends from the value of the impedance when one reactance is shortcircuited and the other open-circuited to its value when the first reactance is open-circuited and the second short-cireuited.

When either reactance is fixd and the other varics over its complete range, the locus of the driving-point impedance is a circle tangent to both boundaries. By means of this grid of intersecting circles the locus of the driving-point impedance may be shown over any frequency range or over any variation of elements of the reactances. This is most conveniently done on a doubly-sheeted surface.

The paper is illustrated by numerical examples.

Intronection

SUPPOSE that any number of resistances are combined into a network of any sort and provided with three pairs of terminals, numbered (1) to (3) as in Fig. 1. The problem set in this paper is to investigate the driving-point impedance' of such a network at

Fig. 1-The Network to be Ihiscussed
terminals (1) when variable pure reactances, Z_{2} and Z_{3}, are connected to terminals (2) and (3), respectively. Z_{2} and Z_{3} are formed of capacities, self and mutual inductances. They are not connected to each other by mutual reactance, but they may be of any degree of complication within themselves.

The problem is dealt with in terms of the complex plane: that is, the resistance components of the impedance, S, measured at terminals

[^74](1) are plotted as abscissas and the reactance components as ordinates. To every value of the impedance, then, there is a corresponding point, and to the values of the impedance over a range of variation of some element, or over a frequency range, there corresponds a locus, in the complex plane. This locus may be labelled at suitable points with the corresponding value of the variable. So labelled, it combines into one the curves which are usually plotted to show separately the variation of the reactance and resistance components or to show separately the variation of absolute value and angle.

The use of the complex plane is not new: it is the basis of most of the vector diagrams for electrical machinery. The characteristics of both smooth and loaded transmission lines have also been displayed by its means. Its application to electrical networks, however, is not common, and it is a subsidiary purpose of this paper to illustrate the fact that the properties of certain networks, which have complicated characteristics if exhibited in the usual way, may be shown quite simply in the complex plane. This simplicity, combined with generality, is attained by application of theorems concerning functions of a complex variable which are immediately available.

The Fundanemtal Equations

The impedance measured in branch 1 of any network is

$$
\begin{equation*}
S=R+i \mathrm{I}=\frac{\Delta}{\nu_{11}} \tag{1}
\end{equation*}
$$

where Δ is the discriminant of the network, either in terms of branches or n independent meshes. ${ }^{2}$

Assigning the reactances Z_{2} and Z_{3} to meshes 2 and 3

$$
د=\left|\begin{array}{cccccc}
R_{11} & R_{12} & R_{13} & . & . & R_{1 n} \tag{2}\\
R_{21} & R_{22}+Z_{2} & R_{23} & \cdot & \cdot & R_{2 n} \\
R_{31} & R_{32} & R_{33}+Z_{3} & \cdot & \cdot & R_{3 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
R_{n 1} & R_{n 2} & R_{n 3} & \cdot & . & R_{n n}
\end{array}\right|
$$

where $R_{j j}$ is the resistance in mesh j and $R_{j k}\left(=R_{k j}\right)$ that common to meshes j and k.
${ }^{2}$ See: C. A. Camplell, Transactions of the A. I. V.. V... 30, 1911, pages 873-909, for a complete discussion of the solution of networks by means of determinants.

Therefore $\quad S=\frac{A+A_{32} Z_{2}+A_{33} Z_{13}+A_{23 \cdot 33} Z_{2} Z_{33}}{A_{11}+A_{11 \cdot 32} Z_{2}+A_{11 \cdot 33} Z_{33}+A_{11 \cdot 22 \cdot 33} Z_{2} Z_{33}}$
where A is the discriminant of the resistance network alone and A...ke.d denotes the cofactor of the profluct of the elements of A located at the intersections of rows j, k and l with columns j, k and l, respectively.

For eonvenience this is written as

$$
\begin{equation*}
S=\frac{a+b Z_{2}+c Z_{3}+d Z_{2} Z_{3}}{a_{1}+b_{1} Z_{2}+c_{1} Z_{3}+d_{1} Z_{2} Z_{3}} \tag{1}
\end{equation*}
$$

The constants of (3) and (t) are real and positive since they are cofactors of terms in the leating diagonal of the discriminant of a resistance network. The determinant being symmetrical, there is the following relation among them:

$$
\begin{equation*}
\left(a d_{1}-a_{1} d+b c_{1}-b_{1} c\right)^{2}=1\left(b d_{1}-b_{1} d\right)\left(a c_{1}-a_{1} c\right) \tag{i}
\end{equation*}
$$

The function to be studied is, then, a rational function of two variables, having positive real coefficients determined by the resistances alone. Furthermore, if one reactance is kept constant while the other is varied, the function is hilinear. The particular property of the bilinear function, which has been studied in great detail, of interest here, is that by it circles are transformed into circles. ${ }^{3}$

When, as in this case, the variable in a bilinear function is a pure imaginary, the function may be rewritten in a form which gives directly the analytical data needed. For suppose

$$
\begin{equation*}
u=\frac{u+v^{\prime} z}{u_{1}+v_{1} z} \tag{6}
\end{equation*}
$$

where z is a pure imaginary and the coefficients are complex. This is

$$
\begin{equation*}
w=\frac{v^{\prime}}{v_{1}}+\frac{u-u_{1} z_{1} v_{1}}{u_{1}+v_{1} z} . \tag{7}
\end{equation*}
$$

Multiplying the second term by a factor identically unity,

$$
\begin{equation*}
w^{\prime}=\frac{v}{v_{1}^{\prime}}+\frac{u-u_{1} v^{\prime} z_{1}^{\prime}}{u_{1}+v_{1}^{\prime} z} \times \frac{z_{1}^{\prime}\left(u_{1}+v_{1} z\right)+z_{1}^{\prime}\left(u_{1}^{\prime}+v_{1}^{\prime} z^{\prime}\right)}{u_{1} v_{1}^{\prime}+u_{1}^{\prime} z_{1}^{\prime}} \tag{8}
\end{equation*}
$$

where primes indicate conjugstes, or

$$
\begin{equation*}
w=\frac{w z_{1}^{\prime}+u_{1}^{\prime} v^{\prime}}{\left.u_{1} z_{1}^{\prime}+u_{1}^{\prime} z^{\prime}\right\}}+\frac{u_{1}^{\prime}-u_{1} z^{\prime}}{u_{1} z_{1}^{\prime}+u_{1}^{\prime} z_{1}^{\prime}} \times\left(\frac{u_{1}^{\prime}+z_{1}^{\prime} z^{\prime}}{u_{1}+z_{1}^{\prime} z}\right) \tag{9}
\end{equation*}
$$

[^75]Now, as z is varied, the first term is constant. In the second term the first factor is constant and the second factor varies only in angle, since the numerator is the conjugate of the denominator. The first term, therefore, is the center, and the absolute value of the first factor of the second term is the rarlins, of the circle in which w moses as z takes all imaginary values.

The significance of the equations may be made apparent by a study of Fig. 2, which shows the impedance S when one of the reactances, say Z_{3}, is made zero. We have, then,

$$
\begin{equation*}
S=\frac{A+A_{22} Z_{2}}{A_{11}+A_{11 \cdot 22} Z_{2}}=\frac{a+b Z_{2}}{a_{1}+b_{1} Z_{2}} \tag{10}
\end{equation*}
$$

and the trivial case $a b_{1}-a_{1} b=0$ is excluded. This is of the type of (6). When Z_{2} varies ower all pure imaginary values, S traces out a

Fig. 2 Locus of the Impedance S with one Variable Reactance
circle, which (!) shows hats its center on the resistance axis. Its intercepts on the resistance axis are

$$
\begin{equation*}
S={ }_{a_{1}}^{a}=R_{n}, \text { say, when } Z_{2}=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\frac{b}{b_{1}}=R_{b} \text {, when } Z_{2}=\infty . \tag{12}
\end{equation*}
$$

But in at symumetrical deferminant

$$
\begin{equation*}
A_{11 \cdot} A_{22}-A_{12}^{2}=A \cdot A_{11 \cdot 22} ; \tag{1:3}
\end{equation*}
$$

therefore
or

$$
\begin{align*}
& a b_{1}<a_{1} b \tag{11}\\
& \frac{a}{a_{1}}<\frac{b}{b_{1}} \tag{15}
\end{align*}
$$

whence

$$
\begin{equation*}
R_{a}<R_{b} . \tag{16}
\end{equation*}
$$

[or find the value of S when Z_{2} hats some value, saly $Z_{2}=i X_{2}$, it is only necensary to mark the circular locus with a sate in terms of Z_{2}. This may be clone directly by using (9) to determine the angle, ϕ, which the radius of the circle makes when $Z_{2}=i X_{2}$. It is simpler to Hse the fact that a line passing through R_{b} and the point S has an intercept on the reactance axis of

$$
\begin{equation*}
\lambda_{0}=\kappa \cdot \lambda_{z} \tag{17}
\end{equation*}
$$

where $\wedge=b \quad a_{1}$.
The factor x is determined by the resistances; therefore the scale, as well as the locus, is completely fixed by the resistances. Since κ is always positive, as X_{2} is increased the circle is traversed in a clockwise sense; for positive values of X_{2} the upper semi-circle is covered; for negative values, the lower. That is, when Z_{2} is an inductance the impedance of the network varies on the upper semi-circle from R_{s} to R_{b} as the frequency is increased from zero to infinity. When the magnitute of Z_{2} is changed the same semi-circle is deseribed but each point (except the initial and final ones) is reached at a different frequency: When Z_{z} is a capacity the lower semi-circle, from R_{b} to R_{a}, is traced out.

We know that, in general, the value of a pure reactance ${ }^{4}$ increases algebraically with frequency, and that its resonant and anti-resonant frequencies alternate, beginning with one or the other at zero frequency. When Z_{2} is a general reactance, therefore, as the frequency increases the entire circle is described in a clockwise sense between each consecutive pair of resonant (or anti-resonant) frequencies. For example, if Z_{2} is made u_{p} of n branches in parallel, one being an inductance, one a eapacity and the others inductance in series with capacity, as the frequency increases from zero to infinity the circle is traced out completely $n-1$ times commencing with R_{a}.

[^76]

Fig. 3-Imperlance of Resistance Network Containing One Variable Reactance

Fig. 3.a Components of Impedance in I ig. 3 when $\%$ is an Inductance llaving the Values $0.05,(0.10$, ancl 0.20 Henry

In Figg 3 is shown the impedance loens for the particular network given on the diagram. The circle is marked in terms of $\%_{2}$. From it, certain properties of Sl may be real at once: the resistance com-

Fig. 3b-Components of Impedance in Fig. 3 when Z_{3} is Doubly-Resonant
component, \mathcal{X}, is not greater than 245 ohms nor less than -245 ohms, attaining these values when Z_{2} is $+510 i$ and $-510 i$, respectively:

When the variation of the reactance Z_{2} with frequency is known the variation of R and X with frepuency may he found by using the scale on the circle. For a particular reactance network, the scale maybe marked directly in term: of frequency, or if it is desired to compare the behavior of R and $d x$ when different reactance networks are sub-
stituted, the impedance locus may be marked with the frequency scale for each reactance network in some distinctive manner.

However, to show in the usual way some of the types of R and X curves represented by the locus of Fig. 3, as well as to avoid needless complication of what is intended as an illustrative rather than a working drawing, Figs. 3a and 3b have been prepared by direct projection from Fig. 3. In Fig. 3a are shown the R and X curves plotted against frequency when Z_{2} is an inductance. In Fig. 3b are shown similar carves when Z_{2} is a donhly-resonant reactance. The R component has a minimum at each resonant frequency and a maximum at each anti-resonant frequency, while the X component becomes zero at resonant and anti-resonant frequencies alike. The number of examples from this one resistance network might be multiplied endlessly; it is believed, however, that these are sufficient to show the great amount of information to be obtained in very compact form from one simple figure in the complex plane, and the especial superiority of the complex plane in displaying the characteristic common to all the curves of Fi gs. 3a and $3 b$: namely, that R and X at any frefuency, with any reactance network, are such that the impelance lies on one circle.

Two Variable Reactances Giving Eccentric Annular Domain

Returning to the more general impedance of (4) it is seen that in each case short-circuiting and open-circuiting the terminals (2) and (3) one at a time, and varying the reactance across the other terminals, yields a locus for S which is a circle of the type just discussed. These circles are determined as follow: :

Circle	Extremities of 1)iameter	Scale Factorn
$Z_{2}=0$	R_{a} and R_{c}	c / a_{1}
$Z_{2}=x$	R_{b} and R_{d}	$d^{\prime} b_{1}$
$Z_{3}=0$	R_{a} and R_{t}	$b^{\prime} a_{1}$
$Z_{3}=\boldsymbol{x}$	R_{c} and R_{d}	$d^{\prime} c_{1}$

where $R=c / c_{1}$ and $R_{d}=d / d_{1}$. In examination similar to that in (13) (15) shows that

$$
\begin{align*}
& R_{\mathrm{v}} \leq R_{t} \leq R_{d}, \tag{18}\\
& R_{\mathrm{d}} \leq R_{c} \leq R_{d} . \tag{19}
\end{align*}
$$

It may furthermore be desumed without has of generality, since it is merely a matter of labelling the reatances Z_{2} and Z_{3}, that $R_{b} \leq R_{\text {}}$.

Hence, the four critioal points of the imperdane are always in the following urter:

$$
\begin{equation*}
R_{a} \leq R_{b} \leq R_{c} \leq R_{d} \tag{20}
\end{equation*}
$$

These circles are shown is lig. 1. By means of the appropriate scale factors x each may tre marked in terms of the reactance which is left in the circuit.

Now suppose Z_{3} is kept constant at some value which is a pure imaginary, and Z_{2} is varied wer the range $-i \infty \leq Z_{2} \leq+i x$. We m iy rewrite (1) in the normal form (i) :

$$
\begin{equation*}
S=\frac{a+c Z_{3}+\left(b+d Z_{3}\right) Z_{2}}{a_{1}+c_{1} Z_{3}+\left(b_{1}+l_{1} Z_{3}\right) Z_{2}} . \tag{21}
\end{equation*}
$$

Fig. + The Region to which S is Restricted and the Critical Circles

The locus of S is one of a family of circles, each circle corresponding ti) a value of Z_{3} and completely tracedout by complete variation of Z_{2}. The properties of each circle may be found by substitution in (?).

Similarly, if Z_{2} is held constant while Z_{3} varies, the locus of S is one of another family of circles.

By the use of (9), keeping (5) in mind, it may be shown that the circles of each of these families are tangent to two circles determined hy the resistance network alone. Both families are tangent internally 10 a circle centered on the resistance axis, extending from R_{a} to R_{d}. Both are tangent to a circle centered on the resistance axis, extending from R_{b} to R_{c}, in such a way that the Z_{3}-constant circles are tangent externally and the Z_{2}-constant ciscles are tangent enclosing the circle from R_{b} to R_{c}. These relationships are ilhstrated in Fig. 4.

The circles R_{a} to R_{d} and R_{b} to R_{c} are, therefore, outer and inner boundaries, respectively, of the region mappet out by the two families of circles generated when first one and then the other reactance is treated as a parameter while the remaining reactance is treated as the variable. No matter what reactances may be attached to terminals (2) and (3), the resistance component R, measured at terminals (1), is not greater than the resistance when terminals (2) and (3) are open and not less than the resistance when terminals (2) and (3) are short-circuited, and the reactance component K, measured at terminals (1), is not greater in absolute value than half the difference of the resistances measured when terminals (2) and (3) are open and short-circuited. That is,

$$
\begin{gather*}
R_{d} \leq R \leq R_{d} \tag{22}\\
X \left\lvert\, \leq \frac{1}{2}\left(R_{d}-R_{a}\right) .\right. \tag{23}
\end{gather*}
$$

The two families of circles (Z_{2}-constant and Z_{3}-constant) intersect and may be used as a coordinate system from which the components of S may be read for any pair of values Z_{2}, Z_{3}. To avoid intersections giving extrameous values of S resort is made to a doublysheeted surface, analogous to a Riemann surface, for which the two boundary circles are junction lines. That is, the impedance plane is conceived of as two superposed sheets, transition from one to the other being made at the loundary circles. Thus, in Fig. 5, where the two sheets are separated, each Z_{2}-constant circle is shown running from the outer to the inner boundary in Sheet I (using the cockwise sense), and from the inner to the outer boundary in Sheet II, while the Z_{3}-constant circles run from the inner to the outcr boundary in Sheet 1 and are eompleted in Sheet $11 .{ }^{5}$

[^77]

Sheet I

Sheet 11
Fig. 5 The Doubly-Sheeted Surface

Fig. 6-Sheet I

Sheets I and 11 of Fig. 6, taken together, show the impelance domain of the net work at the bottom of the opposite page, made up of three fixed resistances and two variable reactances. The dashed curse, appearing in four distinct parts, t wo on each sheet, shows the imperlance S when $Z 2$ is the doubly-resonant circuit of Fig. 3h, and Z_{3} is an inductance of 1.0 henry. Points on this curve are labelled in terms of frequency

Fig. 6-Shect II

The numbering of the sheets is, of course, arbitrary. If the upper half of the $Z_{2}=0$ circle is put on Sheet I, the ares of the other critical circles are determined as follows: ${ }^{6}$

$\overline{\text { Circle }}$	$\frac{\text { On Sheet I }}{}$	
$\overline{Z_{2}=0}$	On Sheet II	
$Z_{2}=\infty$	Lower half	
$Z_{3}=0$	Lower half	
$Z_{3}=\infty$	Lower half	Upper half
		Upper half
		Lower half

Each sheet, then, is divided into four sub-regions, indicated on Fig. 5 by the signs of the reactances for which S is within them. When Z_{2} and Z_{3} are composed of single elements the sub-regions in which S falls at any frequency are as follows:

Z_{2}	7,3	Sub-	At Frequency	
		Region	Zero	Infinity
Inductance	Inductance	$(+,+)$	$S=R_{a}$	$S=R_{\text {d }}$
Inductance	Capacity	$(+,-)$	R_{c}	R_{b}
Capacity	Inductance	$(-,+)$	R_{b}	R_{c}
Capacity	Capacity	$(-,-)$	R_{d}	$R_{\text {a }}$

The course of S over the complete frequency range may be shown by a curve through the appropriate intersections of the Z_{2}-constant and Z_{3}-constant circles, as in the following example.

The impedance region for a particular bridge network is illustrated in the two sheets of Fig. 6. The ares of Z_{2}-constant and Z_{3}-constant circles in each sheet form a curvilinear grid superposed on the R, X^{-} grid of the complex plane. For example, if $Z_{2}=200 i$ and $Z_{3}=900 i$, the value of S is read from Sheet I as $327+i 291$, and S has this value irrespective of the structure of Z_{2} and Z_{3}.

An impedance curve (dashed) is shown in Fig. 6 representing the variation of S with frequency when Z_{2} is the doubly-resonant reactance

[^78]For the neiwork of lig. $6, k_{1}=116,875$ and $k_{2}=0,972111$.
used in 1 ig. 3b and $\% 3$ is an inductance of 1.0 henry. This imperdance curve has four parts, two in each sheet. It starts on the resistance avis at the intersection of the $Z_{3}=x$ and $Z_{3}=0$ circles. As the frequency increases from zero the first part of the curve is traced out in Sheet II. At 2.5 cyeles the impedance is approximately $310+i 140$ The reactance component has a maximmon of abot 250 ohms at about 70 cycles, the resistance componemt has a maximum of about 720 ohms at about liol cyeles, the reactance component has a minimum of about -110 ohms at about 300 eycles, and finatly at about 480 cyeles the curve reaches the inner boundary, whereupon it changes to Sheet 1. It remains in Sheet 1 up to at frefuency of about 910 cycles, the resistance component having a minimum and the reactance component a maximum, which may be read from the diagram. The impedance between !10 cyeles and approximately 1,390 cyeles lies on Sheet 11, and from 1,390 eycles to infinite frequency on Sheet 1 . The resistance component has a total of three maxima and three minima, and the reactance component three maxima and two minima, following the cyclical order: R-minimum, X-maximum, R-maximum, X-minimum.

An interesting exercise is to observe the effect on the impedance curve of changing the value of the inductance Z_{3}. The curve intersects the Z_{2}-constant circles at the same frequencies in each case, but the points of intersection are moved in a clockwise or counterclockwise sense as Z_{3} is increased or decreased. With each such change parts of the imperlance curse disappear from one sheet and reappear on the other. For instance, with a decrease of the inductance Z_{3} the first hop of the impedance curve on Sheet II shrinks, and with sufficient decrease in inductance may become too small to plot, although it does not disappear entirely:

It is evident that if Z_{2} and Z_{3} are formed of reactance networks of greater complication the impedance curve may lee very involved. But no matter how tortuous its path, it is restricted to the impedance region, that is, to the ring-shaped region between the non-intersecting boundary circles determined by the resistance network alone.

My thanks are due to Dr. George A. Campbell for his stimulating, continued interest, and to Mr. R. M. Foster for suggestions on every phase of this work.

The Vibratory Characteristics and Impedance of Telephone Receivers at Low Power Inputs

By A. S. CURTIS

THI: ordinary telephone receiver is one of the most sensitive known detectors of weak alternating currents ower a considerable part of the alldible frequency range. Its high sensitivity, combined with its simplicity and convenience, have led to its general adoption as the detecting element in the A(impedance bridge and other measuring apparatus employing the nul methocl. There are also a number of cases outside of the laboratory where a knowledge of the behavior of the receiver operating near its minimum audible power input is of importance. In apparatus developed during the World War, such as that for detecting and locating submarines, in radio reception, and in the reception of various other sorts of signals, the receiver is frequently operated near the threshold of audibility. While it is in general possible to employ a vacuum tube amplifier to render weak signals more easily aurlible, considerations of cost or increased complication of ten make it impracticable to do so. In any case, if it is desired to reduce to the limit the minimum audible signal, it is necessary to know the constants of the receiver working on these low power inputs, in order to design intelligently its circuits and other associated apparatus.

Current literature dealing with the sensitivity of telephone receivers indicates that the relation between the impedance and vibratory characteristics of the receiver at currents near minimum audibility to those as ordinarily determined in the laboratory, is not generally known. It would, therefore, seem of interest to publish the results of an experimental determination of receiver characteristics at very low currents. Such an investigation was carried on in 1918 and 1919, using the Western Vilectric No. $50!$ ratio receiver (the present standard W'estern Vilectric Receiver for radio use). The work, howeser, was clone, not merely with the idea of determining the characteristics of this particular instrmment, but for the purpose of ascertaining the behatior of receivers in general, near minimum audibility.

Inasmuch as the damped impedance of the receiver-that is the imperance with the diaphragm held motionless is very close to the impedance obtained with the instrument on the ear, it is commonly. used as the basis of circuit calculations. A knowledge of its value for weak curronts is therefore of importance. Measurements
were tirst made of the damped impedance of six instruments at at freguence of 1,000 cyeles for a wide range of input curremt, and hater the work was evtended to the measurement of the vibratory charace teristies. A bridge network was used for measuring the current supplied to the impedince bridge and frem the circolt constents the corrent through the reweiver meler test cond be calleulated. The re-

Fig. 1
sistances in the various arms of the controlling bridge network were chosen so as to furnish an essentially constant current through the receiver under test, although its impedance might vary through a rather wide range. With the extremely small values of currents involved, it was necessary to amplify the power to the bridge balancing receivers approximately 100 TC. For this amount of amplification, it was obviously necesomy in take extreme precantions in grounding and shiclding the apparatus, in order to reduce to inandibility the effect of stray fields from the source of current supply. This was success-
fully done and the impedance bridge measured impedance accurately with currents as low as 10^{-9} amperes, through the receiver under test. The correctness of the point of balance of the bridge was established by measurements of standard impedances over the range of currents employed in the receiver tests. A schematic diagram of the circuit is shown in Fig. 1.

For measurements of damped impedance, the receiver was placed in a small sound-proof box, with its diaphragm damped by a micrometer depth gange, which was carefully adjusted so as just to impinge upon the diaphragm. It was necessary to insulate the receiver from mechanical agitation, since minute voltages generated in it were sufficiently amplified to cause an excessive noise in the head receivers.

Fig. 2 shows the damped effective resistance and reactance of the six instruments, taken at 1,000 cycles, ploted on semi-logarithmic

Fig. 2
paper. It will be seen that below approximately 10^{-6} amperes, the impedance is constant. However, above this value both the effective resistance and the reactance show a consistent increase with the current. The minimum current employed (10^{-9} amperes), is between two and three times the minimum atudible current for this type of instrument, but from the data taken there is no reason to suppose that the impedance would vary for smaller currents. This receiver has a winding of $11,0(\mathcal{H})$ turns, and it can, therefore, be assumed that this type of structure will have constant impedance below a magneto-
motive force of .01 impere turns. For laboratory measurements on this instrument a current of 2×10^{6} amperes is ordinarily used, and it will be noted that the impedance at extremely low currents is not greatly different.

It is generally known that, in the case of either a steady or an alternating fied, the permeability and the shape of the hysteresis

Fig. 3- $f_{0}=$ natural frequency; $\lambda=$ logarithmic decrenient per second; $2 \beta=$ depression angle of principal diameter; $Z_{\mathrm{m}}=$ maximum motional impedance; $R=$ free resistance at resonance: $Z_{0}=$ damped impedance.
loop for ordinary magnetic materials reach limiting values as the magnetomotive force is reduced, that is, further reductions of the magnetomotive force have no effect on these magnetic characteristics. The results cited above show that this condition obtains for a weak alternating field when it is superimposed on a relatively strong steady field.

In the measurements of free impedance for determining the vibratory characteristics the small sound-proof box could not be used on account of the proximity of its walls. Accordingly, the receiver and the impedance bridge were placed in a large sound-proof booth with padded walls where the effect of reflection of sound waves was very small. With the diaphragm of the instrument free to vibrate, its efficiency as a sound detector was materially increased and the noise in the head receivers due to the slightest movements of the observer became so serious that it was not feasible to take data with currents of less than 2×10^{-9} amperes.

Fig. 3 shows impedance characteristics, with their associated circles, of the same receiver with currents of 2×10^{-9} and 2×10^{-5} amperes. It will be seen that the differences between these curves are insignificant when one considers the low precision of motional impedance data in the absence of extreme precautions with regard to constancy of temperature, etc. Moreover, other impedance analyses at intermediate values of current agree with the above within the precision of the measurements.

To summarize the results, it may be said that the characteristics of receivers remain substantially unaltered as the current is reduced to the point of minimum audibility. In taking impedance measurements, it is well to use a current which is low enough to be on the flat part of the curve. This can usually be done without the use of amplifiers between the impedance bridge and balancing receivers. The fact that the vibratory characteristics of the receiver remain unaltered as the power input is reduced to the threshold of audibility throws an interesting light on the behavior of the diaphragm material under very small motions. (alculations of the minimum audible amplitude near resonance, based on the fact that the constants of the material remain unchanged, show it to be of the order of 10^{-9} centimeters. This motion is less than the moan molecular diameter of the diaphragm material.

Some Contemporary Advances in Physics - VIII The Atom-Model, First Part'

By KARL K. DARROW

MORE Han aty other word of the language, the word atom is implicated with the history of human sperulations concerning the nature of things. It is intrexaced when people cease to eontent themselses with olsserving, and begin to philosphize. There are many of the fundamental and essential writing of the literature of physice in which it does not appear, or appears without warrant. These are the deseriptions of things observed, the acounts of experiments, the records of meaturements, on which the edifice of theoretical physiss is fommed. There are many articles of what is commonly called the "theoretical" sort in which it does not occur. Such are the papers on the motions of planets, on the vibrations of elastic solids, on the current- in electrical networks, on the courses of light-ray: through optical syotems papers which are essentially descriptions, dthough they give the impresion of being something greater and deeper becanse they relate in idealized cases, and are phrased in the laconic language of mathematics. When the word atom appears justifiably in a discourse, it means that the aththor has departed from the safe routine of describing observed and observable events, howewer selectively, however skiffully, however intelligently. It signifies that he has gone beyond the limits of obsersation, and has entered upon the audacious adventure of constructing by the side of the real universe an ideal one, which shall act as the real one does, and be intelligible through and through.

Atoms are the building stones of this art-world or image-world, which is intended to represent the actual world. imperfectly indeed for the time being, perhaps completely at sume distant day. Some lew experiments, it is true, prove (as well as anything can prove anything else) the existence of very minute particles of matter having the minute charges, the minute masses, the minute magnetic moments

[^79]which it is found expedient to ascribe to the atoms. These experiments are enormously important, for they invest the atom with a reality which nothing else could give it. To some they have given the hope that all the properties of the atom may one day be demonstrated unquestionably by direct evidence. There is little reason to expect that we shall see that day. The atom is no longer entirely a product of the scientific imagination; but neither is it entirely an object of experience. Most of its properties are invented, not discovered. Whether this invented and imagined entity is "real" is a difficult question. Perhaps it is best to evade such a question by asking the questioner what he means by "reality". As a matter of fact, it is not possible to discuss atomic theories thoroughly without raising and settling such formidable questions as, what is a theory? and, what is an explanation? and even, what is reality? perhaps eventually, what is truth? I do not aspire to answer these questions. But there are some common misconceptions about atoms which it is prudent to clear away at the beginning.

In the first place, one does not utter an atomic theory by saying that a substance is made up of small pieces, each exactly like a large piece of the substance in every respect except size. We should achieve nothing by saying that iron is made of black lustrous conductive magnetic atoms, or that glass is built of colorless transparent brittle insulating atoms, or that an apple consists of white soft sweet juicy atoms. The atoms must be endowed with fewer and simpler properties than the substance they are meant to compose, else they are futile. One must select some of the properties of the substance to be attributed to its atoms, and set the others aside to be explained by those.

Again, it is not obvious which properties should be selected for the atom; these depend largely on the fantasy of the atom-builder. However, certain qualitics such as viscosity and plasticity, conductance for heat and conductance for electricity, opacity and transparency and listre, warmth and flawor and fragrance, are not usually assigned to atoms. In general, the more a quality of a substance varies with its state, the less it is suited to be made an atomic quality. Ferromagnetism is a quality which one would assign almost instinctively to the iron atom; but it is possible to deprive iron altogether of this duality by a simple heat treatment, and hence it is not generally supposed to be a feature of the atom. But the rule is not an absolute one. The visible radiations from gaseous iron are supposed to be characteristic above all other things of the atom itself, yet they cease when the iron is condensed. It is supposed that in the
condensed phases the atoms are so close tegether that they distort one another - a permissible ilea if used with discretion, yet an atomic theory could easily become a meaningless form of words if this device were employed without limit. Of all the properties of matter, mass alone appears to be entirely exempt from change. For this reason all atom-molels involve mass as an essential property of the atom; and this is the only respect in which they all agree.

Few and simple, therefore, must be the properties of the atom; yet we must not rush to the other extreme, and contrive atoms simplified into uselesness. The chemists know of eighty-eight different elenents, sufficiently unlike to be distinguished; and we all know how great is the contrast between carbon and gold, hydrogen and lead, fluorine and helium. It is scarcely likely that such differences as these can be explained by atoms which are simply hard pellets differing only in size and shape and weight, like those of Lucretius and Newton, or by atoms which are abstract centres of force, like those of Boscovich. We are forced to insent atoms more complicated that these; and from this it is mot far to say that we must imagine a structure for the atom; and from this scarcely farther to say that we must imagine an atom built of parts.

At this point we meet with a clamor from a number of excellent people, many of them otherwise quite innocent of Hellenic culture, who have it firmly fixed in their minds that atom is the Greek word for indivisible; whence they conclude that when the physicist speaks of subdividing his atoms, he is contradicting his own terms, he is violating the rules of his own game, and has forfeited his right to be heard.: The premise may be right, but the conclusion is absurd. If some of the properties of gold are explained by assuming it made of atoms with fewer properties, and later the explanation is improved and extended by assuming these atoms made of still smaller particles with still fewer properties, the second step is not less legitimate than the first. It may be contended, with some reason, that the name alom should be transferred at once to the smaller particles. At best this would be one of the changes which are desirable in principle but cause more trouble than they are worth. The contention is, however, weakened by the fact that some at least of the smaller particles of which we imagine gold atoms to be made are not imagined to be peculiar to gold, but are conceised as particles of a fundamental substance common to all elements. That the "atoms" of the many

[^80]elements should be systems of "atoms" of one or a few fundamental materials is a thoroughly pleasing idea, although at present an unrealized ideal. It is unknown how far our descembants will find it expedient to dissect the atom; but it is certain that they will not be stopped by etymology:

Another fact about atom-models is that they are not always displaced by their successors; several may and do persist side by side, each adapted to a certain set of facts and observations. Every atom is designed in view of a very small fraction of the available knowledge about properties of matter; and this applies to the latest model as well as the earliest. The chemists of the nineteenth century were most impressed by the immutable weight of matter and by the laws of chemical combination; hence their atoms were merely weighted particles equipped with hooks to catch the hooks of other atoms. To the physicists of fifty years ago the plysical properties of gases seemed the easiest phenomenat to interpret, and they imagined atoms as rigid elastic spheres with radii of some 10^{-8} centimetre; by the masses and motions of such atoms they explained the pressure, elasticity, viscosity, diffusion and specific heats of gases. The physicists of the next generation attended chiefly to the emission, the refraction, the dispersion of vibratory radiations ly luminous gases, and conceived the atom as a framework holling vibrators, like a belfry with a carillon of bells. This third model is inferior to the second in explaining the properties of gases, inferior to the first in explaining the laws of chemical combination; each of the three is superior in its own fied to the atom-moxdel to which this article is chielly devoted, and which in its turn is primarily adapted to a field of its own. Still other atommodels have been devised, endowed with other properties, to account for sther phenomenal; and it is altogether probable that many more will be presented before the eventual one is attained, if it ever is. For instance, we may some day behold an atom-model devised to explain the condhetion of electricity in solids, very competent in its field and quite unlike these others. In the eventual atom-model the essential qualities of all of these, and of many others, must be happily combinerl; it dex: not matter about the inesential ones. ${ }^{3}$

[^81]In awaiting that eventmal atom-motel, it is lest to regard the atoms of the present day as mutable and transitory: like railway time-tables, atom-moxtels should be inseribed "sulbject th change without notice." Aothing is irrevocable in physics exoept the record of past events; and we who hase seen the undulatory theory of light assiled and shaken moy well hesitate (o) put unguestioning fath in any atom-model. liven if there is mo danger of change, it is a virtue to keep data and theories sharply separated in ones mind. In no fied is this more difticult and important than in the fiekl of this article, where the very language used io dearilne the data is saturated with the spirit of a particular conception of the atom, and it is customary to experund the theory before the facts. For these reasons I shall go to the opposite extreme, and treat the contemporary atomic theory with an exaggerated reserve which in many places will seem ercessive to the reader and in some to the writer himself.

The favorite atom-mulel of the physicists of today is at structure of electrons, congregated about a positively-charged nucleus. The data which this atom is denigned primarily to interpret were discovered before 1913, or else since 1913 by methols developed before that time. Thene discoseries are due largely to Rutherforel, whose name the model often beats. The sections of this article which are labelled B, C and I) are devoted to these data, and to the inferences from them. In 1913 a great change in the situation was wrought by a brilliant idea of Niels Bohr. Bohr did not discover new data; he laught a new way of interpreting old ones, he showed men how to read spectra. Through this interpretation of spectra, and through data which were discovered by men inspired with his idea, a previ-ously-unknown property of matter wats disclosed. This is expressed by saying that each atom possesses many distinct Stationary States. The largest section of this lirst Part of the article, the stetion E, is devoted to the knowledge of these Stationary States. Had these been disensered earlier, an atom-model might have been devised to explain them and thent alone. Rutherford's atom-model was already in the lield, and it was molified so that it might interpret the new knowledge. To these modifications, of which some are of a remarkable simplicity and beaty, the Second Part of this article will be devoted.

B. The Electron ${ }^{4}$

The electron is the aton of negative electricity. An individual electron can be captured upon a droplet of oil or mercury, or a minute

[^82]solid particle, and the amount of its charge determined. This amount is $4.754 .10^{-10}$ in electrostatic units, according to Millikan. It is desiguated by the symbol e. When a magnetic field is applied 10 a stream of electrons all moving with the same speed, the electrons are deflected all to the same degree, which shows that they all have the same mass. This mass is practically equal to 9.10^{-28} in grammes, unless the electron is moving at a very uncommonly high speed, in which case it is appreciably greater.

These facts of experience are about all that is definitely known or needs to be known about the electron, in order to appreciate its role in modern atomic theory. There is no good way of determining its size, although the length of its mean free path in certain gases indicates, perhaps definitely proves, that it is much smaller than an atom. If the electron is a spherule of negative electricity uniformly dense, then its radius cannot be less than $2.10^{-13} \mathrm{~cm}$, for if it were, the electromagnetic mass of the spherule would exceed the observed mass of the electron. ${ }^{5}$ This size is much smaller than the one which it is expedient to attribute to the atom, happily for us, since otherwise it would be difficult to conceive of atoms containing electrons.

Since electrons can be coaxed or forced out of substances of every kind-elements and compounds, metals and non-metals, liquids and solids and gases-the atoms are supposed to comtain one or more electrons apiece. This argument wat formerly fortified by the fact that the light emitted from glowing gases is in many respects such as oscillating electrons would emit. This second argument is for the present under a cloud. ${ }^{6}$

[^83]
C. Positheldi-Charemed Partali: Accepted as Aroms ${ }^{7}$

Positively-charged partieles are foumd in abondance in gises in Which an elecerical diseharge is or has lately been maintained, and they may be profluced under wedl-controlled circumstane bey pouring astream of clectrons with properly-inljusted speerls into a gas, amd in other ways. Whly the ratios of the eharge to the mass can be Wetermined for these particles, net the charge individally nor the mass indivilually: But particles of apparently the same sulstance show distinct balues of this ratio, which stand to one another as the numbers $1,2,3, \ldots$ and the intermediate values do not wecur. This supports the quite natural ideat that these particles are atoms which have lost one or two or three or more of their electrons. If we make this suppusition, we thereby assume values for the charges, and catl calculate the masses of the particles from these and the observed values of the charge-mass ratio. The mases lie between 10^{26} and 10^{21} (in grammes) for particles occurring in the vapors of the barious chemieal elements, and they lie in the same order as the combining-weights of the chemical elements. This is powerful testimony that the particles infeed deserve the name of "atoms".

There is one sort of positive particle for which the charge can be measured directly. This is the alpha-particle, which cannot be produced at will but is supplied by Nature from radio-active substances. Counting the number of these particles emitted from a bit of ralioactive substance in a given time, and measuring the total electrical charge lost by the substance in the same time, and dividing the latter figure by the former, Rutherford and Regener obtained the charge of the alpha-particle, which is twice the electron-charge (with reversed sign) within the limits of experimental error. This suggests that the alpha-particle is an atom of something or other, which has lost two electrons. As an evacuated tube into which alpha-particles are admiteel is presently found to contain heliam, the "something or other" is supposed in be helimm. The mass of the alpha-particle can he determinet directly from its charge and charge-mass ratio. It amounts t1 6.6010^{23}, and this agrees with the mass inferred in the foregoing way for the positise particles found in belium.
$4 i 74.10^{10}$. Anyone interested in his case may find it presented in the April, 1925 , number of the Philosophical Magazine. The question is for experimental physirists to disenss: but it is not likely that the erlifice of morlern physies is liable to be ruined by a flaw at its very foundation, such as this would be.
${ }^{7}$ The material of this section may be found much more extensively presented in my fourth article, in which 1 have also wristen about isotopes, a subject omitted here for the sake of brevity.

The alpha-particle is supposed, like the electron, to be much smaller than an atom; partly hecause it can go through a thin sheet of metal, chiefly because of evidence to be expounded in the next paragraph.

Collisions between alpha-particles and other particles of similar mass are occasionally observed; the mats of the struck particle can be deduced from the directions in which it and the alpha-particle fly: off after the impact, assuming only that conservation of momentum and conservation of kinetic energy prevail during the impact. In this way it is possible to determine the masses of tiny particles (presumably atoms) of hydrogen, helimm, oxygen and nitrogen (perhaps eventally of other elements) in terms of the mass of the alphaparticle, which is determined from its tharge-mass ratio and its charge, which are determined directly. If all the properties of the elements could be explained by atoms possessing no features except charge and mass, all the foundations of sefence might be laid down already:

The alpha-particle is sme of the most valuable and powerful instrnments in the physicist's equipment. It is a sort of hyper-microscope, penetrating and revealing the arrangements of systems so minute that microseopic objects are universes compared with them. Rutherford's development of the technigue of using the alpha-particle is to be ranked among his greatest works.
l'ositively-charged particles with masses as low as that of the electron have never been observed; the least massive of the known positively-charged particles has 1,810 times the mass of the electron.

1). The Nuctenr Atom-Monet.

Since we hase met with positively-charged particles which are atcepted as atoms deprived of one or more of their electrons, and since these incomplete atoms are much greater in mass than the electrons, it is natural to suppose that the completed atom consists of a positively-charged particle or nutens in which almost its entire mass is eoncentrated, and one or more electrons which compensate the charge of the positive particle but atd little to the mass of the atom. If we further suppose that the dimensions of the electrons and of the positively-charged particle are small in comparison with the elistance between them, we insent the nulear atom-model.*

The direct evielence for the muclear atom-model consists of a very

[^84]small but a beatiful ame comsincing series of experiments, of which the lirst and the most were performed hy Sir lirnest Rutherford and his pupils." Theore evperiments are designed to show that the orbit of a minute charged particle (tasually an alpha-partiche). tlying through a thin tilm of metal, is in certain rases very like the heperbolic orbis of a comet around the sum. Sueh all orbit is the path of a particle moving near to .tn immobile particle, for instance a light particle mosing close to a much more massive one, which attracts it or repels it by a force varying inversely as the square of their distance apart. If these experiments show what they are designed to show, then they indicate that the atom includes a particle much more massive than ath clectron, bearing an electric charge, and sulficiently isolated from the other charges in the atom (such as the electrons) so that it- fied of forve in a measurable space around it is not disturbed by theirs. Wi canmot, however, trace the entire path of an individual flying charged particte as it swings around through an atom, and are forced (1) make up for this deliciency by a statistical sturly of the visible portions of the paths of a great multitude of charge particles.
leet us consider exactly what these experiments show; for whatever they do prove is the most securely proved of all the beliefs about atoms. In the first place, they show that there is a nucleus; and a vacant space surrounding it, in which an inserse-square force centred upon the nucleus prevails; and they indicate the dimensions of this sacant space. This commences within $10^{-12} \mathrm{~cm}$. of the nucleus. which is another way of saying that the diameter of the nucleas is less than $10^{-12} \mathrm{~cm}$. ; and it extends beyond a distance given (to take instances) ats $14.10^{12} \mathrm{~cm}$. for platinum and $10^{-9} \mathrm{~cm}$. for argon, which is another way of saying that nearly all of the negative charge of the atom lies still farther out from the mucleus. If the negative charge is indeed subdivided into eleetrons, then the atom is formed like a hollow cloud of electrons, with a massive positively-charged mucleus at the centre of the interior hollow.

The diameter of this cloud of electrons is not furnished by the experiments on alphatparticle deflections: but considering that the distance between adjacent atoms locked into a crystal lattice is generally a small multiple of 10^{-9} cm., it cannot be much greater than $10^{*} \mathrm{~cm}$. unless we are prepared to admit interpenetration or violemt distortion of atoms: nor does it seem likely that the diameter is verymuch smaller than this amount. I have already mentioned that some of the properties of gases are adequately explained by assuming

[^85]that the atoms are elastic rigid spheres with a diameter of about $10^{-8} \mathrm{~cm}$. Unlike as an elastic rigid sphere and a cloud of electrons seem, this agreement between so differently made estimates is probably no mere coincidence. It will be nosticed that all of the figures about sizes at which we have arrived in such tarious ways (diameters for the electron and the nucleus, for the vacant space inside the electron-cloud, for the entire atom) are quite compatible with one another. If the value derived for the diameter of the interior holtow had been ten times the spacing of atoms in a crystal, or a tenth the diameter of a spherule of electricity with the same electromagnetic mass as an electron, we should indeed be in trouble.

In the second place, these studies of the deflections of alpha-particles yield numerical values for the nuclear charge: $(\mathbf{7} .4 \pm 1) e$ for platinum, (46.3 ± 0.7) e for silver, (29.3 ± 0.7) e for copper, 19 fe for argon, 6.5e for "air" (a sort of statistical average of the values for oxygen and nitrogen). ${ }^{10}$ To these must be added the value $+2 e$ for the muclear charge of helium; for we have already seen the evidence that the alphatparticle is what is left of a helium atom when twe electrons are removed, and these last-cited experiments show that it is itself a nucleus, hence a helium mueleus. This maclear charge must be balancerl by negative charges within the atom; if this balancing negative charge is subelisided into electrons, then the mumerical factors of e occurring in these numerical values are equal respectively to the number of electons belonging to each atom. We thus have fairly accurate estimates of the number of constituent electrons within each of four or five atoms.

These estimates agree, within their experimental uncertainties, with the famons and splendid iflea of van den Broek and Moseley: that the number of electrons in each atom, and the nuclear charge measured as a mutiple of the electron-charge, "is the same as the nmmber of the place occupied by the element in the periodic table". This idea is atso supported by rough measurements of atpha-particle deffections by a few other atoms, and by the extent to which different atoms scatter X-rays; hut the most important of the adelitional evintence will lind its appropriate place in the second section of this article.

These condusions are almost all that can be dedued from the data. The arrangement of electrons within the electron-ehoud is almost
${ }^{10}$ References for the data are given in the fourth artiele of this series. The

 have the desired balues $12 c$ amd $1.3 r$, respretively, whithat few per cem, Rutherfort's stulie's of emeonaters lelween alpha-particles and hydrogen atoms prove a nutlear chatge of c for the latter.
entirely emmealed. It is not aloggether inacessiblef for the dellowfions sullered by agha-particles and electrons dying through atoms are inlluenced hy the electons of the atom, not by the nutelts exdusively: and from the degree in which the observed deflections rlifier from what the moletts alone wonld compel, it is pessible to draw some conclusions alout the way in which the electrons are arranged. The mothematical ditliculties, as the reader will reatily admit, are tremendeus: the problem of determining the path of a flying electron through a cloud of electrons, probably themselves in motion, is enough to make the best of mathematicians despair; yet some progress in this direction has already been achieved, as I narrated in the second article of this series. Again, the scattering of X-rays hy atoms should depend on the manner in which their electrons are arranged; and some measurements and some deductions have already been made, although the researches have been in abeyance for some years, probably because the newest discoveries about \mathbb{X}-ray scattering make it extremely doubtful what the mechanism of the effect really is.

The study of deflections of alpha-particles by atoms has thus brought precious guidance to the atom-builder, and imposed severe limitations upon him, yet only partial ones. He is constrained toerect his atom accurding to certain fundamental rules, and yet has an extremely free hand in arranging the details. He is practically compelled to buikl the atom of an element which nccupies the Nth place in the periodic system, out of NT electrons and a much more massive nucleus with a positive charge Ne. The data which I have cited do not absolutely enforce these numerical values; but there is no other mudel which they permit which could possibly rival this one in respect of convincing simplicity. He may not make the electrons go more than a few times $10^{-8} \mathrm{~cm}$. from the nucleus; he is constrained to leave a small vacant space around the nucleus, and within this space he may not tamper with the inserse-square law of force (a restriction which has eliminated several favored atom-models of the decade liefore 1910). ${ }^{11}$ Having conformed to these restrictions be

[^86]may do very nearly as he pleases with the electrons and the region they occupy. No data can be invoked to support him nor to confute.

Having expounded the merits of the muclear atom, I will proceed to undo my work in part by pointing out its great and grave defect. No less a defect than this, that it is impossible. It cannot exist. Even if it were brought into existence miraculously at an instant, it could not survive, for it carries the seeds of its own dissolution within itself. For if at that intial instant all of the electrons were at rest relatively to the nucleus, they would immediately start towards it, fall into it, and expire. Of course, this conserpuence is so obvious that the notion of stationary electrons would not even occur to anyone having a bowing acquaintance with mechanics. Such a person would immediately assume that the electrons were in motion around the nucleus as the planets are around the sun; he would consett the nuclear atom-model into what I might call a sun-and-planets atommodel, the muleus playing the role of the sun, the electrons those of the planets. Such an idea is alluring in the extreme; it implies that Nature acts similarly in great things and in small, copying the solar system whith the atom; and this is most ateceptable, partly because of its philosophical beanty and partly because it enables us to use the intellectual methods and habits acquired in the study of astronomy, relieving us of the labor of acquiring new ones. T'nfortunately it is as untenable as the itlea that the electrons stand still. For owing to the radiation of energy which continually goes on from accelerated electrified particles, an electron cannot describe a circle or an ellipse about a mucleus, as a planet may about the sun; it can only describe a narrowing spiral, ending in a collision between electron and nucleus. The muclear atom is not stable nor enduring; and the dilemma is complete.

The only recourse is to make some entirely new and unprecedented assumption; for instance, that the electrons, in spite of everything, call stand still in certain positions without falling into the nucleus; or that they, in spite of everything, can revolse interminally in cortain closed orlits without spiralling into the mucleus. Such a modilieation of the nuclear atom is, of course, essentially a denial of it. An atom composed of masses and electrostatic charges, plus certain restrictive rules or arhitrary assertions, is no longer simply an atom composed of masses and electrostatic charges. Instead of giving to our ultimate particles a few properties selected from among the ones which matter en masse displays to our senses or our instruments,
we hase to intoll stme new whe for them. This seems regrettable. but only teratles our expertations were too high.

Inother ciremmstance leads is: 10 , another dikemmat. Suppose that we could eircumsent that dithenly dent the revolving electron, which radiates part of its energy at eath revolution and slieles down aspiral path inte the nuclete; suppose that we could time justilicattion for silying that no ratiation oceurs, that the etectron like a platet may rewolve foreser in ath ellipse. If two atoms collided, ats in a gas they must very frequently do, would mot the electoms all be disarranged, disorganiael, Ilung weer from one orhit into another? This we shomblertably evpert; yet if it happens, bo two atoms in a gas can be exactly alike, nor can any atom retain its character for more than a fration of a secombl. If this is so, then the varions sharplydefined properties of a gat must, each and every one of them, be statistical properties not themselves propertie's of individual atoms, bue the results of other properties of individual atoms, held in different amomots by diferent atoms and all averaged together. In some cases this is unobjectionable; the pressure and the temperature of a gas are sharply definite properties, resulting from the mass and the motion of the atoms, and the latter of these properties is not necessarily the same for any two atoms at the same moment nor for any atom at different montents. But one wombl he rehactant to treat the spectrom of a gas as such a property; according to all the traditions of physies this is one of the properties of the individual atoms. But the spectrom is very constant, sharp, inmmtably defined; we must therefore assume either that it depends only on the number of eloctrons in the atom and not upon their motion mor position, an idea which womld be diftiont to carry through; or that the electrons are ineluctably constrained to certain orbits or certain positions, so that the atom retains its permonality amb its charater.

We have now make the acguaintance of two ideas which will be exceedingly prominent in the second division of this article. The nuclear atom-model is of itself unstable; therefore stability must be enforeed upon it by outright assmption, it mast be mate stable by fiat. But this stathitity may mot be extended to all conceivable arrangements or combigurations of the moxtel; it mast be resersed for one or a few, that the atom may posesess a fixed charater and a personaliey.

We now arrive at the phenomena by means of which these vaguelyexpressed ideas are to be sharpened and hardened into detinite doctrines.

E. The Stationary States

E 1. The Direat Evidence for the Stationary States

Imagine a tube filled with gaseons helium, and containing a hot filament from which electrons emerge. By means of an accelerating potential applied between the filament and a fine-meshed gauze close in front of it, the electrons are speeded up, and pass through the gas with an encrgy which is accurately controlled by the acceleratingpotential. A third electrode is mamtained at a potential only slightly higher than that of the filament. To reach this electrode, the electrons must sacrifice nearly all of the energy which they acquired in coming $u p$ to the ganze. If they lose little or no energy in their progress through the gas, they can win their way to the third electrode, like water rising again to the level of its source. If, however, they lose a notable amount of energy 10 the atoms with which they collide, they cannot reach the third electrode, as water which has turned a mill-wheel cannot climb again to the level whence it frll.

By measuring the current into the third electrode in the beliumfilled tube, it is found that if the electrons have an amount of energy lower than 19.75 equivatent volts, they lose scarcely any of it in their progress through the gas; but if the energy of an electron is just equal to 19.75 equivalent volts, it may and frequently does fose its energy ahogether; and if the energy of an electron surpasses 19.75, it may and frequently does surrender just 19.75 equivalent volts 10 the gas, retaining the residumm itself. Imagining that the electron collides with atoms of helium on its way across the gas, we conclude that the helium atom can receive exactly 19.75 of these units of energy, no lesser quantity and (within certain limits) no greater. From similar experiments it appears that the mercury atom can receive 4.66 equivalent volts of energy, no smaller amount and (within certain limits) no larger. It appears that the sodimm atom can receive 2.1 equivalent volts, no less and (within certain limits) no more and the list can be extended to some thirty elements.

Another way of satying the same thing is this: the helimm atom may exist (at least transiently) in its normal state, or also in a second state in which its energy is greater by 19.75 equivalent wolts than in its normal state, but not, so far as we can lind evidence, in any state with any intermediate value of energy. Let us call this second state an "excited state." The mercury atom then has, in addition 10 its normal state of undelined energy, an excited state of energy greater by \&.fiti equivalent volts. The sodium atom has, in addition 10 its mormat state, an excited state of emergy greater by 2.1 equivalent
volte and ar with a mmber of others. I give these and a few wher talles in the following table:

TABLE: 1

	11.	Ve	N.1	I's	Mg	118
Einergy- Walue of the tormal state	11	0	11	0	0	0
first exited shate	1085	1605	21	145	27	18
Wher excited states.	2055	1845			41	180
						5 ± 3
Ionized atom	24.5	21.5	5.12	39	76	10.

It will be notied that whes are given for several excited states in the same column; these rest upon evidence of the same sort as does the first excited state, so that in general the atom must be considered (0) pussess not one only, but sereral possible states in addition to its normal state.

It will be noticed alse that values are gisen for the "ionized atom." These are the amounts of energy just sufficient (when applied by means of an impinging electron) (w detach an electron from the atom. When electrons with so much energy or more are poured into the Gats in question, positively-charged particles, such as I previonsly mentioned and characterized as the residues of atoms deprived of an electron apiece, appear in it. It is not absurd to call this an "excited state." If it takes just 24.5 equivalent volts of energy to detach an electron from a helium atom, then the system formed of an ionized helium atom and a free clectron has a pertential energy of 24.5 equivalent volts. Any experiment, therefore, in which the energy required (1) detach an electron from an atom is measurel any experiment for determining the ionizing-polential, as this energy when expressed in equivalent volts is called is essentially an experiment for locating one of the excited states of the atom.

In this sense the energy-values of the last line in Table 1 are to be taken. I introduce them here for two reasons. In the first place, the face that this energy-talue is greater than any of the others in the same colamn suggests this interpretation for the excited states: that they correspond each to a certain parlial lifting-ont of an electron, to a certain stage of incomplete sepuration, while the energy-value of the ionized atom corresponds to the lolal lifting-out or to the complete separation. This idea is fortified by the fact that a helium atom may be ionized by two consecutive blows from electrons each with

20 egnivalent volts of energy, if the hows fall closely enough togetheras if the energy spent in raising the atom to its first excited state were paid into account, and could be used toward detaching the electron when the deficiency is supplied. This fact is exceedingly important for the theory, and I mention it here as a passing anticipation. In the second place it is desirable-for a reason which will presently appear - to measure the ellergy-values of the normal and of the excited states not from the enorgy of the normal state, as 1 hase done in Table 1 , but from the energy of the ionized atom as zero-value. This is done in Table 11.

TABLE II

	11e	Ne	Na	Cs	Mg	11 g
Energy-value of the lonized atom Non-ionized atom Excited states.	$1)$	0	0	0		
					-32	-3.7
	-395	-30				$-+07$
First exciled stale.	$-+75$	-485	-30	-2 15	-410	-5 54
Normal state.	$-2+5$	-215	-51	-39	-7.6	-104

With this comemtion, all the energy-values for the non-ionized atom become negative - a source of confusion, hut not of nearly so much confusion as the previons comention would eventually entail. It is well to remember tenaciously that, in at least nime cases ont of ten in the literature, the energy-values of the normal state and the excited states are referred to the energy of the ionized atom as zero, and that they all should always lear the minus sign, though generally it is left off.

For the excited states and for the normal state, I will employ the common general name of Stationary States; occasionally, for the sake of variety, the alternative name leads. Another common worl is term, the origin of which will appear in the next section. ${ }^{12}$

As the rearler will he foreed to make himself familiar with sehematic representations of the stationary States, he maty ats well begin at suce with a simple one. liig. I is a diagram showing the stationary states listed for helimm in the foregoing tables. The levels are represented by horizontal lines, segarated ly distances proportional to the

[^87]differences betwern their emergy-dales (ustally, hosever, these
 preseal in ceplis.dent velts, are alfixed to the lines; on the left, they are measured from the normal state of the newtral atom in aron of

Fig. 1-Diagram of the stationary states of helium, determined by the method of electron-impacts
encrgy; on the right, they are measured from the state of the ionized atom (which is the more common practice) ${ }^{13}$.

E 2. Bohr's Interpretalion of Spectra

In 1!112, the evidence to which the foregoing rection is devoted wats still entirely undiscovered, the Stationary States were unknown. That evdence was songht and found hecatuse Viels Bohr had divined the Stationary States in developing a new and brilliant interpretation of spectra. Until then, all physicists had wished to interpret the frequencies forming the spectrom of an atom as the natural resonancefrequencies of an elastic system. Bohr supplanted this ideat with an idea of his own, one of the most novel, fecund and potent in all the long evolution of physies. Several of the ideas incorporated in the contemporary atom-model are due (1) Bohr; among them all this is the primary and fundamental one, and certainly the most secture.

Consider the speetrum of hydrogen. In the visible region, this spectrum consists of a "line-series"-that is to say, a procession of lines converging upon a limit, falling at intervals ever narrower and narrower, these intervals so smonthly diminishing that they hear witness to a common character and a mutual origin of all the lines.

Fig. 2 Balmer series of lines in the lydrogen spectrmm: (R. II. Curtiss, from Foote \& Mohler, "Origin of Sipeetra")

This line-scries is shown in Fig. 2. Not only to the cye is it of a wonderful regularity; the frequencies of its consecutive lines are bound (1)gether in a simple numerical law. They are equal successively to

$$
\begin{equation*}
\nu_{l i m}-R 3^{2}, \nu_{l i m}-R 4^{2}, v_{l i m}-R, i^{2}, v_{l i m}-R, 6^{2}, \text { etc. } \tag{I}
\end{equation*}
$$

[^88]in which
$$
y_{\text {tom }} \text { frequency of the limit of the series }=K
$$
R standing for a certoin constant. There is another series of lines in the ultraviolet part of the s.ame spectrmm, whereof the frepuencies are equal conserutively to
\[

$$
\begin{equation*}
\nu=v_{l \mathrm{l} m}-R \quad 1, v_{l, m}-R 9, \nu_{l \mathrm{im}}-R \| G, \mathrm{ctc} . \tag{2}
\end{equation*}
$$

\]

in which

$$
v_{\mathrm{lm}}=R,
$$

R having the same value as lefore. The utter simplicity of the terms to be subtracted from vim in each of these cases, not to speak of the relateal form of the expressions for $\nu_{l a m}$, suggests like simple laws in other fiedels of plysies that in this formulation of the facts something highly important has been partially unveiled. There are certain wher series in the spectrum of hydrogen, and inspecting thems all one is led to the rule that every frequency emitted by the hydrogen atom cun be calculated by inserting different pairs of integers in the plates of m and n in the formule

$$
\begin{equation*}
v=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \tag{3}
\end{equation*}
$$

The case of the ionized-helium ${ }^{14}$ atom is quite as simple. Every frequency emitted by this atom can be calculated by assigning different pairs of integer salues to the constants m and n in the formula

$$
\begin{equation*}
\nu=4 R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right) \tag{1}
\end{equation*}
$$

Line-series hase been found in the spectra of many other elements. Some of them are as strikingly outstanding as the line-series in the spectrum of hydrogen, and converge upon timits scarcely less easy (1) locate; for instance, the "principal" series of the spectrom of soxlium (Fig. 3). Most are by no means so whwious; often they are insolved in the midst of a luxuriant jungle of umrelated or otherwiserelated lines. Most spectra conceal their structures from the unpractised eye, as a tone-poem of Strauss its themes or all opera of the Ring its Leitmotiv from the inexperienced ear. Long training and a skilled jutgment are required in the deciphering of spectra, except in the few untypically simple cases; and ushally the arrangement of lines into series which the spectrosenpist presents must be

[^89]accepted by the theorist without question and without suggestion. for he is not competent to analyze the data for himself.

Hawing grouped a certain number of lines into a series, having guessed as well as possible the comsergence-frequency $\nu_{l i m}$ of this meries, the spectroscopist has still the task of finding the numerical

Fig. 3-I'rincipal series of serlium (two photographs). (C, R. Itarrison, Physical Retienc)
law 10 which the consecutive freguencies conform. As a matter of course, all the frequencies can be expressed by a formula generalized from (1) and (2):

$$
\begin{equation*}
v_{i}=\nu_{l i m}-f(i) \tag{5}
\end{equation*}
$$

in which i is the order-mamber distinguishing each line, and $f(i)$ is a different quantity for each of the lines, which approaches zero as we pats along the serion to the limit. This means nothing by itself; the guestion is, does the function $f(i)$ hater a simplicity comparable with the simplicity of the sulptrabendat in (1) and (2) which suggested that they are the symbols of something deeply important? In general, the function $f(i)$ is not so simple at the function which occurs in the series of the sectrat of hydrogen and ionized helium. In many a ases, however, it is almost as simple in others a little more complicated, in others a little more complicated yet, and so forth; so that the ewentual result is this, that the formula (3) appears to be the proper Waty of deocribing the lines of sories spectra, even in cases where the acries in so irregular and the form of the function $f(i)$ so intricate
that if it were the only series in existence, no one would attach any particular importance to it."

To the physicists of a generation ago, whon regarded the sperterm frequencies as natural vibration-freguencies of the atom, and trierl hard to invent a mechanical morlel of which the viloration-frequencien shendel conform th the formula (3) or the more general formula (i)), the chatacter of these formulate wis an insurmountable whatacle Bewhere ${ }^{16}$ I hase given a brief acount of the vain attempts to contrise sucls a menke. Boher dabadoned this procedure altogether; and taking equation (3), be multiplied buth sides of it by Planck's con-$-1.1 n t h\left(=\left(5.5 i \cdot[0)^{27}\right)\right.$.

$$
h \nu=h R\left(\begin{array}{c}
1 \tag{1i}\\
m^{2}
\end{array}-\frac{1}{n^{2}}\right) .
$$

The signilicance of this act depends on the meaning of h. Planck had found it expedient, in developing an adequate theory of radiation, to atsume that solid hot bodies are populated with multituses of

Fig. 4 Principal series of helium (singlet system). (T. 1.yman, Astrophysical Journal)
nscillating electrons of all the varions frequencies, possessing a very curious and inexplicable property; this being, that an oscillator vibrating with frequency v call emit radiant energy of that same frequency ν only in units or quank of amount $h \nu$. Einstein had found it experlient, in describing the photoelectric effect and other phemomena, 10 assume that radiant energy of the frequency ν goes alout in units or quanta of the amount $h v$, emitted integrally, absorbed integrally, travelling integrally: Suppose then that we assume that the quantity $h \nu$, stamling on the left-hand side of the equattion (6), reprevent- the amount of radiant energy emitted by the hydrogen

[^90]atom in the process of pouring out radiation of the frequency ν. The right-hand side is the difference between two terms. One term is the energy of the hydrogen atom before it emits the radiation of frequency ν; the other is the energy of the atom after the emission is concluded. The radiation of frequency ν is emitted by reason of a transition between two stationary states of the hydrogen atom; the energies of these states are equal to the terms whereof the frequency ν is the difference, each term multiplied by h. The terms of the spectrum formulae are the energy-values of the stationary states of the atom, when translated into the same units by multiplying them by h. When translated into proper units, the terms are energies, and the energies are terms. This is Bohr's great and memorable idea.

Once this idea is accepted, the known statimary states of the atom increate enomonsly in number. The paltry one, two, or half-dozen, which are all that have been detected by observing the energy-losses of relounding electrons, are multiplied into hundreds and thousands. The accuracy with which each energy-value is known is angmented tenfold or a hundredfold, sometimes far more; for spectroscopic measurements are among the most accurate in physies, although the neressity of extrapolating the olserved frequencies to arrive at the series-s-limit neuralizes some of their precision.

One point must be kept clearly and always in mind, at the peril of infinite confusion. The energy-ratues zothich the spectrum terms' supply are not the energy-values of the stationary states measured from the normal state, as might seem natural; they are the energy-zalues measured from the state of the ionized atom. These being negative, it is the negative term-value which is significant. Equation (6) must therefore tee rewritten in this fashion:

$$
\begin{equation*}
h \nu=R h\left(-\frac{1}{n^{2}}\right)-R h\left(-\frac{1}{m^{2}}\right) . \tag{i}
\end{equation*}
$$

The energies of the successive stationary states of the hydrogen atom are $-R h,-R h 1,-R h 9,-R h^{\prime} 16$, and so forth, relatively to the energy of the ionized atom as zero. They are not $R h, R h 4, R h 9$, and so forth, relatively to the normal state of the atom ats \%ero. Anyone when enterains this last idea is dermed to trouble.

The statimary states of the hydrogen atom are shown in Fig. $\overline{\text { b }}$, which is constructed like lig. 1, with the energy-values of the various levels meamured downwards from the state of the ionized atom, and affised on the right. The distances from the various levels to the zero-line are proportional to these energy-values (this feature will henceforth be found too inconvenient to maintain).
 a spertrum, is gemerally given not in expivalemt volts, but in a unit calley the "wase-mmber." This mit is I he times as great ats atl erg.
 When the entergy-blltes of two stationary states are expresed in

Fig. 5 Diagram of the stationary states of hydrogen, deduced from its spectrum
this unit, the difference between them is equal to 1 c times the frequency of the line which corresponds to the transition from one to the other.

A spectrum-line corresponding to a transition between two stationary states is symbolized, on a diagram of stationary states, by an arrow connecting the dashes (or whatever marks are used) which symbolize the two levels. This is illustrated in lig. 6.

I pause at this point to remark that each of what I hase been calling the "stationary states" is in fact usually a group of two or more stationary states, often but not always exceedingly close together; just as many stars in the sky are in fact groups of stars 100 close legether for any but an excellent telescope to diseriminate. This will be diseussed at lengtl in a later section; at present it is expedient to regard each of these groups as one stationary state.

The experimental test of Bohr's method for identifying stationary states consists in comparing the stationary states inferred from the spectrum, according to Bohr's procedure, with the stationary states derived directly by the study of electron-impacts. The agreement is perfect wherever the experiments by the latter method can be carried out. By a curious fatality, this is impracticable for hydrogen and ionized helium, as neither sort of atom occurs in gas quiescent enough for experiments on enrgy-transfers from electrons to atoms.

For about fifteen other elements, the comparison has been made for two or more of the Stationary States. Every energy-balue given in Table II was obtained by the method of electron impacts, and confirmed ly analyzing the spectrom of the element.

E 3. The Clussificution of Stotionary States by L'tilizing "Rules of Sclection"

1 have sail that every line in a spectrum, at least of those arranged in sories, may be represented by an arrow connecting two stationary states. If arrows are drawn from every one of the stationary states to every other, will every armw correspond to a line actually observed in the spectrm? Evory line has an arrow; does every arrow bave a line? By no means; the answer is defintely and strongly negative. If the wave lengths deduced from all the possible armows are sought in the spectrum, most of them are found unocoupied by lines. The great majority of the apparenty possille transitions either do not oscur at all, or if they do ocour, the energy which is liberated is disposed of in some other way than by radiation. There is reason for believing that the atom may embrace this last alternative if it col-

SODIUM

Fig. 6 Diagram of the stationary states of sotiom, sorted out into columns by applying the selection-principle. Arrows represent various lines (hlue for principal, yellow for sharp, red for diffuse and green for Jeegmann weries)
likes with amother atom or with an electron. Otherwise, it seme that if the atom camot ratiate the emergy liberated in at transtion, the transition itself camot hapert .tt all. If, therefore, the line corresponding to an arrow is mising, the transition corre-pumeling (or the arron mut he inhbited by some agency as yet unk nown. Many tratestions mast be inhibited, for many lines are missing.

There misuing lines are precious to the student of speetra and to the arehited of atom-modets. Whatever explanation is devised for the stationtary states mast include a reason for the oceurrence of chme transitions and the mon-oceurrence of some whers. This is gexal rather than bad fortume, since if such a reason is demanderl, it mosy be found in one ath not in another of two competing theories which otherwise woukd stand on an equal footing: the missing liues may even sugges a theory. It all events they suggest a system of clasification; and, while the hardened theorizer may regard a system of chssituation as merely the forerunner of a theory, a theory is itself often mothing more than a classification stated in the language of an artificial analugy. It is, in fact, possible to arrange the stationary states, not in a single column as in Figs. 1 or $\%$, but in several as in Fig. ti; this arrangement being so eontrived, that any transition can be identified in a moment as belonging among those which occur, or among those which are missing, whichever its case may be.

The mere fact that such an arrangement can be contrived shows that the missing lines are not distributed at random, but subject to some mort of a rule. Such rules are known as principles of selection. The missing lines are commonly called verbolen lines by the German physicists, possibly because that was the most conspicuous word in the official berman language before the war. It is not a happilythowen word, neither are the English equivaleuts "forbidden" and "prohibited"; since while we know that the lines are missing, we do not detintely know what circumstance is responsible; and, whateser that circumstance moy be, it is highly unconsentional for a physicist to sty that it "forloids" the lines. The same objection applies with extra force to the phrave "forbidden by the selection-principle". It is much better to accept the fact that cortain lines are missing as a fact of experience, and the selection-principles as rules of experience whereby the facts are conlified.

E.4. The Families of Slationary Stales (for Other . Lloms than IIydrogen)

There is a far-reaching contrast between the spectra of all atoms but hydrogen and ionized helium, on the one hand, and the spectra of these two atoms on the other. The selection-principles at first
acrentuate this contrast, and later to a certain extent aid to explain it away:. I commence with the atoms other than hydrogen, and take sorlium as the specific instance.

A few of the stationary states of the sorlium atom are exbibited in a single column on the left of Fig. 6. The energy-value of each level, measured from the energy of the ionized atom as zero, is affised at the left; but the practice of drawing the levels at distances proportional to their energy-values has had to be disearded for the sake of lueidity: In this case, the distances are proportioned to the differences between the logarithms of the energy-values. Drawing arrows from each of the levels 10 every other, and ascertaining which of them correspond to actual and which to missing lines, we find that the missing lines are such that the stationary states can be sorted out into several families, to be arranged in parallel columns as on the right of Fig. 6. There are at least seven of these, but it is of no advantage to us to consider more than the first four. The feature of this arrangement is, that transitions between stationary states in adjacent columns correspond to actual lincs; but the lines corresponding to all other transitions are missing.

This is a principle of selection. It may be phrased in an equivalent but pregnant way, in this mamer. Let me attach to the several columns the numerals $1,2,3,4 \ldots$ as they are indicated at the bases; and let me use k as the general symbol for each and all of these numerals. Then this particular selection-principle may be phrased thus:

The only transilions which correspond to actual spectrum lines are those in which k changes by unity; $د \mathrm{k}= \pm 1$.

The numeral k bears the ponderous name of asimuthal quantumnumber. This is a name derived from theory and not from experience, as will he made clear in due time. The principle of selection which has just been stated is the selection-principle for the azimuthal quan-(tum-number.

Exceptions to this rule oecur; the acrboten lines, like other acrboten things, accasionally evade the prohibition. This happens particularly when the atoms are subjected to intense electric liedds, or to violent spasmolic electrical discharges in which strong transient fields are produced; in these circomstances great numbers of the missing lines keap sudfenly into sight. In ligg. 11 some of these lines appear dicited by a strong electric lield. Some lines corresponding to changes of k by two mits or by none, which by the foregoing rule should be absent, do actually oceur even when there is no ohrious
reatell whener for thinking thot the atoms are sulbeet to musinal stremes. ${ }^{17}$ The exceptions, boweder, are thot mumerons enotgh in jewportize the rule.

Two wher features of the coltums stombld be pointed ont firse. that the stecessibe levels in each collumn are not sattered at ramdoms hut form on conserging series approblhing the top of the column at limit (their conerg-values form a sequence conserging to zero); and secomd, that there is mothing arbitrary ahout the order of the columbs. since the coltum at the extreme left admits of transitions to only one other column and therefore is mmistakable, and all the others follow alter it in an immutable order.

E E. A Digression About Notalion

The symbel for a transition between two stationary states, and for the spectrum line which corresponds to that transition, consists of the symbels for the two states separated by an arrow, or a dash, or a semicolon, or any convenient mark. The final state is commonly writen first. Thus the line due to the transition from a state B to a state A is designated thus: $(A)-(B)$. Chess-players will be reminded of the "Continental" system of describing moves at chess, in which symbels for the squares from which and to which the piece is moved are written down one before the other.

The notation for spectrum lines thus flows easily and naturally from the notation for stationary states. This notation is not in prineiple tery difficult, but it has become confused and confusing, largely because of the alterations which have been wrought upon it to make it express not the facts, but divers thenretical interpretations of the facts. Alterations in names and mutations generally produce an exil effect in physics even when justified in the highest degree, for the old systems and the new persist side by side and cause interminable trouble; all the more is this so when the alterations are bised on uncertain grounds and impermanent. The notation for stationary states has already suffered much in this manner, and probaldy the worst is yet to come.

The clasilication of levels which I have just described enables and repures un to give a twofod symbel to cach level; the symbel mosis designate the colum in which the level stands, and its order-mumber or serial number in that column. The columns are geterally desig-

[^91]nated by the letters s, p, d, f (or their capital, or Gothic, or Greek equivalents). ${ }^{18}$ A spectroscopist using these symbols generally writes the serial number of the level before the letter, with a comma between, thus: $(1, s)$ and $(2, p)$ and $(3, d)$. Or the columns may be designated by their values of the numeral k, which is then commonly written as a subseript to the serial number. These symbols have at least the adsantage of being comparatively fixed. It is far otherwise with the serial numbers. One might expect that the level having the greatest energy-value in a particular column would be called Number 1 , and the successive ones Number 2, Number 3, and so forth towards the convergence-limit. Unfortunately (though for not a bad reason) the habit is to designate the first levels of the successive columns by the order-numbers $1,2,3$ and 4 , successively; so that their respective symbols are $(1, s) ;(2, p) ;(3, d)$ and $(4, f)$. These are the symbols I have affised in Fig. 6; but they are mot the only ones, as the ordernumbers have jumped up and down several times to satisfy the exigencies of new atom-models. It would be unprofitable to confuse the reader with further details, at least at this point. The important things to remember are three: that the symbol for each stationary state must contain one index for its column and another for its place in its column-that the former index is usually one of the specified letters - that the latter index is a number, usually beginning with $1,2,3,+$ for the first level in the s, p, d, f columns, respectively, and ascending along the column in unit steps.

E6. Names and Features of the Most Noted Line-Series

Every line in every series, according to Bohr's fundamental idea, corresponds to a transition or "combination" between two stationary states of the atom-to a transition from an initial state to a final state. The atom possesses more energy in the initial state than in the fimal state (we are speaking of emission-spectra only). Hence the energyvalue of the intial state, reckoned as it msnally is from the energy of the ionized atom as zero, is algebraically higher and arithmetically: lower than the energy-value of the final state.

The various lines of any one line-series have this in common: they correspond to transitions from varions intial states which however all lie in one and the same column, into one tinal state which is the same for all and lies in an adjacent column. Each line-series thas

[^92]helongs to one particular fimal state, and to one particular colum of initial states.

The line-series consisting of transitions into the state $(1, s)$, or kerminaling "pon (1,5) as the phrase sometimes is, bears the name of principal series. It- consecutive lines are: $(1,5)-(2, p) ;(1, s)-(3, p)$; $(1, s)-(t, p)$ and se forth. They are signified by the blate arrows of

Fig. 7 Inother waty of mapping the stationary states of sodium

Fig. 6. The general symbol for this series is $(1, s)-(m, p)$; which will be quite intelligible. The $(1, s)$ level is the normal state of the atom; consequently, the various lines of the principal series correspond to transitions, by which the atom regains its normal state after a temporary exile from it. It is probably for this reason that the series is prominent enough to have received the name principal from the spectroscopists.

Two series terminate upon the $(2, p)$ level. One of these consists of
transitions from various levels of the s-column. This is the sharp (or second) subordinate series, and its symbol is $(2, p)-(m, s)$. The other series consists of transitions from various levels of the d-column; it is the diffuse (or lirst) subordinate series, and its symbol is (2,p)(m, d). Yellow and red arrows signify these series, respectively, in Fig. 6. Of the two line-series terminating upon the $(3, d)$ fevel, only one has been endowed with a name; this is the series $(3, d)-(m, f)$, known alternatively as the Bergmann or the fundamental series (the second name is a bad one) and symbolized by green arrows in Fig. 7.

These series seem to be the only ones which impressed themselves strongly enough upon the minds of spectroscopic experts to receive names ${ }^{19}$ from them. However, many wher series have been identified, and emphasized, especially since Bohr's manner of thinking took root among the students of spectra; for instance, series terminating upon $(2, s)$ and $(3, s)$, which are conspicuous in the spectrum of helium, and such line-series ats $(3, d)-(m, p)$, and $(4, f)-(m, d)$.

Several rules about line-series, which are very prominent in accounts spectra, become selfeevident when the rules governing the stationary states are mastered (of course, this is only because the latter rules are based upon the former). For instance, there is a rule that the sharp and the diffuse series have the same limiting-frequency; and there is a rule that the difference between this limiting-frequency and the limiting-frequency of the principal series is equal to the frequency of the lirst line of the principal series. The reader may derive these by inspecting Fig. 6 .

Such rules do not apply to the speetra of hydrogen and of ionizedhelium, which are profoundly different from the spectra of sodium and other elements; and it is peribus to attach such names as principal or subordinate to the line-series of those first elements. The stationary states of those clements are known by their energy-values, and the series by the names of their discoverers or interpreters.

E 7. Further Analysis of the Stationary States of IIydrogen and Ionized Helium; Fine Siructure

In our earlier analysis of the spectrum of hydrogen and the spectrum of ionized helimm, we inferred from cath of these speetra a famity of stationary states, the encrgy-values of which foltow one upon the other in a very regular procession getserned hy a simple numerical law. This makes it practically impossible to divide up these stationary states into classes; all of the levels for each of the atoms must

[^93]inevitahk le arranged in a single colnmen, is was done in lige is But in thi arrangement the selection-principhe of the foregoing paragraph is apporently contrasenel. For, when the levelo of the serlimen Atont were aranged into columns, the tramstions between fevels lelonging to one athel the same colmon were anomg the inhibited tramsituts, the lines corresponding th thene were atmong the misang lines. But the transitions betwern the levels in the single colnom which eombains all of them for the hyelengen atom, eorrespond to the attull lines which constitute the entire hydrogen spectrum.

This discorel is only apparent. It vimislaes when we recall the fact. alrealy once mentioned as a forewarning and then neglected for ease of exposition, that the stationary states of the hytrogen atoms are compoume that what has been called a "stationary state" in the preceding pages is really an ensemble of adjacent stationary states. Every line of the Balmer series, the series $K\left(1 \mathrm{~m}^{2}-12^{2}\right)$, is actually a clase doublet; the frequency-differences between the components of all the doublets are approximately the same. Interpreted in the new fashion, this means that what we have called the stationary state of energy - Rh ' 4 is actually a pair of "component" stationary states very close together-so close ogether, that if the energy of one were exactly $-R / h$ t, the energy of the other would depart from that value by less than one part in forty thousand. Further in analyzing the spectrum of hydrogen we cannot go, probably because the minute details (if there are any) of the structure of its lines overtax the resolving-power of our spectroscopes. The spectrum of ionized heliam, however, is spread out in a more generous scale; and some of its lines were analyzed by Paschen. Among these were the lines of frequency $t R\left(1: 3^{*}-14^{2}\right) ; 1 R\left(1,3^{2}-15^{2}\right)$; and $1 R\left(1 ; 3^{2}-1 / 6^{2}\right)$. They were rembled respertisely, into six, live, and three components; and the line $1 R\left(1 t^{3}-1 . i^{2}\right)$ resolved into four.

Interpreted in the new manner, these data mean that what we have called the stationary states of energy-values $-1 / 2 h 9,-1 / 2 h 16$, $-1 R h 2.2$, and $-R h 36$, are really ensembles of "component" stafionary state lying very chosely together. It wond scarcely be prosible to infer from these data, independently and whthout ex-traneom- guidance, just how many "components" belong to each of the four en-embles. Fortunately or unfortunately, l'aschen's measurements were preceded and inspired by a specifie prediction of the number of components in earh ensemble a prediction that what we hase called the nth stationary state should the a group of n "component" stationary states. This prediction is graphically set forth in the serond column of liig. s, in which the level of energy-value
$-4 R h$ is drawn as a single dash, the next level as two dashes, the next as three, and so forth. Paschen's data were therefore compared with this prediction.

The data and the prediction were found compatible. If arrows are drawn from every "component" stationary state to every other "component" stationary state, it is found that each of the lines which was obsersed corresponds to one of the arrows (hut it is necessary to assume that, in some places, two or more adjacent lines are fused apparently into one by reason of the insufficient resolving-power of the spectroscope). Some of the arrows, however, correspond to missing lines. Evidently some sort of inhibiting agency is at work; some sort of a selection-principle is adumbrated. Furthermore, some and perhaps all of the missing lines appear when the electric field strength acting upon the radiating atoms is increased, and this, it will be remembered, is the behavior of the missing lines in the sodium spectrum. Whether the selection-principle could ever have been inferred? from these data alone seems doubiful. Naturally one proceeds to try out the same principle as served for the previous case. Can the component stationary states of the ionized-helium atom be sorted out into paralle! columns, in such a manner that transitions between levels in adjacent columms correspond to actual, all the other transitions to missing, lines?

This is attempted in the manner shown in Fig. 8 . The result is fairly satisfactory. The lines due to transitions between levels in adjacent columns should by this principle be visible, and they are. The lines corresponding to transitions between levels in the same column, or more than one column apart, should be missing; and some of them are, bint also some of them undeniably can be seen. To account for these unwelcome guests, it is necessary to assume that some of the radiating atoms are subject to a strong electric fietd which might, but wouk not be likely to, exist in the discharge. This is an uncomfortable solution; but there are other numerical agreements between the prediction and the data, which it is not expedient to describe at this point, but which are good enough to excuse that deficiency to some extent. En somme, the evidence presents no insuperable objection to our arranging the component stationary states of the ionizet-helimm atom in parallel columns, and declaring that the only trausitions which occur (except in strong electric fields) are those between members of arljacent columns; and this is just what we did with the solium atom, and can in general do with every other kind of atom whereof the spectrum las been interpreted. This being granted, we can assert that the spectra and the stationary
states of the ionizex-helime atom (and presumably those of the haviogen atom) are not so radically different from thene of the soxlium dtom as they seemed to be; some of the apparent differences being traceable to the fact that corresponding levels in the f, the d, the p

Fik $\&$ lingram of the stationary states of ionized helium, resolved to account for the fine structure of the spectrum lines
and the s-columns, which in the sodium atom are widely separated, are in the former atoms so closely crowded together that lines, which in the sodium spectrum are far apart, are in the former spectra packed into all-but-irresoluble groups. This is probable, but not certain. Further data about other lines in the ionizet-helium spectrum would be gratefully received. ${ }^{20}$

The notation for the varions "component" stationary states of the ionized-helium atom is shown in Fig. S. The successive columns are denoted by the numerals $1,2,3,4 \ldots$ for which the general symbol is k, as previously. This numeral is written as a subscript to the serial number of the level in its column, which commences with 1 in the first column, 2 in the second, 3 in the third, and so forth. By inspecting the figure, the reader will see a reason for using these different values of the serial-number for the first levels of the different columns. The serial-number is designated by n and called the total-quantum-number. The numeral k is called the azimuthal-quantum number, as before. These heavily long names are imposed by the theory and not by the data.

E 8. Further Analysis of the Stationary States of Other Elements than IIydrogen and Ionized IIclium; Multiplets

Having performed a two-stage analysis of the spectra of ionized helium and of bydrogen, we return to the spectra of the other clements for a second attack.

Let us consider the reasons for making these analyses in two stages. When the mid-Victorian physicist trained his spectroscope upon a tube full of glowing hydrogen, he saw the spectacle of Fig. 2-the converging procession of distinct bright lines, of which the freguencies form that delightully smonth numerical progression which we have already met. Later physicists with better instrmments discovered that each of these "lines" was in fact a patir of lines. Now in strict truth, this diseovery showed that the "lines" of the Batmer series were no lines at all; for a doublet is not a line. But the physicists continned to refer to the "lines" of the Batmer scries, chielly no doubt hecanse to anyone equipped with an orelinary spectroscope the doublets do appear ats single lines. By itself this is little reason; but the usage is mot altogether fatuly. Few people would hesitate to ardmit that cath of these doublets is not a comple of casual neighbors, not two

[^94]unrelaterl lines fortuitomsly elone together, but op par of limes sharing some deoply fundamental quality in common. This is indicated chielly be the focts that the elistane (mestared in fregneney) between the componemts of a doublet is the same for all the doublets, and very small compared with the distance between consective doblbers. For this resson the eloublets are treated its cmtition and they reguire a Hatme; which in what physieists hate preserved for them, in continuing to call them "lines." "I oublet" would be better thatn "line", and "group" would be better yet; but we comnot ever be sure that even the apparently-single lines are not very close gromps, and yet it would be silly to call every line a group. Sirius appears as a clouble star in a few of the most powerful telescopes, but nobody would insist on calling it a dobble star when pointing it out in the night sky.

All this is not so trivial as it sounds. It is easy enough to speak of doublets when leoking at lines which appear single except when viewed in the most powerful spectroscope, and then are resolied into components much closer together than the nearest similar line is 10 ether. Such lines occur not in the spectra of hydrogen and ionized helium only, but in the speetra of sexlium and other elements generally: But the spectroscopist is constantly applying such names as "doublet" and "triplet" and "(quadruplet", and the inclusive name "multiplet" to groups of lines which lie far apart in the speetrum, with scores of others intervening. Here his function is not to split apparent lines into narrow groups, but to unite widely-satattered lines into wide groups. This he does not because of propinguity of the lines, but because of resemblances or analogies or fixed intensityrelations between them, or becanse he linds it possible to construct a serics of such groups with illentical frequency-differences between corresponding lines within them, or because of analogies with other elements with more perspicuous spectra, or theoretical predictions, or intutions or clairvoyance. Croups such as these are not generally termed lines, except in very abstract discussions; it is difficult to call a group a line, when it is clearly resolved by any instrument worthy the name of spectrosenpe. But they are like the lines of the Balmer series, treated as entities berause their lines are believed to share some deeply fundamental quality in common.

What I have said about lines and groups of lines is transferable in aulstance to stationary states and groups of stationary stattes. What we had originally called the levels of hydregen and ionized helimm, with their energy-values $-R h^{2} n^{2}$ and $-1 R h^{\prime} n^{2}(n=1,2,3 \ldots)$. were resolved into groups of levels in order to interpret the fine structure of the lines. But owing to the propinquity and to certatin
numerical relations of the levels in a group, and to certain qualities of the transitions between them, it was felt that the levels of each group share some deeply fundamental quality in common. For this reason we used a system of classification in which each level is represented by two symbols, one for its group and one for its place in its group; and we numbered the levels in succession, not 1 and 2 and 3 and 1 and 5 and so forth, but 1_{1} and 2_{1} and 2_{2} and 3_{1} and 3_{2} and 3_{3} and s forth. Interpreting the groups of lines in the spectra of sodium and other atoms, we infer groups of levels. The levels in (n) of these groups are often far apart. They may be eighteen or more in number, other levels may lie between; but hy reason of the resemblances between the lines whence they were inferred, by reason of certain numerical relations between the levels themselves, they are beliesed to have some deeply fundamental quality in common. If this is vague, so also at times is the interpretation.

The statements in the foregoing sections about the stationary states of sorlium are now to be understood as relating to groups of stationary states. It is the groups of stationary states which are arranged in parallel columns, designated by numerals k, such that no transition takes place unless in it k changes by one unit. It is the group of stationary states which is marked by a pair of numerals, one to designate its column and the other its place in its column; or by a letter to designate its column and a numeral to designate its place in its column. It is the group of stationary states which is denoted by $\left(3_{2}\right)$ or $(1, s)$ or $(\overline{5}, d)$.

To denote a particular stationary state we must add, to the symbols for its group, a third symbol for its place in its group. This symbol is generally a numeral, hung on as a subseript to the letter designating the column (thus: $\left(2, p_{1}\right)$ and $\left(2, p_{2}\right)$) or as an additional sub)script to the two numerals (thus: 3_{21} and 3_{22}). ${ }^{21}$ The most common general symbol for this numeral is j. Geometrically, the stationary states may be represented by lines or dots arranged, not in one row of several parallel columms is in Fig. 7 , but in several rows of parallel columms. Readers with three-dimensional imaginations in good working order may develop this idea ad libitum. The systems for assigning the values of j are shifted around every few months to correspond to new atom-motels, and are scarcely worth memorizing.
${ }^{21}$ The notation suggested by Saumders and Russell, evilently in concord with a number of other experts, is huilt in this way: Designate the column to which a group belongs by the letters suggested in section $E .5$, capitalized ($i, c,{ }_{c}, S, P, D, F$, $6, H$ for $k=1,2,3,4,5,6)$; write the serial-number of the group before the letter, and append the value of j as at sulsoript to the letter. If it is desired to state what sort of a system (ef. section $1: 10$) a level belongs $t 0$, one may add an index to the left of the letter and above it.

The best of them, however, are aljusterl an ats to express a new and deditional selection-principhe, which is coegual with the wher selece-tion-principle we met af few pages abose.

This principle is derivel in the some way as the lirst one. The groups of lesels are established by inference form the groups of lines: then arrows are drawn from exery level to every other, the corresponding spectrum-lines are sought, and most of them are not foume. Some of these misang lines are those which would contriwene the lirst selectinn-primeples as they correspond to tramsitions in whish the numeral k changes by more than ome unit, or not at all. P'utting theree dside, there are still a momber of missing lines, to which the first selection-principle has offered no objection. Now it is found possible to chonse the momeral j in such a manmer that the only transitions which correspond to actural spectrom lines are those in which j changes loy one unit or not at all $(\Delta j=0, \pm 1)$. Furthermore it is possible tor adjust the values of j in such a manner that the lines corresponding to transitions, in which j is initially zero and remains unchangerl, are missing.

This is the selection-principle for the inner quantum number; for the numeral j, when adjusted in this manner, is known as the inner quantum number. This again is a name imposed by theory and not hy the data of experience.

As the twn selection-principles are effective concurrently, the pair of them may he fused into this one

Of the three numerals n, k and j , which specify a slationary state completely, two (k and j) may be so chosen that the only transitions which correspond to actual lines are those in zuhich: first, $\Delta \mathrm{k}= \pm 1$; second, $\mathrm{J}_{\mathrm{j}}=0, \pm 1 ;$ third, j is not zero both before and after the transilion.

This complicated rule is evidently the sign of some very important principle, the full nature of which thus far esapes us. It will probablyscem difticult to grasp and tix in mind: but difficulty of this sort is likely to abound in the physics of the near future. Not so many years ago the physicist's path lay among differential equations; the defter he was in integrating hard specimens of these, the better he was fitterl for his profession. I should not care to say that this is no longer true; but he will probably have to cultivate a sense for problemss such as this.

It remains to give some idea abont the number of stationary states in the various groups. For sorlium, as lait out in Fig. 6, the groups in the s-column are merely single levels (this suunds like a contradiction in terms, but may be borne for the sake of the generality); the groups in the other columns are pairs of levels, or "doublet terms."

This is the common character of the alkali elements Li, Na, ズ, Rb and Cs, which occupy the first column of the periodic table; probably also for the noble metals which share this column, but the data are few. For elements of the second colmm of the periodic table there are two complete systems of stationary states, each having its own s-column, its own p-column, its own d-column, and all the rest. In one system, all the groups in every column reduce to single levels; it is a singlet system; in the other, all the groups in the s-column are single levels, all the groups in the other column are triads of levels or "triplet terms;" it is a "triplet system." The complexity" mounts up stage by stage as we cross the periodic table of the elements from left to right, and soom becomes terrific.

E 9. Effect of Magnetic Field on the Stationary States

When a magnetic field is applied to a radiating gas, most of the lines of its spectrum are replaced by triplets (Fig. 9), or by even richer groups of lines (Fig. 10). By a somewhat loose usage the lines are said to be resolved into three or more components. This is the "Zeeman effect." There is a multitude of empirical rules about these components, their spacings, the way in which their number and their spacings vary from one line to another, and other features. According to the new fashion, however, we focus our attention not on the component lines, but on the stationary states which are inferred from them.

The effect of a magnetic field may be described hy saying that it replaces each stationary state (with a few exceptions) by two or more new ones. laach of these new states requires four symbols to designate it; the symbols n, k and j for the original stationary state, and a new symbol m to denote its place in the resulting groun. As heretofore, when every stationary state is connected wibh every other by an arrow and the corresponding lines are sought, it is found that some of the lines are missing. Still another selection principle is therefore to be sought, and the values of the new numeral m are to be so adjusted if possible- that the selection-principle can be read easily from them. When so adjusted m is called the magnetic quantumnumber.

In certain cases the empirical rules for the components whereby the magnetic field replaces the individual lines are simple; and the clerived rules for the new stationary states which arise out of the original ones when the magnetic field is applied are correspondingly simple. These are the cases of "normal" Zeeman effect (the adjective "normal" may be an entirely misleading choice). Let $\lrcorner U_{m}$
reprement the energ-tlifference between the new stationary state denoteal by the index m, and the original stationary state. The rules are comprised in the formulat,

$$
\Delta l_{m}^{\prime}=m \cdot / I / h
$$

and in the erelection-principle. In the formula $I 1$ stands for the magnetic lied. ω is a factor equal within experimemal error to e $1 \pi \mu \mathrm{r}$ ($\mu=$ matso of the eleotron) and commonly idemified $\mathbb{1}$ ith it. m hat $t w o$ or more whese spaced one unit apart (for instance, 1 and 0 , wr ! !and - $\frac{1}{2}$, or 1 and 11 athl -1).

The selection principle is as follon-: The only Iransitions which correspond to actual limes are those in ahich m changes by anily or not

1.is. 9 Eifect of magnetic fiedd on spectrom lines. (1 '. \%eman, Journal of the Franklin Institute)
at all: $\Delta \mathrm{m}=\mathrm{O} \pm 1$. This is the selection-principle for the magnelic quuntum number.

If we allow m to assume only iwo values, this principle be come nugatery. If on the other hand, we adopt the principle, m can assume any number of blues whatever, provided only they are spared at meit

Ig. th-More complicated effects of magnetic fields on spectrum lines. P. Zeeman, i.c.
intersals; it makes no difference with the olserved lines whether there are (w) or two humberl new stationary states for every original one. This is comsenient for theorizing. In dealing with the Feeman effect in general, and not merely with theoe special "normal" cases, it is necessary to assume that ω is not restricted to the particular value
just given, hut depends on the stationary state in question; and that m depends on the value of j for the stationary state in question.
lery strong magnetic fieds treat a group of stationary states as if they were one single state as if they were first all fused tugether into one, and this one then resolved according to equation (δ). This is the Paschen-Buck effect. It evidently means a great deal.

The light emitted from a gas exposed to a magnetic liedel is polarized. Some of the new lines are circularly polarized about the direction of the magnetic fied as axis; whers are plane-polarized, with the electric vector parallel to the direction of the magnetic lield. The lines corresponding to transitions in which m changes hy one unit are all polarized in the former way; the lines corresponding to transitions in which m does not change are all polarized in the latter way.??

E 10. Interrclations of Multiplets and Zceman Effed

1 insert this section chicfly for the bencfit of such readers ats may be preparing for a thoroughgoing study of atomic theory: Others may do well to pass it ower, as the statements it contains can scarcely be apprehended with any vividness, except by the aid of pencil and paper and loours of reiteration. For those who omit this section 1 will merely say, that the material described in it goes far to show that the numerical salues which we have been assigning to k and j are not quite arbitrary, but are determined by something fundamental; although the ones heretofore assigned are not necessatrily the most expressive.

1 begin with a description of the varions known systems of stationary states, comdensed into Table [11. To make this table clear 1 will explain the fourth line; this line contains the atatement that a "quartet system" of stationary states consists of an s-eohmm of single levels, a p-column of groups of three levels cach, and a d-column, an f-colamm, and additional columms of groups of four levels each.
T.181.1: 111

Name of System	s	p	d	f	f^{\prime}	$f^{\prime \prime}$
Singlet	1	1	1	1	1	1
Boniblet	1	2	2	2	2	2
Tripler.	1	3	3	3	3	3
Suarter	1	3	4	1	4	1
Duintet	1	3	5	5	5	5
sexter	1	3	5	6	6	0
septet	1	3	5	7	7	7
thetes	1	3	5	7	8	s

[^95]

 of the fifti columen proseso theore and asevert st stem in addition:

 system and in delition at triplet system. It is inferex that clementof the fourth collom" possess these two and a duinter system in adrlitions rements of the sisth column, these there and a spetet system: elements of the eighth, these four and at mane system. These inferences hade been partially werifed. Fior thamium, in the fourth column of the prexislie table, the triplet and quinter systems have leen discowered; for vanalimen (lith column) the quartet and sexter; for chromitum (sivth) the quintet and septet; for manganese (sevonth) the quartet, sevtet, and octet; for iron (eighth) the triplet, quintet, and septet. Apparemtly is by no means cortath that the momentioned shatems are really missing, as the dithe uhties of analyaing these comples spectra are terrific.

There are certain rales governing the number of levels in a group, and the effect of a magnetic field upon these levels. These rules were discosered chiefly by Lanele; I give them in his motation. I recall, to begin, that we have designated each group of levels by a numeral k. which is 1 for all the groups in the s-columt, 2 for all groups in the p-column, 3 for all groups in the d-column, ame so forth. We have further distinguished the elifferent levels in a group by assigning them different values of another numeral j; the manner in which these values of j are chosen was described in section Ex. Landé introfuces a numeral K which is smaller than k by $\frac{1}{2} ; K$ thus is $\frac{1}{2}$ for all groups in the s-column, $1 \frac{1}{2}$ for all groups in the p-column, and so forth. He also introfluces a numeral J which is greater than j by $\frac{1}{2}$; and a numeral R which is $\frac{1}{2}$ for every level belonging to a singlet system, 22 for every level belonging to a doublet system, 32 for wery level belonging to a triplet system, and soforth.

These are landés rules:
(1) The total number of levels in a group characterized by the numeral K, belonging to a sysem characterized by the numeral R. is twise the smaller of the two numerals R and K (that is, it is $2 R$ if $R<K ; 2 K$ if $R>K$; $\because 2 R=2 K$ if $R=K$).
(2) In the formala ($($) for the Zeemam effect, the factor ω is equal 10 e \quad imer muttiplided by a factor g, which depends on the numerals R, K, and J for the level in quemtion in the following manner:

$$
\begin{equation*}
g=3 \prime 2+\left(R^{2}-K^{2}\right)^{\prime} 2\left(J^{2}-1\right) \tag{9}
\end{equation*}
$$

(3) In the same formula, the magnetic quantum-number m depends on the numeral J for the level in question; it assumes $2 J$ values altogether, commencing at the maximum value $\left(J-\frac{1}{2}\right)$ and going downwards across zero to ($-J+\frac{1}{2}$).

These rules form a beautiful little problem for the designer of atom-models. They have often been tested and verified (it is not easy to find out just how far), and at present are widely used in the deciphering of spectra. It appears, however, that some spectra-particularly those of the inert gases - are too complicated even for these rules, and porsess a structure even more elaborate. Considering how difficult it is 10 grasp the structures already described, one may be excused for feeling some dismay at the prospect.

E 11. Effect of Electric Field on the Stationary States

When an electric field is applied to a radiating gas, the lines of its spectrum are replaced by groups of lines, often rich and complicated.

Fig. 11 - Resolution of spectrm-lines into groups, displacement of lines, and emergence of missing lines, produced ly a strong electric tield (increasing from the top downwards to nearly the bottom of the picture). (J. S. Foster, Physical Retiece)
(Fig. 11.) Firom these we infer, as hereofore, that the stathonary states are replaced by groups of stationary states. The atom-model propered for hydrogen and iomized helimm has been extractinarily surcessfal in describing the effeet of electric held upon their spectrat,
and therefore I shall violate the rule I hase heretosore followed, and pristpone the deocription of the phemomena until the theory is stated. Deoms of other kinds are affeeted in at least two ways; the stationary states are displaced, and the "misoing lines" are evoked, an I hase said already:

E 12 Intensity-Ralios

The relative intensities of the various lines of a doublet, or triphet, or multiplet are often equal within the (fairly large) uncertainties of mesturement to simple ratios, such as $1: 2,2: 3,3: 1$. This happens tox often to be easily put down as a mere coincidence, and indicates, that the occurrence of transitions is governed by simple laws. Our selection-principles are themselses indications of the same type, since they mily be taken as signifying that the intensity-ratio of certain lines to certain others is zero. This problem may be more difficult than the ones I have stressed hitherto, since each line involves two stationary states and is not a quality of one only. This applies to other properties of lines, such as their sharpness or diffuseness.

E: 13. Excilation of Indizidnal Frequencies

So long as an attom is conceived as a belfry full of bells of various pitches, it would probably be argued that a shock to the atom would set all the bells to jangling, and a gas bombarded by electrons would emit all of its natural frequencies if any. The interpretation of -pectra to which these pages are devoted leads to a very different idea. A spectrum-line of frequency ν is emitted when the atom passes from a stationary state B to a stationary state A. The energybalue of state B loy itself does not eletermine ν; this is controlled by the difference between the energy-values of B and. 1 , which is $h \nu$. But the energy-value of B has evarything to do with whether or not the frequency v is emitted under given conditions; for it will not he emitted at all unless the atom is first put into state B. If the gats is hombarded with electrons of energy insufficient to raise an atom from its normal state to state B, then the line in question, and all of the other lines which result from transitions from B to other levels of lower energy-value, will fail to appear. If the energy of the electrons is raised past the critical value (the difference between the energyvalue of B and the energy-value of the normal state) all of these lines sudelenly appear.

This is illustrated by Fig. 12, relating to magnesiun. An electron striking a magensium atom and having an energy equal to 3.2 épuisa-
lemt rolts is able to put the atom into a particular excited state; the atom emits ratiation of wavelength 4571 in returning to its normal state. Toset the atom to emit another sort of radiation, the electron must pussess $6 . . \overline{5}$ equivalent volls to put it into another excited state. Any excited state can be reached if the eleetron hats 10 equisalemt volts to pass wer to the atom.

In a gas sustaining an electrical discharge, the atoms are sulbject to stimuli of suth variegated force and type that the distinctions. between clifferent lines are not so clearly marked: Int it can be seen

Fig. 12 Surcessive exeitation of lines requiring electron-impacts of successively greater violence to bring atoms into the newssary initial states. (Foote, Meggers, and Mohber, Philosophical Mugazines
that mild discharges favor lines for which the initial lese is adjacemt or close to the nommal level, while other lines require a more violent stimulus. Furthermore, when a gas is steadily heated to higher and higher temperatures, various lines of its spectrom appear in more or lesis the order of the stationary states which are the initial states of the transitions responsible for these lines. Accordingly a "temperatture classification" of speetrum lines hats Deen developed at Monnt Wikson Ohservatory and elsewhere, and is valuable in deciphering intricate specta.

E:14. Absorplion-Spectra

An atom which will emit a frequency ν when it is originally in a state B amd passes ower into at state A, will absorb light of the same frequency if it is initially in the state A. This hats the important conseguence that the lines which a gats absorbs, when lying at rest and mexcited, are thome which it emits in passing from any and every other state into the normal state. The lines emitted when an atom passes from one of its stationary states into another which latter is not the normal state, are not alnorbed by the gas lying quiescent and undisturber. For this reason helimm and neon and argon are quite transparemt to atl visible light, although they have many emission-
limes in this region of the -pertrum; for eash of the ere lines corre

 off in the uleraviolet. But if such a gas is mate the theatte of a self--astaining dectrical diacharge, the other line likewime are dhorlaylfor the diadharge puts the alome of the gate lemporarily but frepuently into various abormal states. This incilentally is ouse of the hits of eviflence that ath .ttom moy sejourn for a linitely long time in ancther stationary state that the mormal one. If the gats is heated. the some effert oreturs; for the siolent collisions between atome in a bote gas exemsomally bring atoms into exciterl states.

By observing the aborption-spectrum of a quiescent gas one learns which lines in the emis-ion-spectrum corresponet to transtions into the normal state a valuable piene of information in the cases of elements of which the spectra are complicated ame obscure.

I: $1 . i$. Spectra of Ionized Aloms

In at vislent electrieal diacharge, surh ats a spark, the gits emits many lines which cannot he litted into the systen of series of the usat -peretom of the gas. Thene maty also be produced by bomhareling the gan with electrons ponsessing more than enough energy to ionize its atoms. They are believed to emanate from iomized atoms, or from atoms deprived of one dectom. The spectrum of ionized-helium has been very important in these pages. In very violent sparks many more lines emerge, and these are asometated with atom- deprived of two, three, or even more electrons.

The spectrom of the ionizer atom of an element resembles, in its system of series, and in more minute detats, the sperterme of the neutral atom of the element precerling it in the perioxlic sysem. The spectrum of an atem deprisey of n electrons resembles the spece trum of the neutral atom prereding it by n placen in the periotio - stem . This confirms the belief that the spectrom and the other properties of an element are etetermined chielly by the number of electrons which its atom contains.

E1t. X-ray Specira

The difference between the \mathbb{X}-ray spectea to which we now come, and the "optical" spectra which we have beet rliscussing seemed proforund and sital in the era of very defective kanwledge, but it has faded steadily awoy with the deepening of understanding. Twelve or fifteen years age the contrast wats multiform and very sharp; for
the sptical -pectra were produced chiefly by maintaining an electrical discharge in a gas, the X-ray spectra invariably by bombarding a solid body with exceedingly fast-moving electrons or with other X-rays; the uptical frequencies could be diffracted and refracted. the X-rays not at all or almost imperceptibly little; the optical frequencies were all inferior to 3.10^{15}, the \mathbb{X}-ray frequencies all clearly. more than a thousand times as great. Since then, rays of almost all the intermediate frequencies and with intermediate moperties have been generated in a variety of ways, and the distinction is no longer trenchant, except between the extremes. To make it so, one must seek a thenretical reason -and perhaps there is none to be found.

There is, however, apparenty good ground for introducing a theoretical distinction. I have pointed out heretofore that the energy which an atom loses, when it radiates one of the lines of its "optical" spectrum, is less than the ionizing-entrgy. Or, turning this statement around and amplifying it a little: the energy which an atom alsorbs, when it absorlss one of the rays of its uptical spectrom, is less than what is reguired to detach the lonsest electron from it. Therefore it is possible tor assume, at least as a trial hypothesis, that the energy is spent in lifting the lonsest electron partway out-a hypothesis fortified by the fact that, when the atom has just aborbed some energy in this manner, the electron can le detached by supplying the atom with enough extra energy to bring the total anomnt up to the ionizing-energy. But if we take one of the typical X-ray frequencies, and multiply it ly h to ascertain how much energy the atom gains in the process of absorhing that frequency, we lind that the quantity $h v$ exceeds the isnizing-energy tremendously: This circumstance makes it quite out of the question to imagine that the X -rays are due to changes in the position or the motion of the lensest electron alone. We may therefore deline the X-ray frequencies as those which cannot be explatined as dae to transitions of the loosest electron, from one motion or position to another, unaceompanied by other changes. By this delinition, every frequeney v for which the quantumenergy $h y$ is greater than the ionizing-energy, goes into the X-ray -fectrum. For the remaining frequencies the question is more dubions, perhaps never quite to be settled unless and until complete theoretical classilication of atl the lines is attained. In this section, however, I shall speak only of frequencies hundreds or thousands of times greater than the ionizing-frequency.

Cataing upon typical X-raty emission -yectra one sees that they consist of groups of lines with wide intervals between. Going from higher frequencies towards lower, the groups are known successively
as the K group, the L group, the $/ /$ group amb the N gronp. The worl series is more commonly bised than group; but this is a misformane, for it atgeests a dangeromsly misleading amalogy with the sories in the eptical spectra which we hase stulied with so much care ${ }^{33}$ The prosens of measuring these lines duld dassifying them

Fig. 13 Jiagran of stationary shates designed to account for the X-ray spectrum of uranimm. (from Sieghahn, after Coster)
was carried out after the disemination of Bohr's great idea that each line-frequency should tee multiplied by h and the product interpreted as the difference between the energy-values of two stationary states of the atom. The complete analysis of an X-ray spectrom

[^96]thus culminates in a diagram of stationary states, as for the optical spectra.

Such a diagram is shown in Fig. 13, which is for an element far up in the perioxic system, therefore with a rich system of X-ray lines and stationary states. In comparing it with one of the diagrams made for optical spectra, it must be remembered that its scale is (fnormonsly more compressed the distance from top to bottom corresponds to about one hundred thousand equivalent volts. Fach line in the X -ray spectrum corresponds to an arrow between two of the levels, but not every arrow corresponds to a line. Agatin there is a selection-principle, and this selection-principle is partly expressed ly. attaching a double index to each of the levels. When the indices are assigned as in Fig. 13, transitions between levels for which the second numeral differs by one mit include the only ones which actually oecur. But this is not the complete selection-principle; it is necessary wadd that in any actually occurring transition, the first numeral must change by one or more units: and further, that transitions may occur only between levels to which different letters are attached. The first mmeral is designated by n, the second by k; they are called the total and the azimuthal quantum-number.

The levels are also frectuently known by letters with subscript numerals, as the diagram shows. The letters by now are prette definitely fixed, but the subseripts are still being shutted around. The notation for the \mathbb{X}-ray lines is in a terrible state.

A curious and evidently important feature of these levels is, that When an atom is put into any one of them say into the K level, or the L_{1} level, or the L_{2} level it extrules an electron. Or, in other words, each of these stationary states is a state in which the atom lacks one of its electrons-like the "ioniaderatom" state from which we previonsly measured the energy-values in dealing with the optical spectra. All of them, at least the highest ones, are in fact "ionizedatom states." Since however, they are all differenc, it is natural to suppose that a different electron is missing, or that an electron is missing from a different place, in each of the different cases. Apparently an atom camot enter into a stathonary state with so high an chergy, and remain neutral.

He must panse to consider from what standard state the energyvalues of these stationary states are measured. In the previous case of the optical spectat, the encrey-talues of the stationary states were measured, so to speak, dozemzerds from the state of the ionized atom to the normal state of the nentral atom: the energy of the ionized atom was set equal to zern, that of the neutral atom in its normal state
then had a certain megative salne, all the other energe-s alses were negatise and scatterefl between these two. In this cate of the X-ray -reetra, the energy-alaes of the stattonary states ate measured upreterds from the mormal state of the netutal atom, whith the energy-value zero is assigned, while all the other eonergies are pesitive In lig. 13 this zero-line must be imagined just under the lewel marked P.

The exart position of this zero-line for the high energy stationary states is not sery acourately known; although the distance between . \quad Iny two levels is determined with all the tsalally very great exatetude of X-ray waselength-measurements, the distance from any level to the zero-line is uncertain within a few tens of volts. This uncertainty is not great enough to be important when dealing with the high-frequency X -rays.

This proint being attended to. we are now in position 10 consitler the striking difference between X゙-ray emission-spectra and X-ray absorption spectra striking indeed when one looks at typial photographs, apparemtly altogether a different matter from the contrast between optical emision-spectra and optical abserption-spectra, yet in principle very moth the stme thing. In dealing with optical spectra, 1 remarked that while an atom may absorb any frequenty which it can emit while the complete abourption-spectram of a gas is iflentical with its complete emission-spectram, yet the absorptionspectra one ordinarily sees comtain only a small selection of the emis-sion-lines. This oceurs becanse when a gas is being examined for its aboorption-spectrm in the laboratory, by sending light throngh it, it is generally in an untroubled and quiescent condition, each of its atoms being in the normal state; therefore it absorbs only such frequeneies as provoke transitions from the normal state to the varions excited states, and not such freguencies as would induce transitions from one excited state to another, for few or none of the atoms are in any one of the excited states to start with. Such also is the case with the X-ray spectra. Quiescent atoms absorh only such X゙ray freguencies as produce transitions from the normal state into one of the stationary states designated liy K, or L_{1}, or L_{2}, and so forth they do not absorb such frequencies as would proxluce the transitions. from L_{1} or L_{2} to K, for instance, for the atoms are not initially in the states L_{1} or L_{2}. This is quite the same behasior as is obsersed in the response of atoms to ratiations in their optical spectra. It is much more pronounced, however: for, while it is possible to make a gas absorb) frequencies which produce transitions from one excited state (t) another, by maintaining the gas in a state of intense electrical
excitation, this has never been done with metals or gases exposed to X-ray frequencies.

Atoms therefore do not absorb such X-ray frequencies as are represented by the downward-pointing arrows in Fig. 13. They do absorb, such frequencies as would be represented by arrows drawn from the very bottom of the diagram - a little below the level marked P up to the varions levels; and (it may seem, unexpectedly) they also absorb frequencies somewhat higher than these. This however does not mean that the atom may be put into an excited state of higher energy than the K state, for instance; it means simply, as direct evidence proves, that the extruded electron receives the extra energy and goes away with it. Owing to this fact, the X-ray absorption-spectrom consists not of sharp absorption-lines at the several frequencies corresponding to a transfer of the atom into the K-state, the L_{1}-state, and so forth, but of continuous hands commencing with sharp edges at these frequencies, and trailing ont gradually towards higher frequencies.

Another curions feature of the \mathcal{X}-ray spectra is that transitions from the various excited states of high energy-vahes, such as the K-state and the L-states, directly into the normal state, apparently do not occur.

E 17. Band-spectra

Band-spectra are the spectra of molecules, that is to say, of clusters of two or more atoms, such as appear in certain gases. This is proved by the fact that they are displayed by gases which are known in other ways (gramme-molecolar volume, specifie heat) to consist of molecules; ly the fact that the band-spectrum of such a gas disappears when the gas is heated to the point where its molecules are dissociated into atoms; and by the general successfulness of the quantitative theory based on the assumption that they are due to molerules. Oecasionally band-spectra are displayed by gases which are not otherwise known to contain molecules, such as helimm and potassinm; it is supposed that they are due to molecules ton few to be deterted by the wher accepted methoxls. Usmally they are easy to distinguish at first glance from the optical spectra of atoms, ahthough there are exceptions, such ats the band-spectrum of the hedrogen molecule. Like the epeetrat we have discussed, they consist of lines; the term "land-spectrum" describes the manner in which these lines are grouped. Agatin like the spectra we have disenssed, they are analyed according to Bohr's fundamental principle, by
interpreting the lines as the results of transitions between stationary states.

F. Mandetic Monents of Аtoma

Of the enormots and chaotic variety of facts about the magnetiproperties of materials, whly a few of the least conspicuons hatse been serviceable to atom-builders; the motorious ones have helped very little or wot att all. The famous and characteristic magnetic properties of iron, nickel, cobalt, depend on the arrangement of the atoms and on the temperature of the metal, and cannot safely be attributed to the atoms themselses. Diamagnetism, an inconspicums and rarely-mentoned quality of certain elements, is in stme instances quite independent of temperature, and maty well be a property of the atoms. P'aramagnetism, an almost equalty incomspicuous quality of certain other elements, depends on temperature, but in such a way that it may sometimes be explatined by assuming that each atom has a characteristic magnetic moment, the same for all the atoms of a substance. The value of this magnetic moment of the atom may be calculated from measurements on the paramagnetism of the substance; the proces of calculation involves certain assumptions, at least one of which is at the present upen to guestion.

Direct measurement- upon the magnctic moments of certain atoms are now being made by Gorlach; and they are among the most important achevements of these years. In a small electric oven, a met.al such as silver is vaporized; a beam of the outflowing atoms, passing through a small orifice in the wall of the oven and through others beyond this one, eventually travels across a strong magnetic field with a strong fiedd-gradient and fatls upon a plate. Suppose that each atom is a har-magnet, oriented with its length parallel to the magnetic field. If the field were uniform, the bar-magnet would not be deflected, it would travel across the field in a straight line: for although its north pole would be drawn sidewise by a force, its south pole would be pushed by an exactly equal force in the exactly opposite direction. That the atom may be drawn aside, the field must be perceptibly different at two points as chose together as the two poles of the magnet. When one considers how small an objeet the atom is, it is clear that the field must change very rapidly from one proint of space to another, its gradient must he enormous. Gerlacin succeeded in contriving so great a magnetic liell with so great a gradient that the beam of flying atoms was perceptibly drawn aside. The most-feflected atoms are those of which the magnetic anes are most nearly parallel to the magnetic fiedd. From their deflections,
the field, and the field-gradient, the magnetic moment of the atom can be computed very simply. The values thus obtained are of the orter of $10^{-10} \mathrm{in}$ CGS units.

I shall comment in the second part of this article upon other inferences from these experiments, which are as valuable as the experiments upon the transfer of energy from electrons: to atoms. At this point it is sufficient to realize that these experiment - prove that atoms, or at least the atoms of some elements, possess magnetic moment. If magnetic moment is due to electric current Howing in closed orlits, as Ampere and Webler guessed a century ago, the atom must be supposed to contain such currents; if the atom consists of a mucleus and electrons, some at least among the electrons must be supposed to circulate. And if the electrons are assumed to circulate in a particular manner the magnetic moment of the atom so designed can be computed, and thereupon tested by experiment.

This completes the list of the phenomena, the properties of matter, which are used in designing the contemporary atom-model. Nobody will reguire to be comvinced that it is not a list of all properties of mather, nor of all phenomena. These are not among the obvious and familiar qualities of matter; and no one meets any of them in everyday life, mor perceises any of them with his unaided senses. They are phenomena of the ladoratory, discovered after a long and painstaking development of laboratory technique. Lucretins did not know them, and they were inaccessible even to Newton and 10) Dalton. They are a sery limited selection from among the phenomena of nature, but not for that the less important. The atommotel which is devised to explatin them is at best a partial atom-model; thus far it serves for mother phenomena than these, hut these it does interpret with an clegathee and at comperence quite without precedent among atom-morels. I have said that some of these phenomena are explained by conceiving ant atom made of a positively-charged nucleus and a family of ceetrons aromad it; but this conception is not tenable if mmodified. It can be modified so at to interpere the rest of these phenomena; but this means little by itself. The important fact is this, that the merfifications which are clemanded appear in some abes to be endowed with a beanty and a simplicity, which indicate that they are the expressions of an underlying principle of Nature. To these the following article will be devoted.

Transatlantic Radio Telephone Transmission '

By LLOYD ESPENSCHIED, C. N. ANDERSON and AUSTIN BAILEY

 massion across the Athatie over a period of about two vears. The primeipal conelusions which the datas seem to justify are its follows.

1. Solar radiaton is shown to $1 \times$ the controlling factor in determinng the diurnal and masonal variations in signal fiell. Transmission from east to west and west to cast evhibit similar charateristics.
2. Iransmisaion in the region lurdering on the division lat ween the illuminated and the darkened hemispheres is chatacteriad hy increased attern.thon. This manifests iterelf in the sunset and sumrise dips, the derrease in the persistence of high night-time values in smmmer and the derrease in daylight values during the winter.
3. Whtinite correlation has theen found between aboormal radio transmission and disturlanees in the earth's magnetic fiedd. The effect is to decrease greatly the night-time field strengith and to increare slighty the daylight values.
4. The limit of the high-night-time value of signal fiedd strength for Iransathatic distance is essentially that given by the laverse Distance Law. The momal daylight field strengths obtained in these tests can be "troximated by a formmata of the same form as those earlier propesed hut with semewhat different constants.
5. The major source of long wave static, as received in both England and the L'nited States, is indicaterl to be of tropical origin.
6. In general, the static noise is lower at the higher frequencies. It night the decrease with inerease in frequeney is expenential. In day-time the elecrease with increase in frequency is linear in the range of 15 to 40 kilocycles. The difference between day and night static is, therefore, apparently due largely to daylight attentuation.
7. The effect of the static noise in interfering with signal transmission, as shown ley the diurnal variations in the signal-to-noise ratio, is found to be generally similar on both sides of the Itlantic.
X. lixperiments in both the I nited States and England with directional reviving antennas of the wave antenna type show an average improvement in the signal-to-static ratio of about 5 as compared with lonp reception.

IT will le recalled that something over two years ago, experiments in one-way radio telephone transmission were conducted from the 'onited States to England. 2 In respect to the clarity and uniformity of the reception ohtained in Europe, the results represented a distinct advance in the art wer the transatlantic tests of 195. However, they were carricd out during the winter, which is monst faworable to radio transmission, and it was realized that ant extensive favorable to radio transmission, and it was realized that extensive study of the transmission obtainable during less favorable timewould the required before the development of a transatantic ratho telephone service could be undertaken upon a sound engineering basis.

[^97]Consequently, an extended program of measurements was initiated to disclose the transmission conditions obtaining throughout the twenty-four hours of the day and the various seasons of the year. The methouls used in conducting these measurements and the results obtained during the first few months of them have already been described in the paper previnusly mentioned. The results there reported upon were limited to one-way transmission from the L'nited States to Eingland upon the velephone chamel. Since then the

Fig. 1
measurements have been evtended to include transmission on several frequencies in each direction from radio telegraph stations in addition to the 57 kilocyeles emplosed by the telephone chamel.

The present paper is, therefore, in the nature of a report upon the results thus far ohtained in work currenty under way. It seems desirable to make public thene results becalase of the large amount of valuable data which they have already yeded, and because of the timely interest which attaches to information bearing upon the fundamentals of radio transmission. The carrying on of this extemsive measurement program has been made possible through the comperation of engineers of the following organizations: in the l'nited States The American Telephone and Telegraph Company and the Bell Telephone Laboratories, Inc., with the Radio Corporation of America and its Associthed Companies; in England-The International W'estern Electric Company, Inc., and the British Post Office.

ME:M RIMENI Pronor.MM

The seme of theme trathathatic experiments is shawn in Fig. I The Briti-h termital atations will bee seen to lie in the vicmity of Lombon and the Smerican stations in the mertheatern part of the Inited states. The l'nited states tranmitting stations are the

Fig. 2-Exterior of Riverhead Radio Receiving Station
telegraph tramsmitters at Rucky Point and Marion, Mans. The measurements of these stations were made at New Southgate and at Chedeny, England. The British transmitting stations utilized in measuring the east to west transmission were the British l'ose office telegraph stations at Leafield and at Northolt. The receiving measurements in the l'nited states were initiated at (ireen Harlour, Maso, and continued at Belfast, Maine and Riverhead, I.. I.

The Riverhead receiving station, shown in ligs. 2 and 3, is typical of the receiving stations involved in the measurement program. The interior view of Fig. 3 shows the gronp of receising meanurement apparatus at the right and the loop at the left. The three bays of apparatus shown are as follows: That at the left is the receiving set proper which is, in reality, wor receiving sets in one, arrangel so that one may be set for measurements on one frequency: band and
the other set upon another band. The set is provided with variable filters which accounts for the considerable number of condenser dials. The second bay from the left contains voice-frequency output apparatus, cothorle ray wsillograph and frequency meter. The third bay

Fig. 3 Interior Riverhead Station
carries the souree of local signal and means for attenuating it, and the fourth bay contains means for monitoring the transmission from the nearby Rocky Point radio telephone tramsmitter.

The meanurements are of two quantities: (1), the strength of rereised fied, and (2) the strength of received noise caused by static. The particular frequencies upon which the measurements were taken
(given in the thart of Fig. I) lie in a ratge lntwon lis , wat bu ke. The arrows indicate the single fregueney transmisions which wore employed for signal lieht strenget mestarements, these at the loft inditating the fremencien meverl in the I nited States from lingland, and those at the right, the fregtencies received in lengland from the I'nited states. The bhak spates in the chart denote the bands in which the moine medsurements were taten. In general the measure-

Fig. 4 Frecpency distribution of measurements. Black squares denote hand in which noise measurement was taken
ments of both field strength and noise have been carried out on both sides of the Atlantic at hourly intervals for one day of eath week. The data presented berewith are assembled from some 10,000 individual measurements taken during the past two years in the frequency range noted abose. The transmitting antenna current has been ohtained for each individual fied strength measurement and all values corrected to a detinite reference antemat current for each station measured. The data have been subject to careful analysis in order to disclose what physical factors, such ats sunlight and the carth's magnetic field, affect radio transmission.

Meistrimant Methons

Athough it will not be neressary to describe in any detail the type of apparatus employed in making these measurements, as this informattion has already been published, ${ }^{3}$ a brief review of the methods involsed will facilitate an understanding of the data.

[^98]In general the method employed in measuring the signal field strength is a comparison one. A reference radio-frequency voltage of known value is introduced in the loop antema and adjusted to give the same receiver output as that from the distant signal. This is determined either by aural or visual means. Under such conditions equal voltages are introluced in the antenna from local and distant sources, and by calculating the effective height of the loop the field strength of the received signal is determined.

In the noise measurements, static noise is admitted through a delinite freguency band approximately 2,700 cycles wide. A local radio-frepnency signal of known and adjustable voltage is then in-

Fig. 5 -Diurnal variation in sigmal field
troduced. The radio-frequency source of this signal is subjected to a continual frequency bluctuation so that the detected note has a warbling sound. This is done in order that the effeet of static upon speech can be more closely simulated than by using a steady tone. The intensity of the signal is then adjusted to such a value that further decrease results in a rapid extinction. The comparison signal is then cxpmesed in terms of an equisalent radio field strength. Thus the static moise is measured in terms of a defmite reference signal with which it interferes and is expressed in microwolts per meter.

The curses of ligg. it are giow dse example of the lied slrengeth mesurements covering a single day: rim. The corves have been consarneted by eonnecting with straight lines the dotum proints of measurements bakell at houly intersals. It will he evielent that

Fig. 6-Monthly average of diurnal variation in signal fiell! transmission from American stations on various freguencies received at New southgate, Fingland, September, 1923.3
they portray the major fluctuations occurring throughout the day, but that they are not sufficiently continuous to diselose, in detail, the intermediate fluctuations to which the transmission is subject.

Diurnal Varialion. The left-hand curve is for transmission from England to America on 52 kilocycles, and the right-hand one for transmission from. America to England on 57 kilonegles. These curves illustrate the fact, which further data substantiate, that both transmissions are subject to substantially the same diurnal variation. The
condition of the transatlantic transmission path with respect to daylight and darkness is indicated by the bands beneath the curves. The black portion indicates the time during which the transatlantic path is emtirely in clarkness, the shated portions the time during which it is only partially in darkness, and the unshaded portions the time during which daylight pervades the entire path.

The diurnal variation may be traced through as follows:

1. Relatively constant field strength prevails during the daylight period.
2. A decided drop in transmission accompanies the occurrence of sunset in the transmission path between the two terminals.
3. The adent of night-time conditions caluses a rapid rise in field strength to high values which are maintained matil day light approaches.
4. The encroachment of daylight upon the eastern terminal causes a rapid drop in signal strength. This drop sometimes extends into a morning dip similar to, but smaller than, the cevening dip. After this, relatively steady daylight field strengths again obtain.

Three or four curven similar to Fig. is are whained each month. By taking the average of anch curves for the month of September, 1923. the lower curve on ligg. 6 is obtained. The upper curves are for similar averages of measurements mate on the lower frequencies. These curves show clearly that the range of the diurnal fluctuation is less for the lower frequencies. This is because of the lesser daylight absorption.

The mechanism by which the transatlantic transmision path is subjected to these daily and seasonal controls on the part of the sum, would be more evident were we enabled to observe the earth from a fixed point in spate. We should then be able to see the North Atlantic area plunged alternately into daylight and darkness as the earth rotates mon its axis, and to visualize the seasmal variation of this exposure w smbight as the earth revolves about the stur. Photographs of a mosel of the carth shewing these conditions hase been made, and are shown in ligg. 7. The first condition is that for January, in which the entire path is in daylight. The curve of diurnal variation is shown it the pieture and that part which correrponds to the daylight conclition is inticated ly the arrow, In the next position the earth has rotated so that the lomblon terminal is in darkness while the United States terminal is still in diylight. This corresponds to the evening dip, the period of poorese transmission. With the further rotation of the earth inte full night-time conclitions for the entire path, the received signal rises to the high night-time values. These high vahes continte wntil the path approtehes the divlight hemisplere as indi-
cated in the fourth prition. I- the path enters inter smblight, the signal strength drops with a small elip oecurring when sumriae intervenes between the two lerminals.

Siasonal fieration. By asombling the monthly aterage carves for all montha of the vear, the eflect of the seasenal variation on the

a

1.

1

Fig. i signal Field January-Variation with exposure of transmission path to sunlight
diurnal characteristic becomes evident. This is shown in Fig. S, the data for which actally coter two years.

The outstanding points to be olserved in this figure are:

1. The comtinuance of the high night-time valnes throughout the year.
2. The persistence of the high night-time values for a longer periox in the winter than in the summer months.

Fig. 8 -Monthly aterages of diurna! variation in signal field, Rocky P'oint, I. I. $(2 \times S) 10$ New Southgate, England, 57,000 cyeles Ant. Current, 300 Amps 5480 K゙m, 1923-1924
3. The daylight values show a comparatively small range of variation.

1. The extreme range of variation shown between the minimm of the sumset dip and the maximum of the high night-time valses is of the order of 1 to 100 in field strength. This is equivalent to 1 to 10,000 in power ratio.

It will be recalled that the canse of the seasonal changes upon the tarth's surface resides in the fact that the earth's axis is inclined and not perperationtar to the plane of its orlat about the sun. As the earth revolves alomt the sum, the sunlit hemisphere gradually extends farther and farther northward in the spring menths and by the summer solstice reathes well beyond the morth pole, as indieated in Fig. a. As the earth eontinne torevolve about the sun, the sunlit hemisphere receles somthward until at the winter anstice it falls considerably shore of the north prole athd extends correspondingly beyond the sothth pole. Sinee the tramsatiantic path lies fairly high in the morth(ron latitule, it is not surprising that the transmission conditions dis-
 bluence in shifting the diarnal tramomisomen tharateteristie is better shown in Fig. 10. This figure comsists of the sato monthly arotge diurnal curses as are ascombled in lige s, arranged one abowe the wther insteal of side by side.

Fig. 0 Signal Field Jane Night conditions showing proximity of transmissimen path to sunlit hemisphere

Is particular, there should be noted:

1. The time at which the sunset dip oceurs changes with the change in lime of sunset.
2. Similarly, the time at which the morning drop in feld strength orcurs changes with the time of sunrise.
3. The period of bigh night-time values, bounded between the time of sunset in the United States and the time of sunrise in England, is much longer in the winter than in the summer months.

It is also to be observed that, as a rule, full night-time values of signal thed strength are not attained until some time after sunset at the western terminal and that they begin to clecrease before sunrise at the eastern terminal. In other words, the daylight effects appear to extend into the period in which the transmission path along the earth's surface is unexposed to direct rays of the sun. The effect of this is that with the advance of the season from winter to summer the time at which the high night-time value is fully attaned oceurs later and later whereas the time at which it begins to fall off occurs carlier and earlier, until the latter part of April when these two timen coincide. It this time, then, the transmisuon path no sooner comes into the full night-time conditions than it again emerges. As the season further advances into summer, the day conditions begin to set in while the night-time fielel strength is still rising. The proximity to the daylight hemisphere, which the transatlantic path reaches at night during this season of the year is illustrated in Fig. 9.

Fig. 10 Donthfy aterges of fiurnal variation of signal fied, Rocky Point, L. I. (2 X S) to New houthgate, Englanl: 20.8 K .11 . radiated power, 57,000 cycles, 1923-1924
 -1 time is rewhed, drant the midelle of August, .tt which the full nighttime watue are again realized. Beyond this dime they are sustamed for increasing perionta of times. It is of interest to mote that at these two timen of the fear, the lest of Aprit and the midelle of Alggot, direet sublight evists ower the darkened hemisplere some sol kilometers abose the great cirele path.

For all of the conditions noted above, bamely, stmet, shurise, and summer appersoth of the transmissions pats to the morthern houndary of the night hemisphere, the path ties in a region wherein the rathation

Fig. 11-Monthly werages of daylight field strength
from the sun grazes the earth's surfare at the erlge of the sun-lit lemisphere. The (ransmission path alan approaches this region during daylight in the winter months, as will he seen by reference (o) the first position of Fig. 7 for the month of January. The results of measurements for the months of Nowember, December and Jantiary for all of the fretuencies measured show defate reductions in the daylight fiekl strengths. This reduction is evilent in Fig \& for the si-kilocycle transmission, but shows up more strikingly in the curves of Fig. 11. The effect of each of these conditions, in which the trinsmission path approaches the region in which the solat emanation is tangential to the earth's surface, will be olserved to be that of an increase in the transmission loss. The fact that in one instance this
oceurs in daylight would seem to sugeses for its explanation the presence of some factor in addition won sunght, such as electron emission.

Field Strength Formulae. The two major phases of the diurnal variation of signal fiedel strength which lend themselves to possible predetermination are the daylight values and the established nighttime values. As to the night-time values our data show, within the limits of experimental error, that the maximum values do not exceed that defined by the inverse distance law. This fact seems 10 support the viewpoint ${ }^{4}$ that the high night-time values are merely the result of a reduction of the absorption experienced during the daty. Fig. 11 presents the monthly awerages of the daylight field strengths for the varions frequencies on which measurements were taken. The chart at the left is for reception in England and that at the right for reception in the United States.

The difficulty in predicting loy transmission formulae, values to be expected at any one time wilt be evident and the best that can be expected is to approximate the average. The formulae of Sommerfield, Austin-Cohen and liuller take the form

$$
E \mu \hat{\mathrm{i}}^{\prime} / M=\frac{3 \pi \Pi I I I}{\lambda I} e^{-\frac{\alpha D}{\lambda^{x}}}
$$

where the coefficient $\frac{37 \pi I I I}{\lambda I}$ represents the simple llertzian radiation field and the exponential $e^{-\frac{\alpha D}{\lambda^{*}}}$ the attennation factor. From theoretical considerations, Sommerfeld (1909) gave $\alpha=.0019$ and $x=13$. In the Austin-Cohen formula α is given as .0015 and $x=\frac{1}{2}$. Fuller gives $\alpha=.00 .45$ and $x=1.4$. The Austin-Cohen formula was tested ont experimentally chicfly with data sbtained from the Brant Rock station (1911) and from the Arling(on station by the U.S.S. Salem in February and March, 1913. Fouller derived his .00\%) value of α from 25 selected whervations from tests lietween San lirancisco and Honolulu in $1!11$.

An attempt has bect mate to determine the comstants of a formula of the abose form which would approximate aterages of some 5,000 userved values of tield strength wer this particular New York to Londen path and wer the frequency range of 17 kc . to 60 kc . loor each tramsmitting station a series of comparatively local measurements were taken to determine the power radiated. By combining these local measurements with the values ohtained on the other side

[^99]of the Telantic we foumd that approsimately or -000.5 and $x=1.25$. The tratismisaion formulat then becomes
\[

Eimz . M $$
\begin{gathered}
3 \pi / I I I \\
\lambda l)
\end{gathered}
$$ e^{n} \lambda^{n}
\]

or in term of power radiated
where

$$
\begin{aligned}
& E=\text { Field strength in microwolts per meter } \\
& P^{\prime}=\text { Radiated power in } \mathrm{kw} . \\
& I=\text { Distance in } \mathrm{km} . \\
& \lambda=W \text { iave length in } \mathrm{km} .
\end{aligned}
$$

The table sh won on next page summarizes the data relative in daylight transmission.

Correlation Between R.abto Trassumston add Fitrth's Mininetl/ Fietd

In analyzing the measurements we were impressed by the occasional occurrence of marked deviations from the apparent normal diurnal charateristic. A series of measurements which includes an example of this condition is represented in the upper carses of Fig. 12. The curves of the first four days exhibit the normal diurnal characteristic as diel the curses of the preceding measurements. The nevt test of Felruary 2.5 20 exhibits a marked contrast with that of two days previous. Such abnormality continues in greater or less degree until partial recosery in the test of April 29-30.

Comparison of these data with that of the earth's magnetic field for corresponding days shows a rather consistent eorrelation. This will be evident from inspection of the magnetic data plotted below in the same figure. Both the horizontal and vertical components of the earth's field are shown. The first decided abnormality occurs February 2:- 26. The three succeeding periods show a tendency (1) recover followed by a second abnormality on Mareh 2.5 26 and again one on April 22-23. It is of interest to note that within limitations of the intervals at which measurements were taken, these periods corrempond roughly to the 27 -day period of the sun. Coincidencesimilar to thone deacrithed above hawe been found for other perioxls. Eveept for this coincidence of abonomal variations in earth's magnetic fieh and radie transmission, exate eorrelation of the lluctuations has not been found porsible.

TrANSATLANTIC R.IDIO TELEPHONE MEASUREMENTS

- Computed from local observations using formula of this paper.

Note: Measurements of transmission from Rocky Point (2 X S) on 57,000 cycles measured at Mexico City, July, 1924, give an average daylight field strength of $39.4 \mathrm{mw} / \mathrm{M}$. Calculated value $42.5 \mathrm{mv}, \mathrm{M}$.
 the Finted State Gembetic Survey. Similar data taken in England were ohtained from the Kiew olservatory , and show similar resubls.

The eontrast in the dimrmal variations of ration eransmission before : Ald after the time a magnetic storm is known 10 have starterl, is

Fig. 12-Correlation of rarlio transmission and earth's magnetic field-Transmission from Rocky Point, (. S. . (57,000 cycles) to London, Ving, Earth's magnetic fiefd meatured at cheltenham, Mrt., I. S. S.
further brought out in Fig. 13. The lower left-hand curse in this figure superimposes curses of February 22 23 and February 25-26 of the previous ligure. Additional cases where such marked changes occur are also shown. It will be seen that similar effects exist on the lower frequency of 17 kc . All of these examples are for days of other than maximum magnetic disturbance. In general the effect is to reduce greatly the night-time values and slighty increase the daylight values. The higher peaks in the daylight field strength of Fig. 11 are due to the high daylight values which prevailed at the time of these disturbances.

NoルsE Strevirit

Next to fied strength the most important factor in determining the communication possibilities of a radio channel is that of the interfering noise. The extent to which moise is subject to diurnal and scasonal variations is therefore of first order of importance.

Transmission from Rocky Point LJ. (WQL) to New Southgate Eng.

Fig. 1.3 - "orrelation leetween radio transmission athd variations in earth's mangnetic field

Diurnal lariation. In example of the diurnal characteristic of the monse for loatla carls of the tratsatlantic path is given in Fig. It. One curse is shown for each of the several frecuencies measured. The outstanding points to be observed are:

1. The rise of the static moine about the time of sumset at the receiving station, the high values prevailing at night, and the rather sharp deceras arcompanying smatise. The curve for 15 kc shows the existence of high values also in the afternoon. During the summer months high afternoon values are usual for all frequencies in this

Fig. 14-1 Diurnal variation in noise

Fig. 15 Frequency distribution of noise, Vew Southgate, England Night time-Day time - 11231924
range. They extend later into the fall for the lower frequencies, and hence are in evidence on the date on which these measurements were taken, October-November.
2. In general the noise is greater the lower the frequency.

Noise as a Function of Frequency and of Receiving Location. The distribution of static noise in the frequency range under consideration is depicted in Fig. 15 for the case of reception at New Southgate, England. The set of full-line curves is for daylight reception and the set of dash-line curves for night-time reception. The values obtaining during the transition period between day and night have been excluded. For both conditions three curves are shown, one the average of the summer months, another the average of winter months and the third, the heavy line, the awerage for the entire year. The curves represent averages for all of the measurements taken during both 1923 and 1924. In considering curves of this type it should be remembered that they represent an average of a wide range of conditions and at any one time the distribution of static may differ widely from that indicated by the curves. Also it should be realized that the extreme difference between winter and summer static is much greater than the difference between the averages.

A similar study of frequency distribution was marte at two locations in the United States, Belfast and Riverhead. The results obtained at these two locations together with those for New Southgate, England, are presented in Fig. 16 for a period during which data were ohtained for all three places. The similarity of the three sets of curves shows that there is an underlying catuse common to both sides of the Atlantic which may account for the difference between the daytime and nighttime static on the longer walves. It will be evident from the curves that for frequencies aromed 20 kc . there is not very much difference between the day and night static moise but that at the higher frequencies in the range studied, the daylight values become considerably less than the night-time values. Actually the divergence between the night-time and the daytime noise curves up to about 10 kc is an exponential one. This suggests that the lowering of the daylight values may he largely due to the higher absorption which occurs in the transmission medium during the day. There is a further interesting point to be noted concerning both figures, namely, that the night-time values decrease exponentially with increase in frequency. Since these night-time values are but litule affected by absorption in the transmitting medium, the distribution of the static energy as received, also roughly represents the distribution of the static power generated.

The curves of Fig. 16 show also the substantial difference in the noise level which exists at the three receiving points. Is has been experienced in practice, the New sonthgate curve indicates that England is less subjeet to interference thoun northeantern United

Fig. 16-Frequency dibribution of noise, New Southgate, Eng., Belfast, Maine Riverhead, 1. 1. Night time - lidy time - Mug.-Dec., 192t

States. In the United States the superiority of Belfast over Riverhead is also consistent with the better receiving results which in general have been experienced in Maine. There should be noted also the fact that the curves for these three locations lie one above the other in the inverse order of the latitudes. This is in keeping with other evidence which points cowarls the tropical bett as being a general center of static disturbance on the longer wave lengths. Further evidence on this point is presented helow in connection with the seasonal variations of noise.

Seasonal Varialion. Curves showing the diurnal variation in noise level for each month of the year together with the variation
in time of sunset and of sunrise, are shown in Fig. 17. Each curve is the average of all the measturements taken during that particular month in 1923 and 1924. The diurnal variations are generally similar for the different months in respect to the high night-time values which are limited to the period between the times of sunset and sun-

Fig. 17 - Mombly averages of liurnal variation of noise, New Southgate, England57,010 cycles -19231924
rise in Fingland. There is a certain devittom, howeser, which it is well to paint out. During the summer months the rise in night-time static starts several hours before and reaches high values at about sunset in England, whereas in the winter-time, the night-timestatic begins to rise at , dont sunset amd reaches high values several bour. later. A similar effect is olserved for the sumbise condition wherein

Fig. 18-Seasonal variation in distribution of daytime and night time noise with respect to sunset and sunrise, New Southgate, England-1923-1924
the reduction of static sets in during the summer months about the time of sunrise, reaches low daylight values several hours later, and in the winter the reduction commences several hours before sumise and reaches low daylight values at sumrise. In other words, the rise (o) high night-time values occurs earlier with respect to sumset in the summer than in the winter, and conversely the fall from high nighttime static to the lower daylight values oceurs later with respect to sumrise, in the summer than in the winter.

This is more definitely brought out in Fig. If which combines the data for all frequencies measured. The dash-lines associated with the sunset curves, delineate the beginning and the attainment of the night-time increases and those asmefated with the sunrise curse delineate the beginning and the attainment of the low daylight values. This discloses the fact that sumset and sumrise at the receiving

Fig. 19 Norise at New Sonthgate, Finglaml, in January Variation with exposure of equatorial helt to sumlight
point dees not completely control the rise and fall of the high nighttime static. It has been found that the discrepancy can be accounted for if sumrise and sunset are taken with respect to a static transmission path as distinguished from the receiving point alone, and if the assmmption is made that the effect of sumlight upon the static transmission path is similar to that on usual radio transmission.

Major Regunam, Sotrete of State Notse

A broader conception as to the camses underlying the dimrmal amb seasonal variation is ohtained by comsidering the time of sumat athl sunrise ower a considerable area of the earth's surface. Fig. 19 shows a series of day and night conditions for three represemtative parts of the diurnal msise charmeteristic alt Vaghad for Jamary. It will be seen that the rise to high night values does not hegin metil practically the time of sunset in England with over half of Africa still in daylight. By the time the high night-time values are rearherl, ats indicated in the second phate, darkness has pervaded all of the equatorial belt to the south of linglated. Ineidentally at this time stane oceurs leetween the I'nited States and England, resulting in very poor signal transmission. The third phase of this series slows the noise having just reathed the low daytime value and, athough the sun is just rising in England, the African equatorial belt is in sunlight, subjerting the -tatic transmission path to high daylight attentation.

The sunset conditions which existed for the afternoon and evening of the day upon which the diurnal measurements of Fig. It were taken are shown in fig. 20. The hourly pesitions of the sunset line are shown in relation to the evening rise of static in Lomdon. The concidence between the arrival of sunset in London and the start of the high night-time noise on the higher frequencies is evident. By the time the high night-time values are reached, about 7 o'clock G.M.T., the equatorial belt to the south of London is in darkness.

Fig. 21 shows the sunrise conditions in relation to the decrease in static from the high night-time values to the lower daylight values. The decline starts about is or 6 oclock an hour or two before sunrise, and is not completed until several hours later, at which time daylight has extended over practically the entire tropical belt the south of England which corresponds in general to equatorial Africa.

Another fact presented in the previous figures which appears to be significant in shedding light upon the source of static, is that noise on the lower frequencies rises earlier in the afternoon and persists later into the norning than does the noise on the higher frequencies. This could be accounted for on the basis that the limits of the area from which the received longer wave static originates, extend farther dong the equatorial zone that they do for the higher frequencies.

The inclination of the shatlow line on the earth's surface, which is indicated in the previous figure for Octoher 23 , shifts to a maximum at the winter solstice, receles to a vertical position at the equinos and then inclines in the opposite direction. These several positions
are illustrated in Figg. 22. The set of three full lines to the right shows the position which the sunset sharfow line assumes upon the earth's surface for each of three seasons winter solstice, equinox, and summer solstice. Likewise, the dash-line curses show the position assumed by the sunrise line for the correnponding seatsons. The

I ig 20 Rthation uf sunct sharlow wall ton mise at New Southgate, England (1) L. 28 29, 112.3
particular time of day for which eath of the sumat curses is taken, is that at which the static in landon begins to increase for hage night values. In winter, this ofours about stmset, at the equinox about one hour carlier, atd in summer atome two hours cortior, ats ilhos rated in Fig. 1s. Correspomelingh, the time for whith each of the smmencurves is taken, is that at which the high night-time vatues hate reacher the lower distight values. From Fig. Is it will be evident

Fig. 21 - Relat ion of sunrise shatlow wall to notse at New Southgate, Eingland ()ct. 28-29, 1923
that this occurs during the winter at about sumrise, at the equinox about an hour later, and during the summer some two hours later.

It will be observed that the two sets of curves, one for sunset and the other for sunrise, intersect at approximately the same latitude, the sunset curves sombeast and the sumrise curves somthwest of

Fig. 22-l'osition of sunset lines al sunset dip and sunrise lines at sunrise dip in noise level in England for various seasons

England. If it is assmmed that the effect of the shadow wall upon the transmission of static is simbilar to that upon signal transmission across the Atlantic, namely, the high night-time values commence when the shatlow wall is approximately half-way between the terminals. the erossing of the lines upon the chart may be taken as having significance in roughly determining the limits of the tropical area from which the major static originates. The crossing of the sunset lines indicates that the eastern limit of the area which contributes most of the statio to Eingland is equatorial East . Vfrica. The crossing of the sumine lines indicates that the correspmong western limit is somewhere in the South Allantic, between Africa and Sonth America. In ohther words, from these data the indications are that there is a more or less distinet center of gravity of static, which extend along the tropical belt, and that most of the leng-wave statio which affects reception in England comes from the egpatorial region to the somb of England, namely, equatorial Africa. This is exclusive of the high afternoon static prevailing during the summer months.

The data obtamed in the I inted states indicate that generally similar conditions exist there ds to the refation between sumset and sunrise path and the major rise and fall of statie. This relationship is shown in ligg. 23, which shows in the upper half the course of the

Fig. 23-Relation of sunset sharlow wall to noise at Belfast, Maine, L. S.- (\%ct. 30 Nov. 1, 1924
night-time belt as it proceeds from Europe to America and the corresponding rise in the static noise. The noise level curves are the same as those shown in Fig. 14 for reception at Belfast, Maine. The rise commences about one bour before and continues for one hour or so after sundown. This is for the fall season of the year. A similar chart for the sunrise conditions is given in Fig. 24. Although
high night－time values started to fall off some live hours before sum－ down in Belfast，the more rapid drop was within some two hours in advance．While these curses are for but a single day，they are fairly representative of the atverage of a greater amount of data． The change in the inclination of the smset－sunrise curves with the

Fig．2f Redation of sumrise shadow wall to noise at Belfast，Maine，IT．S．（het，30） Nov：1， 1924

Seasen of the year cffects changes for American reception somewhat similar to those sown for reception in England，except that for the sammer montha the coincidence is less defmite．It may be that this is Ixeatse of the somewhat lower latitute of the I nited Statesterminal and uf the reception of a greater propention of the static from the North American contincot．

In seneral, therefore the Imerican reates aconed with thome obtained in Englat in indicating equite delinitely that a large propartion of the statie received on the longer wases is of trophical wrigin.

It in, of course, the ratio of the signal to mesise strength wheth determine the commmencation merit of a radio transmission channel.

Vuriation tith Frequrncy. A comparison for representative summer and wister monthe is given in Fig. 2.5 of the signal-(o-nenise ratio

Fig. 25 Variation of signal 10 noise ratio with frequency: Corrected to same antenna input power (68.5 Kil) in Rocky Point antenna-Reception at New Southgate, England
for the two extreme frequencies measured. Both of these transmissisns were effecterl from the same station, Rocky loint, and similar antennae were employed. Comparison is made of the overall transmission by correcting the values of the two curves to the same antenna power input, the power of both channels being scaled down to fis kilowate, the power und in the telephene channel during the early parts of the experiment. This chart shows clearly the greater stability in signal to noise ratio obtainable on the lower frequency channel. Whike for certain perioflo of the dey the bigher frequency gives a much better ratio, it is subject to a much more severe sunset

Fig. 26 . Aonthly averages of dimenal variation of signat to noise ratio; Rocky Point, 1. I ($2 \times$ Si received at New Southgate, kinghat; 20.8 KW rachiated Power
-57,000 cycles-5480 К゙m—1923-24

Fig. 27-Monthly averages of diurnal variation of signal to noise ratio, Northolt, Eny. (GK13) received at Belfast, Maine-20.8 KIV radiated power- 4980 Km 52,000 cycles- 1924
decline than is the fower frequency. During the summer time, afternoon reception in England is better on the higher freguency channel. This is becanse of the eonsiderably greater static experienced at this time on the lower freguency. The higher signal-touoise ratio prevailing during the winter month of January as compared with the summer month of July is evident. This is due primarily to higher summer static.

Scasonal Variation in England and United States. For the 57kilocycle channel there is shown in lig. 26, for each month of the year, signal-to-noise ratios of two years' data. These show a distinct dip corresponding to the sunset dip of the signal fiek strength. The night-time values are generally high in accordance with the high night-time signal strength but the maximum values are shifted toward the time of sunrise. This is due to the fact that the notse rises earlier in the afternoon and declines earlier in the morning than do the corresponding variations in signal strength.

Fig. 27 presents the signal-to-mbise ratios for such data as have thus far been oltained upon transmission from England to the United States on a frequency of 52 kilocyeles. The low values obtained about sunset are, of course, due to the evening dip in field strength. In general, the night-time ratios do not reach high values as to those for England because the early morning signal fied strength begins to fall off white the noise level is still high. Comparisons of the signal-to-noise ratios obtained at New Southgate and at Belfast show that the Belfast values are somewhat higher for that part of the day, corresponding to foremoon in the United States and afternoon in England. This is becallse the forenoon statio in the United States is lower than the afternoon static in England.

Directive Reoblving Antenval

The picture which has been given of the transmission of static northward from the tropical lelt suggests that the signal-to-noise ration might be materially inprowerl by the use of directional receiving systems. This is, of course, what has actually been found to be the case in commercial transatantic ratio telegraphy wherein the Radio Corporation has marle such effective use of the wave antenna devised by Beverage. The expectations are confirmed by measurements which have leen made in the present experiments using such wave antenmat.

A year and a hatf ago the British Post ofice establinhed a wave antena with which to receive from the Rocky l'oint radio telephone
tramsmitter. Sare rematly a program of consistent observations in directional reception of east-to-west tramsmission was also mudertaken in which were cmploserl, wate antemate holt by the Radio Corporation of America for radio telegraph operation upon lower frequencies.

An indication of the improsement which the wase atmentat gives in signal-to-msise ratio is had by relerente to Fig. 2s. The set of

Fig. 28-Improvement in signal noise ratio of wave antemna over loon reception
curves (1) the right is for reception at Chetzoy; England, and those at the left for reception at Belfast and Riverhead in the Luiterl States. The improvement is measured in terms of the signal-tonoise ratio obtained on the wave antenna, divided by the signal-tonoise ratio measured on the loop. For the particular days and frequency indicated, the improwement in England will be seen to vary over a considerable range, averaging about $\overline{\text {. }}$. Data for reception in Englam! is for 1921 while that for the United States is for the corresponding period of 192\%. The I nited States results will be seen (o) be generally similar to those obtained in lingland. Although these experiments are still in an early stage, the remble do give a measure of the order of improwement which can be expected.

Test of Words L"uderstood. Perhaps the most convineing measure of the efficiency of directional receiving systems for transitlantic
transmission is the improvement effected in the reception of intelligible words. Fig. 29) shows the improvement which the wave antenna in England has made in the ability to receise certain test words spoken from Rocky Point. For this purpose there was transmitted from Rocky Point a list of disconnected words. A record

Fig. 29-Comparison of reception on wase antenna and loop. Per cent of words understood-Reception of Kocky Point (2 X) at Chedzoy, England, March, 1924
was made at Cherlzoy of the percentage of the words understood for reception on the loop and on the wave antenna. This constitutes a convenient mothod of rough tekphone testing. It will be appreciated, however, that it would be possible to understand a greater proportion of a conversation than is represented by these results. The curves show that it was possible to receive, for example, 80% of the words for but 9 of the 24 hours on the loop, whereas with the wave antenna reception continued for is hours.

NトリヒNHIN

Tramatantic Renlio Telephome Veasurements
11223，1021，1925
Vouth bs Month Kecorel of Noise amb I iedd Strength

Monthly ．Iverages of biurnal Variation of Signal Fiekl Strength
Rocky Point，L．I．，U．S．．．（W）（N）Measured at New Southgate，England Corrected to 600 ．Imperes．Intenna Current 5.480 km ．

$$
\text { Ipril, } 1023 \text { Feb., } 1925
$$

Monthly ．Iverages of Diurnal Variation of Signal Field Strength Marion，Mass．，U．S．A．（WSO）Measured at New Southgate，England Corrected to 6ott Imperes Intenna Current

Monthly Averages of Diurnal Variation of Signal Field Strength
Rocky Point, L. I., U. S. A. (2XS) Measured at New Southgate, England Correcterl to 300 Amperes Antenna Current

Jan., 1923-Dec., 1924
57,000 Cycles
5,480 Km.

Monthly Averages Dimrnal Variation of Signal Field Strength
l.eafield, England (F BL) Measured at Belfast, Maine Corrected to 300 Amperes Antenna Current
$4,9 \times 0 \mathrm{~km}$.

Monthly Averages Diurnal Variation of Signal Field Strength Leafield, England (GBL) Measured at Riverhead, L. I

Corrected to $3(\Leftrightarrow)$ Amperes Antenna Current

Donthly Averages Diurnal Variation of Signal Field Strength Northolt，England（C，に13）Measured at Riverhead，I．I．
5，460 に゙m．
52，000 Cycles

Monthly Awerage of liurnal Variation of Signal IFied Strength
I．eafield，Iagland（illl．）Measured at Cireen llarlor，Mass．
（＇urrectal to $30 t)$ Amperes．Intenna C＇urrent
July； 192.3 Jan．， 1924
24，050 Cycles
$5,150 \mathrm{Km}$.

Monthly Average of Diarnal Variation of Signal Field Strength
Northole, England (GI゙B) Measured at Green Ilarbor, Mass.
Corrected to 100 Amperes Antenna Current

$$
\text { Aug., 1923-Jan., } 1924
$$

54,500 Cycles
$5,240 \mathrm{Km}$.

Monthly Averages of Diurnal Variation of Noise New Southgate, England

Monthly Averages of Diumal Variation of Noise New Southgate, England

$$
\text { Aug., 1923-F(b)., } 1925
$$

Monthly Averages of Diurnal Variation of Noise New Southgate, Fingland

Monthly Averages of Diurnal Variation of Noise
sew southgate, Iingland
57,000 (y y cles

Monthly Average of Dimrnal Variation of Noise

Somthly Averofte of l tiarnal Variation of Noise

Belfast, Maine-
Monthly - Iverage of Diurnal Variation of Noise 1924

Riverhead, L. I.
Monthly Average of Diurnal Variation of Noise

Riverhead, 1.. 1.
30,000 Cyeles

Kiverheall, L. I
Munthly Average of I hiurnal Variation of Noise

Monthly . Werage of Diurnal Viariation of Noise
Kiverhead, I.. I
52,000 Cycles

 Green IJarbor, Mass.

Monthly Average of Diurnal Variation of Noise
Sept., 1923-Jan., 1924

Sept., 1923-Jan., 1924

Abstracts of Bell System Technical Papers Not Appearing in this Journal

Radioactivity. A. F. Kiovarik and L. II. McKeehan. This review of progress in radioactivity forms one of a series of monographs prepared by committees of the Nittional Research Council. It outlines the experimental and theoretical adrances in the subject since 1916, the date of the last compendium. The section headings are: I. Introluction, II. Radioactive Transformations, III. AlphaRays, IV. Beta-Rays, V. Camma-Rays, VI. Nuclear Structure and Radioactive Processes, V'II. Radioactivity in Geology and Cosmology, VIH. The Effects of Rarlioactive Radiations upon Matter. The references to periodical literature are particularly detailed.

Echo Suppressors for Long Distance Telephone Circuits. ${ }^{2}$ A. B. Clark and R. C. Matmes. This paper gives a brief description of a device which has been developed by the Bell System for suppressing "echo" effects which may be encountered under certain conditions in telephone circnits which are electrically very long. The device has been given the name "echo suppressor" and consists of relays in combination with vacuum tubes which are operated by the voice currents so as to block the ceboes without disturbing the main transmission.

A number of echo suppressors have been operated on commercial telephone circuits for a considerable perind, so that their practicability has been demonstrated.

The Telephone Transmission [Tnit. ${ }^{3}$ Dr. F. B. Jewett. The adoption by the Bell System of the TU as a telephone transmission unit aroused considerable active discussion in foreign circles, namely, by Colonel Purves, Engineering Chief of the British Post Office Department, and Dr. Breisig of the German Telephone Administration. In this short paper, Dr. Jewett explains certain words and expressions which, when accurately defined, he believes will eliminate misinterpretations such as seem to have led to the controversies over the Bell System TU.

Dr. Jeweett also points out that the numerical size for a transmission unit is controlled by two factors, first, the magnitude should be such that computation is convenient, and second, the magnitude shoukd be such as topermit telephone engineers and operating people to most

[^100]somple itself is balanced by passing a measured current through a thirel coil. The upplied lied amd the indueed magnetization are then propurtional to the electric currents passed through the magnetizing coil and the balaneing coil, respertively. I hysteres's long is shown, whtalned from an iron wire weighing 3 mg .

An Explamation of Peculiar Keflections Observed on X-Ruy Pozeder Photographs.* Rutharn M. Bozortu. There has been previonsly reported (J. O. S. . . and R.S. I. 6.989-97; 1!22) the existence of "anomalons" reflections of X-rays, observed when analyzing substances by the methot of Debye-Scherrer and Hull. These reflections are now explained in accordance with the well-known laws goserning X-ray reflections. It is shown that the molyblemmex-ray spectrum ds ordinarily used, although it is filtered by zirconimm screens, contains in adelition to the characteristic $\mathbb{K} \alpha$ radiation a considerable amount of general radiation. Athough usually not elfective, this general radiation becomes important when the sample lexing analyzed is composed of crystal grains of certain sizes. The effect under discussion is caused by reflection of this general radiation from the principal atom planes of these crystals. Several experiments, and a geometrical analysis of the positions and orientations of the diffraction effects, confirm this conclusion.

[^101]
Contributors to this Issue

Frink Cille，European Chidf Engineer of the International Western Electric Company．Mr．Gill has had long experience as a telephone engineer，first，with the Cnited Telephone Company in London， then with the National Telephone Company and later as a consulting engineer．It the outbreak of the war，he was called upen to under－ take important work in the Ministry of Munition for which he was later awarded the Order of the British Empire．Is European Chief Engincer of the International 1 Bentern Electric Company，he is taking a leading part in the discussion and study of conditions necessary for the eatablinhment of an adequate long distance telephone service through Europe．

OlıERE．BじKleł；B．Co．．Crinnell College，1909；Ph．D．．Cornell University，1911；Engineering I epartment，Western Blectric Com－ pany， 1914 1917；1．S．Army Signal Corps，1917 1918；Engineering Department，Weatern Electric Company（Bell Telephone Lahora－ tories），1918－．During the war Hajor Buckley had charge of the research section of the Division of Research and Inspection of the Signal Corps．．．VE．F．His carly work in the Laboratories was concerned principally with the prodaction and measurement of high vacua and with the development of sacuum tubes．Nore recenty： he has been connected with the development and applications of magnetio materials and particularly with the development of the permallog－loaded telegraph cable．

Il．art tis Fietchter，B．S．，Brigham loung，1907：Ph．I）．．Chicago， 1911；instructor of physies，Brigham Voung， 190708 ；Chicago， 190．1 10：Profeaor，Brigham Voung，1911－16；Engincering 1）epart－ ment，W゙estern Vlectrir Company，1916－24；Bell Telephone Labora－ tories，Inc．，192．）．Daring recent gears，Ir．Feteher has conducted extensive invertisations in the bields of speed and atulition．
（IIARI．EG II：（＇IRTER，JR．，J．B．，Harsard，I！20）；B．Sc．，Oxford， 1923：Tmerican Telephone and Telegraph（company，Department of D evedopment and Rescarch，1！23－
 School；Instructor in Flectrical lingincering，Vale Unisersity，1913 17； Fingineering Department，Western Electric Company，1917 2．1； Bell＇Telephene Laboratories，Mace，1：12．5．Mr．（＇urtis＇work has been conneeded with the development of telephone instruments．

 -tmlico and ambly res of publi-hed reaceareh in varions liehlo of physics.
 Eraph C'ompany ats ratio operator, summars, t!oz on: Telefomken IVirelos lidegraph (ompany of America, assistant engineer, 1!eme 10: American Videphone and Telegraph (ompany, Engineering Dejart ment abd I Ppartment of Development and Reacarch, 1910. Took part in hong distance radio telephone experiments Prom Wiashington (6) Haw, ii and loris, 1915; since then his work has been connected with the development of talio and carrier systems.
 I niversity, $1!2$ 2) : assistant and instructor in physics, Cornell, 3!11.5 is: Signal Corph, 1. \&. . ., 1!91s 1! : fellow in physics, Cornell.
 1 iniversity of Kiansis, 192322 ; Dept of Development and Research, 1622 - Dr. Batey's work while with the Interican Telephone and Telegraph Company has been largely along the line of methods for making radin trallomission me:asurements.
 Technical . I-at. 1. S. Natal forres in Framee $1!1171!1$ instructor
 Flectric ($0.01!120-21$; Fellow 6 Sorwoly, American-Scandinavian
 of I evelopmemt and Reacarch, 1!2:2 . Mr. Anderson's work hats been chictly on radio tranamisainn.
realily comprehend the ratios corresponding to aty given mumber of unts. Since it is desirable that every umit be basal on a derimal system of notation, unless there is some very impurtant reanem why it shonld not, the 'TL based un the decimal system was chosen. Satisfactory experience during the past year and a half is pointed to at showing the wisfom of having chosen the TL.
. Suspension for Supporling Delicale Insiruments.' . I. I. Jonn:ren. Bell Telephone Laboratories, Incorporated, New Vork. I description, with diagram, is given of a moxified Julias sthspensiom designeal especially to eliminate disturbances due to vertical vibrations from the buidding structure. The frame holding the instrument is supported by a system of tape-wound coil springs, which, because of the tightly woumb friction tape, damp out mechanical vibrations. The frame with its babaneing weights, is heary (about 120 pounds), and so proportioned in mass that at twisting or tilting impulse, necessary at times in aljusting the instrument, disturbs its moving system only in a secondary degree. This is a second feature of this suspension. Surprisingly effectise kinetic insulation is achieved. Quatrant electrometers aml a moving magnet galsamometer have remained undisturbed even when healy trucks were parsing on the street seven thoors below. This type of suspension, developed some years ago through the efforts of Mr. M. C. Harrison and Mr. J. P. Maxfield. has been alapted for tae throughout the Bell Telephone Laboratories in a varicty of ways.

Power amplifiers in Transallantic Radio Telephony. . . . I. (Iswat.d and J. C. SHElltivis. The paper describes the development of a 1.5)-kilowatt (output) radio frequency amplifier installation buit for transithatic telephone tests. The characteristics of the singlesidehand eliminated-earrier method of transmision are disenssed with particular reference to its bearing upon the design of the power apparaths. I classification of amplifiers is proposed in which there are three types distinguished from each other by the particular portion of the tube dharacteristic used. The watereoonled tules employed in these tests are briedly described, special consileration being given to their use in at large installation. The system is then shown in outline by means of a block diagram, the clements of which are subsequently discussed in greater detail. The theory, electrical design. and mechanical construction of the last two stages of the amplitier are whtlined, including the output and antenna circuits. Means employed in prevent spurious oscillations are described. The method

[^102]used in increasing the transmission band width to a value much greater than that of the antenna is explained. The power requirements of a single sideband installation are outlined and a description of the six-phase rectifier, used as a source of high potential direct eurrent is given, together with a brief theoretical treatment of its operation. Circuit diagrams, photographs, and a number of characteristic curves are discussed.

Production of Single Sideband for Transallantic Radio Telephony. ${ }^{6}$ R. A. Hersinci. This paper describes in detail the equipment and circuit used in the production of the single sideband for transatlantic radio telephony in the experiments at Rocky Point. The set consists of two oscillators, two sets of modulators, two filters, and a three-stage amplifier. The oscillators and modulators operate at power levels similar to those in high-frequency communication on land wires. The three-stage amplifier amplifies the sideband produced by these moxlulators to about a 500 -watt level for delivery 10 the water-cooled tube amplifiers.

The first oscillator operates at about 33,700 cycles. The modulator is balanced to diminate the carrier; and the first filter selects the lower sideband. In these transatlantic experiments the second oscillator operated at 89,200 cyeles, but might operate anywhere between 7t,000 and 102,000 cycles. The second moklulator, which is also balanced, is supplied with a carrier by the second oscillator and with modulating currents by the first modulator and first filter. The second filter is built to transmit between 11,000 and 71,000 cycles, so that by varying the second oscillator, the resulting sideband, which is the lower sideband produced in the second modulating process, may be placed antwhere between these two figures. Transmission curves for the filters are given as well as some amplitude-frequency performance curves of the set.

A Vull-Reading . Istatic Magnetometer of Voael Design.? Riciand A. Bozortio. 'This instrument is designed for measuring the magnetic properties of very small amounts of material in the form of fine wires, thin tapes, or as thin deposits (edectrolytic, eraporated, sputtered) supported on non-magnetic forms. The specimen, 4 cm . long, is momeded paralled to the line joining the wo needles, so that its poles produce the maximum toretre on the suspended needle system. the position of which is read by mirror and sate. The effect of the mannetiang woil on the needles is annulled once for all by the suitably placing of an cuxiliary coil, and the magnetic effect of the

[^103]
The Bell System Technical Journal

October, 1925

General Engineering Problems of the Bell System

By H. P. CHARLESWORTHt

Abstract

 proviant problem- insulual in caring for the growth and operation of the Bell systom. The plath extensions mexessory to meat service regtuirements and the meressit! of alyanced phanning are first $1.4 k$ on up. The uses of the "(inmmercial sursey," the "Fundamental Ilan" and engineering cost stuties are amalyzed to illustrate heww ath engineer athatks the problem of turnshing sitislatory telephone serste to the publie. I discussion of the Sew Sork (hiseng ioll cable and the tekephone problem in New Vork ("ity, as illustrative of sperifie engincering problems, coneludes the praper.

T11F prohlem of giving telephone serviee is quite different from that of most businesis enterprises. The merchant, for example, may take more busines in his store without necessarily always increang his fatities. The minute we take another subseriber, however. We add to our plant and plant inventment. Similarly, in connection with the manufacturing indnstry, the manufacturer, for in-tance, is in a position to exercise very direct control over his activ-itie- In the telephone indastry, however, our obligation is to take the service ds requested and be prepared to deliver it when and as it is requirel. Furthermore, the activities of the telephone business are of surh a nature as to make it essential, regardless of the remoteness of the territory or of the physical and dimatic comlitions involved, that a way be foumbl, as lar as practicable, to construct and maintain the plant and safeguarl the service to the public.

Ton meed these exte ting requirements calls for the greatest ingenuity and foresight in the design of the telephone plant and inwolves careful sturly of variout phans for plant extension and rearrangement with a siew to the selection of the most economical and desirable plan. Having determinet the fundamentals of design, there must, of course be devised wetys and means of suffer construting and efficiontly matataining the plant. Fiurthermore, as the plant is necesarily statterex over a very large territory and as the different parts must work together satisfactorily and with the mest eronomical reants, a high degree of standardization is rextuiret, still leaving, however, freedom to arlapt the plant to difterent local conditions. We find evidence on every hand of the value of this standardization, not only
during normal conelitions, but also during emergencies, when it has been possible to quickly assemble equipment or materials from any part of the system and promply restore or expand the service as required.

Important engineering problems of great varicty, therefore, present themselves on every haml calling for consideration by the engineers in the Ceneral Engineering 1)epartments, as well as the Traffic, I'lant and Commercial engineers assoriated with the operating divisions of the companies.

Phant Extexhons to Ment Service Requtrements

A very large part of the engineering work of the Bell System is concerned with the design of plant extensions to meet expecterl future service requirements with the maximum eronomy consistent with maintaining the service standarels of the system. I shall not discuss the magnitude of the vatrions attivities and reguirements of the system, but will recall to your mind a few of the outstanding items to better illustrate the magnitute of this part of the engineering work.

Telephene stations are being connected at the rate of over two and one-quarter million anmually.

The resulting net additions or gain in stations per year is approximately $500,00 \mathrm{t})$.

To mect this station gain and to replace equipment removed from plant, switchboards are being adeled at the rate of approximately $1,200,0(0)$ station capacity annually.

The Bell System installs in one year approximately 30 billion feet of insulated conductor in lead cowered cable ranging in unit sizes from 1 pair to 1.212 pairs. Of this amount, more than 27 billion conductor feet constitute the net annual increase in conductor mileage.

The above plant additions, tugether with other important items, such as poles, wire, ctc., involve a net increase in the telephone plant of nearly three hundred million clollars annually.

It in of interest whone, in this connection, that the annual additions (1) the telephone plant texlay are equivalent io the entire plant in service in the Bell System ats of about 20 to 2.5 years ago.

()heiously with a program of this magnitule and of steh diversity in the character of ita rolated mits, carcful artance planning is necessary to insure exomomical and satiofoctory performance.

In the carlieat days of the twephome arrove, the problem of lovine out a telephone phat was a simple onte. I wrs small switchloarat. simple in charater dmel cosily moned, if nectasery, was plowed in ghase convenient location, unally in remed quateres and fom that -witchbaral wires were rom one by one as needefl. to the premises af those desiring service, dither on poles or ower house-tops. I inler such -imple atul rulimentary emelitions, no serints question of the future nexted 10 be answered. Toxlay, how different is the telephome sitastien in many large cities, suld ats (hienge, or thronghout the system. L.arge and spectally designed builings must be constructed for the atommoxhation of the necessary interconnecting or switching mechanisms; expencise switehboards must tre placel in these buiklings; co:aluits must be extenderl from eath of these buildings along appropriste routes to reach the thousande of thephenes which rexeiveservice fron these switchbarels; wher eonduits must be placed between these swithboards and the other buileling and switchboards throughout the city so as to provide the means of intercommunication between the subscribers connected with the switehboards lexated in different buil lings; still other conduits and cables must be placed between these -witehboards and the central switchbard or toll baard from which ratiate coble and conduits and lines extending to the suburban area, (1) adjacent cities, to all the other principal citien in the I nitel states, and to Canada.

Eeth of the buildings must be placed in some definite location and it is necessary to plan this well in adsance and to direct the growth of the plant toward that location, even though the building may not be buil for some years hence. Otherwise, very serious and costly rearrangements of plant would be necessary at the time the office is opened. Furthermore, each building must be planned for some definite ultimate size, although, of course, the whole building need not be built at one time. Ducts cannot be placed under the strects one by one as needed. Public semtment would not, of course, tolerate the opening of important street routes several times, or even once, each year for the purpose of placing an additional duct. Neither would it be economical, if practicable, to monstruct conduits in this piecemeal wis: The manholes in these conduits must be planned with reference to the number of ducts extending into them, not only the ducts initially placerl, but if side runs are to be made from these manholes or if other ducts are to be placed later, this faet must he foreseen and provided for, or extensive and expensive alterations are inevitable at a liter date.

1 might go on and multiply the conditions which must be met in constructing telephone plant in a country such as ours in which rot
only the population is growing and moving, but where the demand for telephone service is growing more rapidly than the population. Wie are in effect planning a growing organism and we must recognize that we are dealing with ultimate tendencies largely beyond control, the cffects of which are not capable of exact valuation. However, enough has been said, 1 believe, to indicate dearly to you that the telephone company on every item of its buiklings, conduits and cable construction must constantly answer for itself vital questions as to the future recquirements of the system.

This was early recognized, and one of the most important engincering problems of the Bell System has been the formulation of estimates of expeeted future telephone business both as to quantity and expected lexation, and the development, from these estimates, of basic plans of procedure, which plans must, of course, be tlexible, capable of moxtification from time to time, and such mortifications must be madre ats changing conditions show them to be advisable.

Our first step in determining the estimated future telephone requirements is 10 prepare a so-called "Commercial Survey" of the city, covering the requirements fifteen or twenty years ahead. These studies inclute a critical analysis of the existing market for welephone service, pertinent facts as to the presellt sale of telephone service, of classes of service and users and forecasts of the market for telephome service at the future date or dates. Consideration is also given to the growth and distribution of population, experted changes in general wage levels, etc., and assumptions of the amomut of business that must loe sold in each area on the future dates selected under assumed rate conditions.
llaving thus determined from the "Commercial Survey" the requirements for telephone service for varions parts of the city at the fature date assumed, it is next essential to develop a comprehensive plan to erre as a hasis for the layout of the plant to mee these requirements. . Decordingly, a so-called "Fondamental Plan" is made for the community conering these conditions as estimated fifteen or twenty years hence. The importance of such a plan is obvions, but a brief reference to some of its leatures will, I believe, be of interest.

In laying out a plan for at city, the engineer might, as an extreme case, center all the subscribers' lines at one buikling. Obvinusly, we would have a maximum efficiency in preration in some resperts, in that we had grouped all of our switehboards togedher, lat our outside phant costs would be at a maximum and other disadvantages woukd be experienced. Is the other extreme, the cogineer might place many
-mall buildings aromel the cits, thas plating the ontside plant emse at .t minimum, but intreasing the dithenty dad expense of operating ses many cemters. Hwiously, therefore, there is some arrongement he. twern the two extremes I howle ciled which would prewide the most economical amd s.llisfatory layout of the plome. Several tent raters. which in the judgoment of the engineer seem promising, are, therefore -tudied amel the most eqomomical and sotisfactory plan determined upon. In completed form, these "Fimdamental Plans" furnish us the following essential information upon whish to proceel with the more detaileal studies cowering platit extensions.
a. The number of eemtrat offiee distriets which will be reguired to prowide the telephone service most economially athel the bomblates of these central otfice districts.
1). The mumber of subseribers' lines to be served by each central othice elistrict.
c. The proper lewation for the central office in each district to enable the service to be givell most economically with regard to cone of cable plant, land, buildings and other factors.
d. The proper streets and alleys in which to build underground ronduit in order to result in a comprehensive, consistent and exomomical distributing system reaching every city block to be served by underground cable.
e. The most economical number of ducts to provide in each eonclait run ats it is luilt.

Our experience hats shown that these fundamental plans reduce gueswork to a minimum by utilizing the experience of years in studying questions of telephone growth in order to make careful forecasis on the best possible engineering hasis. These fundamental plans, together with related sturlies, thus proviele a general program of plant extension to be followed throughout the period for each of our cities and somewhat similar plans are, of course, undertaken for determining the future requirements of our intercity or toll facilities.
ft is evident that both the ultinate arrangement and the program wherefy it is to be ohtaned must have the utmost Hexibility in order to meet unforeseen requirements, must work in satisfactorily with the evisting plant, which represents atn insestment of over s2,50),000,00.) must meet immediate service requirements, and also permit full akantage loeing taken of new developments in the telephone art.

The sperific or detailed plan for each projert of plant extension. whether within the cities as diselased or between cities in the toll line
plant must, of course, be started early enough so that adequate time is allowed for completion of the construction work before the new facilities are required. The complete interval between starting work on such a project and getting it into service can seldom be less than one year and in the case of buidling and central office equipments must, of course, be longer.

Fighnerrini; Cost Studies

Owing to the complexity of the problem of suitable advance planning for the growth in the telephone plant as alracly discussed, it is evident that in the study of plans for specific projects, selection must generally be made between a choice of arrangements, more than one of which might satisfactorily meet the requirements of the service. It is usually necessary, therefore, that two or more practical plans or programs for construction must be compared so that the most advantageous plan may be selectel. An important factor in the seleetion of all of these cases is a study of the relative economies of the different plans; that is to say; a comparative cost study and as these studies form such an important part of our engineering work, I believe it will be of interest to devote a few moments to a description of the important considerations generally involved.

These engineering cost studies require amalysis and consideration of the cost and resulting annual charges for different amounts and types of plant included under each plan. The annual charges comprise items of expense incident to ownership of plant and those that are incurred each year after its installation to keep it in operation and in serviceable condition. As a general thing, in these cost comparisons, another interesting factor is also present; namely; most of the plans which are compared call for expenditures to be made at different periods. For example, one plan might call for erecting a new building at a now location immediately; whereas under the other plan being consirlered, the necensary additional space required conld be secured by adding to an existing building and deforring the complete new project for possibly five or ten vears. The rehative economy of the plans, therefore, camnot be determined directly by a detailed comparison of the expenditures involved or resulting annual charges, but it is necessary in order to give a fair comparison to express the relative costs of the different plans in terms of present worths, or equivalent amuities which give figures for the total expense in which accurate allowance is made for the variation of expenditures with respect to time.

These engincering cost comparinans may be considered as compened of four parts or operations; namely, the premises or known factors and assumptions; the formulation or set-up of the prohlem; the solutions or mathematical calculations and linally the interpretation of the results. The determination of the premises and formmation of a gisen problem is, of enmese, a mbtter specific to that problem, and here the engincer must exereise somal judgment, for unless the assumptions upho which the work is based are reliblle the study itself is of little value. The mathematical calculations are, of course, a delante thing. However, the interpretation of the results must always be a matter of enginecring judgment and full weight must be given to those factors which by their nature camot he evaluated in the cost comparison.

I cost study is a fumdamentally important toed in assisting the engineer to reach a decision as to the most desirable plan or program, but as indicated it cammot be used to replace the exereise of jurlgment on his part. The solution of an engineering problem is, in general, not a matter that can be demonstrated mathematically as can, for example, the proposition, that the spluare of the hypotenuse of a right triangle is equal to the sum of the square of the two sides. An engineering study rather reguires in addition to all of the definite facts that can be brought to bear on the question the exercise of sound judgment on the part of the engincer in weighing the results of the const stuly with all related business or other factors bearing on the problen.

Some lactors inwolved in these engineering studies are often of a character which do not permit of expression as a direct charge against a given plan, but must be considered on a broader basis such as the difference in quality or dependability of the service, etc. Also it is important to keep in mind, for example, that, other things being cqual, a plan requiring large investments has disadvantages as conpared with one requiring a smaller investment so that even though the plen involving a larger investment may prove in from the cost study by a small margin, it may be desirable to adopt the alternative plan so as to avoid tying up considerable amounts of fixed capital. Another question to be kept in mind in interpreting cost studies is whether the more expensise type of plant, usually a higher type of plant, can be alopterl satisfactorily at a later date or whether the decision to be made at the present time precludes its adoption later. In the former case it is often wise to go further in deferring fixed capital expenditures than in the latter case. Finally, throughout all of his work the engineer must have formost in his mind the fact that the telephone system exists for the purpose of furnishing service to the public and the
results of his engineering effort should insure a service which is satisfactory from the subscriber's viewpoint.

It is evident from what has been satid, 1 believe, that these engineering cost studies are of great leonefit in working out the proper procedure in our engineering work, and 1 assume they are equally helpful in the engineering of ally kind of growing plant. Ansthing that can reasonably be done, therefore, to give the stulent an appreciation of the nature, scope, and application of the economic considerations of these engineering problems and to develop his faculties of judgenent, imagination, team play, and other related qualities, will doubtless prove of great value to the student in his later engineering work.

Other Pihastes of Excineermin, Work

I have thus far clescribed to you some of the very important engineering problems involed in the plaming and carrying out of plant extensions to meet expected future service reepuirements. I would like next to consider with you a fow of the enginecring problems that presemt themselves in the actual design or operation of these large extensions to plant ats introluced.

The rapid development of the telephone system, including the tremendens growth in the mumber of telephones in serviee and the rapid increase in the extent of territory which can be reached from any telephone, has let to a great increase in the importance and diffeulty of the technical problems involved in the design and maintenance of the plant.

These technical prohtems cover a wery wide range. The electrical and acountic problems insolved in the transmission of speech have led telephone men 10 much pionecring work dealing with the flow of sustainerl and transiont alternating currents in electric circuits of all lypers and in the fumdamental nature of seeceh and hearing itself. Igain, the economical design of outside plant with suitable strength and economy involse investigations of characteristios of construction athl materials and the preservation of timber, athd there are, of course, spectial mathematical and other problems insolsed in the design of long cable or wire spats. Buildings and asanciated eentral office equipments inwolve very interesting meehanical and dectrical problems in the matter of the layout of the buildings and the arrangement of apparatus to encet exteting requirements. There inchade many problems in the design of means for antomatically supervising the progress of telephone conneetions and in the design of thousands
 reguirements.

What I hathe alrealy satid emphatise the impartance af engimering "ork insolsal in the design of wex plant. Very interesting congenering statios atre, however, alos insolsal in connection with the matntentace of the plate as well. This inclutes the tevelopment of im-
 the resulfo obtancel, jatged from the peints of vew of exedleme of the arvice ame economy of operation. Wio use at homely illustration: ons might hate his atomobile eompletely gone over he a garage every 100 or 2010 miles of ramning with the result that he would probably be reasomably sure of perfeet mathtenance of the atotomobile (assuming at perfect garage), but the maintenance mosts would be excessisely high and ont of proportion to the bemefit received. On the wher hand. however if mattention is given to the maintenatnce of the atutombile, maintename costs would be at a minimam but the depreciation would be high, the operation woukd som become unsatisfactory and semene or later the results womld be at total interruption to service use. The problem, therefore, evidently is to lind the proper balance between onerall costs and serviee results, and this is true, of course, of the brions enginecring problems to be solsed in connection with the maintenance of the telephone plant.

The engineering work of the Bell System ahoo insolves, to a large extent, relations with other organizations. These wations are very close with other wire-using companies, inchuling small telephone companies whose lines comect with these of the Bell System. Important tehations must be maintaned by the engineer with electric power and electric railway companies, as particularly important problems of stety and al service arise due to the proximity between the electric circuits and the telephome circuits. These problems involve provision not only for the protection of the plant and employees against the danger of contact with the wires of other companies but aloo include courdination of the two systems to prevent exeessive inductive effects which often fecome important where electrie power lines or electric railways and telephone lines run parallel to each other. The electric companies and the telephone companies often find it advantageons to enter inte arrangements for the joint use of pole lines and this presents many problems reguiring consideration the the engineer. It is evident, therefore, that the problems of the telephone engineer cover a very wide and interesting leed in mechanical, electrical and other arts. both within the business itself and in relation with other utilities and municipal, state or mational bodies or associations.

Sbecife Projects Illl'strating Telephone Exgineering Problems

Finough has leen said, I believe, in the foregoing to indicate the general nature of the engineering problems handled in the Bell System. It is, of course, impracticable and doubtless would be tiresome in a talk of this character to deal specilically with many detailed engineering problems involved in the work which I have just described in general terms. I believe that you will gather a better appreciation of what some of these problems are from the inspection trips which form an important part of this week's program, than you could by a full discussion of them here. It will probably be of interest, however, before closing to outline briefly one or two lypical telephone engineering problems of considerable magnitude.

Niblork-Cumago Toll Cable

The lirst large engincering problem I will consider is that relating to the New Vork-Chicago toll cable as shown in Fig. 1. This cable follows a route from New Vork through Harrisburg, Pittsburg, Newcastle, (leveland, and thence to Tolede, and when completed ${ }^{1}$ will extend to South Bend and then on to Chicago. For parts of the distance through the congested sections it is underground, and through the ofen country it is aerial.

Until a comparatively few years ago practically all long toll circuits were in open wire construction; that is, individual wires mounted on separate insulators attached to cross-arms on poles. This was a natural development at lirst, due to the small number of circuits ustally involved, but was also necessary because of the relatively high transmission losses of calle circuits where, as you know, the wires are insulated by wrappings of paper, closely twisted together in pairs and quads, and large nombers of these compressed together within a lead sheath. The rapilly increasing use of toll service, however, pointed to difficulties in providing for future grow th with open wire lines. In different parts of the route between Chicago and New York, for example, there were three and four heavily loaded open wire toll lines and the rate of grow th was so rapid it was evident that before long difficulty would be experienced in obtaining suitable rontes for the additional pole lines required.

Larly efforts were accordingly made to devise means which woukd permit of satisfactory talks bhrough cable and as a result of very intensive research there were developed satisfactory forms of telephone

[^104]
repeaters; that is, devices for amplifying feeble telephone currents, passing in either direction ower a telephome circuit, without appreciable distortion. The most succesful repeaters of this type, as you may know, use as the amplifying element the vacuum tube, athough the tube itself is hut a very small part of the apparatus required for the succesofut operation of the wephone repeater, and many interesting

Fig. 2-Open wire toll line
engincoring problems hat to be solved in prowiding a eomplete repeater. A full discussion of this very important and interesting development in given in a paper hy Mr. (iherardi and I)r. Jewett, published in the Tramsatetoms of the . . I. 1:. E. For 1919.

The toll cable development, baseal on the use of repeaters as ontlined ahove and many wher terhnical improvements, now makes it possible (6) give satisfactory service hetween Chicago and New York and intermediate pointo wer toll cathe circuits of such small gatuge that close (1) 300 circuits can be induderl in at single sheath of $25 \mathrm{~s}^{\prime \prime}$ in diameter. The same number of cirenits would repuire four or live sery heavily Inilt pole line of open wire construction such as is shown in Fig. 2.

The construction of the (hiago-New York cable was started in 191s and will he completed this year. As shown in Fig. 1, the cable
is now in service between Chicogo amel somth Bemel, Indiana, dul between Sew Sork amb point- as far west as Toledo. This cable is one clement of a lery extensise nefwork of toll cables, particularly in

Figs 3 -Trantot orting calle revels through . Megheny Mountaits

liiz. t Toll coble line in Whegheny Mommains
the northeastern part of the comotry. Important cables in service or leeing installed out of (hicago, in addliton to the New York-Chicago cable, include cables from (hicage to St. Louis, Chicage to Terre Hatte, Chicago to Milwakee, Chicago to I), wemport, Jowa. During this year the Bell System is installing ower 1,000 miles of toll cable containing more than 2 billion $5(0)$ million feet of insulated conductor.

The successful operation of long circuits of this cable network has been brought about only by the solution of very difficult techuical problems, some of which have already been mentioned. It may be of interest to state that the long through circuits in this cable will be in the nature of four-wire circuits; in other words, one pair of small gatnge wires with repeaters will be used for talking in one direction and

Fig. 5 Typical telephone repeater station
a similar pair so equipped will be used for talking in the other direction. As all illustration of another type of problem involved, it may be of interest to mention that it is necessary to employ automatic regulators which vary with changes in the temperature of the cable conductors, the amplification introduced into the circuit by some of the repeaters. Without regulation, the change in temperature occurring within 21 hours often makes as much as a thousand-fokd difference in the amount of electrical energy received over New York-Chicago circuil from the same input, a variation which would, of course, utterly presellt giving arvice ower the circuits.

Side from the electrical difficulties there were also interesting problems of a mechanical engineering nature to overcome in the desing and plating of the cable, particularly where it passes through the wilerness of the Allegheny Mountains as shown in Figs. 3 and 1.

The eable is for most of its elistance serming on prole lines and the lines Here designe especially to withstand the stresses comasel daring slece -torms. The elecision ds to whether the cahbe should lee umbergromad

Fig. 6 Bank of 2-wire telephone repeaters
or aerial in the various sections in itself involsed many engimering con-iderations.

In adelition to the engineering matters in connection with the cable itself, other interesting problems present themselves, of course, with regard to the design and construction of the telephone repeater stations. and their associated equipment, the telephone repeaters being inserted in circuits of this character at intervals of about 50 miles. A typical repeater station is shown in Fig. 5 , a hank of two-wire repeaters in Fig. 6, and a bank of four-wire repeaters in Fig. 7.

Fig. s shows a view of the completed calbe. In this case a loatling coil case is also shown, and the picture indicates again the physical problem of erecting a cable through the less accessible sections of the territory: Fig. 9 shows another section of the completed cable through open commery, and shows foading coil construction and facilities for

Fig. i Bank of t-wire tekphone ref eaters

1 g .8 Toll cable line showing loading coil case
cutting in additional lodeding coils as rerpired. Fige 111 gives ant interesting view of the cable over the . Dhe henems, slowing as agetin the meedhaneal problems inwolver in cheign and antstructions. In this case the cable bollows closely the open wire lime. which in time will lee dismantley.

It mas le of interes in this combertion to -tate that the plats tole compared in the stmly of toll cable projects generally differ primarily in the dates at which they contemplate supplementing or replacing operl wire service hy cable. Conditions under which cable beomes ecomomical depenels, of course, on many factors. lerhaps the most important single factor is the rate of grow th of the circuit requirements. The detailed devign of the cable also involves very interesting stuelies of the cconomical number of circuits to provide in the cable sheath. Nso the eronomical gatuge of each circuit mast be considered, comparing in many vas's the economies of a larger gatuge with those of a -matler gatuge proviled with a greater mumber of telephone repeaters.

The elesign of the toll cable as discussed is but one illustration of the design of the toll plant extension as a whole, a problem which, in general, involves the consileration of the relative desirability of additions to existing upen wire toll lines, building new open wire toll lines, applying arrier telephone systems to existing lines or installing toll cable.

Is another specific illustration of the telephone engineering problem, I will deseribe brictly the matter of ale equately meeting requirements. in a large city, using for purposes of illustration the situation in New Vork City and the metropolitan area. This particular situation doubt-le-s presents one of the most difficult engincering problems and in some respects is unusual, yet, on the other hame, it fairly repreants the kind of engineering problem with which the Bell system engineers must deal att all times.

Fig. If inclicates clearly the magniture of the present and future problem in the New lork metropelitan aren, as viewed from the number of telephomes. In 190.5 there were 2000000 stations in New Vork City and 300,0011 stations in the metropolitan aret. By 192.5 the figures had increared to $1,100,000$ for New Vork (ity and $1,900,000$ for the entire area. By 1!91.) it is estimaterl there will be over $3,000,0016$ stations in New Sork (ity and ower $1,000,0$ OH) in the metropolitan arcit. Part of this grow the can be ascribel to the normal increase in the population and part, of course, to the tendeney to make more use of

Fig. 9 Toll cable line through open country:

Fig. 10 (able atul open wire toll line in Nlegheny Mountains
the telephome. In whlition, part of the growth is due th the conditions following the Wiorla War atel the general eotommie trend.

Comparing 1!2! with 1!911, wholeale commotity prices, as yon know, have risen wer 50 per cent; the cont of living ower till per cent: Wages in mambacturing industries ower lof per remt, while in the same period telephene rates generally have inereased less than 30 per eent.

Fig. 11
and even less than this in some of the larger cities. Telephone service, therefore, represents a large value for its price and in a situation like Greater lew lurk City, where there are between sewen and eight million people, it is but natural that the new situation in the economic batance of things, together with the low price of scrvice shown, would make for a very substantial increase in the demand for telephone service. This has, of course, also been true elsewhere.

As I have shown there are at present a total of over one million telephone stations within New Vork ("ity proper served from about 130 central offices 26 offices hatving been adrley last year. The predictions are that within the mext twenty years the stations and central offices will have more than dombled. Fach subseriber in this great network must be able w reach promptly every other subscriber.

Due to the large area involied, a great number of calls within the city necessitates extrat charges, which means that they must be specially supervised and recorded. There are many different elasses of service furnished the public, such as measured rate, Hat rate, combox, efte, and, of course, such other special services as Information service. Not only individual lines but party lines and private exchanges must be cared for. Furthermore, the demands for service to the extensive area surrounding this great city, as well ats the large number of cities, towns and rural communities throughout the entire country, require that prowision be made for thousands of toll messages daily. The problem of giving satisfactory service under these conditions and under the complications that come with the tremendous growth refered to is a very important one and requires careful and constant study.

In order to properly care for this complex problem of furnishing telephone service in large cities, telephone engineers in line with the efforts which have been made from the time of the early switchboards have emdeavored to perform the varions operations antomatically so far as consistent with service requirements. While the switchboards Which you saw yesterday are called "manual" switehboards, you doubtess notex from the demonstration and your visit through the central office that many of the operating features are atutomatic in character. The latest step in this general trend of development has been to develop a switchbard which woukl provide for completing many classes of calls entirely without the aid of an operator, and these new machine switching equipments which bou will see today are gradually being introduced into New Vork, Chicago, and other large cities. This is a large problem in itself and imolses not only the completion of calls from machine switching subscribers 10 other machine switehing subseribers, but the completion of calls incoming to machine switching offices from manmal offeres and outgoing to manual affices. This must be done without reaction on the service or inconvenience to the subseribers and so that the machine equipment and the manally operated switchboards will work together as a coardinated whole.

1 do not know of aty mechanical deviee that reminds one so much of the functioning of the human brain as dees this mechanism for comploting calls following the dialing operation. The completion of a simple call, while quite inwolved in itself, is by no means the complete problem. There must be a great many other features providet, such, for one example, ats where at register is provided on the subseriber's line to registor the number of calls under measured rate service. In these camen it is necessary to insure that there shall be
proper regintration by the marhine ath the methation in at, orrongerl. therefore, that on the completion of the call it will teat the line to make Gure that eversthing was mormal before regintration is ."thatly per formed. Similarly, .ll the was thengh the completien of the regular and special clasem of calls it in nereson! for the medh.mism to perform just such intricate functions ds th.t deneribeat.

The enginecring of the interoftiee tronk heront in at city like New Cork is alot an important and interesting problem, not only becathe of its magnitule but beratuse of the almest malimited variations which

Fig. 12
might be emgloyed, a large number of which must be carefully considered in commetion with additions to the plant. In opening new rentral offices, trunk circuits must be prosided between each new office and the existing offiee and also between the new offices themselves.

Fig. 12 illustrates the range of trunking layouts which might be used. With the 10 offices dsammed and direct trunks between each ofliee and every other offiee, !0 groups of tranks would be required. With the so-called full tamem operation; that is, under an arrangement whereby cath office reaches ewery other office through a central point, 20 group- of trunk- would be requirect. Between these two extremes with some offices reathing certain other offices through the tandem center and certain others ly direct trunks, a great many combinations would be powsible. In the case assumed 50 groupsappeared to be the best combination. The data given at the bottom of Fig. 12 are of particular interest in this connection. As will be
noted, if only direct trunks were employed in the metropolitan area, some 43,000 groups would be required. On the other hand, if we followed only the strictly tandem plan, 850 groups would be required but as previously indicated, unwarranted switching costs would be

Fig. 1.3

Fig. 14
involved. By establishing a plan, however, involving both tandem and direct trmaks, the most economical plan can be determined upon and in this case about 9,000 groups of trunks are regnired. Fig. 13 shows how rapilly the trunk group) increase with the addition of stations and central olfices. You can well imagine the engineering
problem involved in working out the mose eltievent trunking plan for a city -wh as New York or (hicaso.

A site from the hayot of the trank plant itadf, the engineering work involves the design and constraction of the undergromel subway eystem and the derign of the physical cable plant. In one year in

Fig. 15 Bowling (ireen telephone building, New lork City

New York (ity alone, enough cable has been instatled and plated in service to make a cable containing 1,200 wires reaching from New lork (o) Chicago.

The expansion of the metropeolitan plant to care for the increase in the number of subaeribers also insolves, of course, opening many new othees and the provision of new switehboards and additions to the existing switchboarts. The matter of selecting the name for a new central office woulel at first appear to be a simple one, but as indicated by. Fig. 14 it is a very involvel problem in itself. As will be noted, there are many questions to be considered. One leature relates to the matter of dialing. It is interesting to note from Fig. 11, however, that while the name "John" does not seem in any way to contliet with the name "Knickerbocker," ret thene IWo names could not be

Hed lugether in the same city lexatuse of confliet in the dialing proces. Phonetic contlicts are also exceedingly important in telephone operation. In fact, they form one of the most important factors that mast lee considered in the selection of an oftice name. Pronunciation of the name must also be easily understoxel. Thus we find that in the case of the metropolitan areat something like 72 sources of names were consulted; for instance, historical works, geographical works, postal

Is. It Wies Asth siteet building. New Vork (ity
guides, telephone directoriess and wher someres, and out of 100, ,000 names comstered mot more than 1.51 coukl he used and possibly some of theere on further study will hatse tobe climinated. I have mentioned this detail of operation simply to illustate the variety of the problems for the telephene engineer and the extent to which he must eonsider them in order to insure the grate of serviec we are all striving for.

The erection of mew haldinge and adelitions lo existing buiklings is .dso a large problem, there loong I2 new luildings and 21 additions -reted in Now lork during $1!P_{2} 3$ and 1921 . It might be interesting (o) note that for these laikling and equipments it is necessary to romsider mot only the proper danciation of the various elements of the

 of the difterent part- of equiphent and buideling. Further, the central

1 ig 1 i loong dist, me telephone huilding. New York (ity
maty bar! wer a wide range ubder the different arrangements which might be usel. This bou will better appereciate from your visits throngh the oltiees.

I will next show sou a fen casco which will illuspate seme of the problems in the way of providing building space to house switchboard equipment- in there large metrepelitath areas.

Figg 1.5 is a photograph of the Bowling (ireen buikling, located in the extreme lower emb of Manhattan lslame amd which will previte spate for -witchboarel requitement- For that part of New Vork ("ity.

Fig. 16 gives a rather interesting example of another of the large New York telephone buiklins, this cane being the one lecated in West Stith Street in the neighborberel of the Pemnsylaniat Station. This
buikling and equipment involve an expenditure of $\$ 15,000,000$ and is equipped to serse ower 100,000 stations. In other words, we find in this one building and the atoociated swithboards on subseriber's premises, provision for handling more stations, for example, than are in service in a city the size of Baltemore, with a population of nearly.

AOH,(0)O, giving you a further ideat of the problem of providing service in these latge metmopolitan centers.

Fig. 17 illastates the hateling in New Vork devoted to the centering of all tong disomer lines. Fatcilities are also provided for connecting wgether the arionts whice of the city for switching to suburban points lhrough once of thone tambem boards of which I spoke, as well as for switching 10 the great nelwork of toll lines rmaning ont to all im portant prints laroughent the country: While there are some local switchbeatel farilities in this hateling, practically all the space is devoted to hatulling toll 1 rallis.

Figg. Is illustrate the new buthling beeing buile for the New Sork Telephone Company on West Street in the lower part of Wanhatl, wh. This building is desigued to house al lage number of unit of mbehine switching equipment, and the uperer part will be utilizal for the alministrative oftices of the Compaty. This forther illustrates tho type of lmilding requirel in these larse centers, and the many ensineering problems imsolverl.

I might go on at length, giving one problem after another, by way of illustration, but I think emough han been said to give you a general idea of the nature and great variety of the telephone engineering problem involving, as it clocs, almost every phase of the methanical, electrical, and other arts. It is obviously necessary for the engineer not only to consider the technical problems inwolved in each of these mafters, but to a greater extent it seems to me than almost any other situation I have encomotered, it is necesary for him to take into account all of the related broad operating and business factors which are maturally to be found in an industry of the magnitute of the Bell System.

Engineering Planning for Manufacture

By G. A. PENNOCK

Abstract

Sisurabs: This articte discusses the complete analysis, from a mantefacturing point of view, to which every item of telephone apparatus is sulnmitted at the lhawthorne Plamt of the Nestern Electric Company: These works employing, at present, about 25,000, produce over 110,000 clifferent kinds of parts which enter into some 13,100 separate forms of apparatus. The advantages of careful engineering analysis of each new jol) coming to the factory, as well as those which have been in production, are brought out. The various steps which are worked out in connection with each analysis are as follows: manufacturing drawings; the proper manufacturing operations and their sectuence; the machines best adapred to carrying out these operations; cletermination of the kind of tools, gauges, weighing and other equipment: the determination of the probable bourly output for each operation; the grade and rate of pay for the operators; the kind and amount of raw material required; manufacturing layouts which tell the entire shop organization: each step in the production of the parts, and finally the best rate to be paid for cach operation. In conelusion, the allhor discusses the personnel of the Plaming Organization.

I. TROOHCTHON

T${ }^{\top}$ HE Casence of the successful operation of any industrial establishment is contained in the maxim "Plan your work - then work your plan." The first part of this maxim is be far the most important sinere the ability to work any plan apends fundamentally upn n the excellence of the plan itself.

Farsighted planning, as appled to clementary factory operations. is a relatively simple problem. Fior example, the problem involved in planning the work of a foundry is to a great extent merely the the duplication of plans already standardized, but in a plant manufacturing widely diversilied proflucts, such as we have at Hawthorne, planning becomes at once more diffeult and essential.

The Cemeral Manufacturing Department of the Western Electric Company provides the Bell System with telephone eguipment which involses the production of ower 13,000 separate and distinct forms of apparatus, in the construction of which there are used wer 110,000) different kinds of parts mate from $1 \mathrm{~s}, \mathrm{mOO}$ different kinds, sizes, and - hatase of ratw material. A momber of these parts are proxluced in very small quatitities.

The proxluction of the varied proxlact mentioned abowe involves mot only all the neat woxt and metal working operations, but also such lines of momafacture as:- glass making, textile dyeing, manufacture of porcelain, chectrolytic itom, valamizel amd phemolized fibre,
 $2227,1925$.
solt and haral rubber in the form of sheed, rext, tube, and moded Shaper. the insulation of wire with teviles, enamets, and patper, and the comseraton of copper billets into wire.

These materiats are weal for making part- which, semerally speakinge are quite small in size "hell compared with parts weyl in stam lexomotises, ges emgines, dynamos, dad other kindred equipment common to the clectrical , mel medhanial helds.

The fact that the parts are small in dimension, lowwere deres not meath that the mamfacturing litiondies are in proportion. (on the contrary the problems involsed in their manufarture are oftert times in an inverse ratio to the size of the part.

Figg I shows a cramk shaft ahout three feet longs and the shaft used in the calling dial for mothine switching abont an inch and a half long. The layout of the operations required for machining the crank shaft is shown in the upper left hand corner. There are a total of cight.

Below at the left is shown the layout of operations for making the -haft for the dial. There are a total of eighteen.

Is you will note from the datat at the right, the number of matchines involved is, roughly, the same in each case. These data illustrate the fact, however, that the small part may be more complicated and involve more engineering problems that the larger part.

Pl.ANNIN: FOR THE FLTERE

As the manufacturing unit of the Bell System, the Western Flertric Company in planning its production hats had to bear in mind, first. that the facilities shall be arlequate to turn out the tremendous volume of apparatus and equipment required from year to year: second, that the System's supply of equipment must be planned to eliminate, su far as is humanly possible, any interruptions; and third. that the system must get its equipment at the lowest possible cost.

Briefly, our program for providing buidings and equipment for the future is based on a five-gear forecast of business made by eath Asociate Company and smmmarizel by the American Telephone and Telegraph Compamy:

It takes approximately two years to ereet and equip new buiklings: consequently, capacity studies on floor space are marle two years or more in adsance and tool and mathine equipment studies are marle one year or more in alvance, ats this equipment can ustally be provided in one ycar.

NOTF: (OMI'\RISON OF SIZE OF SHVFTS

SHAFTFOR NO, 2 TUPE CALIANi; DIML
${ }^{0}$ Oper's. Req'd. 181
Rongh form thread portion, and (). D. counterbore, finish turn, threadandeut off
l.imits $\pm .0615^{\prime \prime}$ for diam.
$\pm .(1) 2^{\prime \prime}$ for ligth.
Rough and fin. form ? diams, shear 1
cliam., thel. .mal polish.
I.imits +.006",-.005" l'gth.
shears. ('. face to l'ght. hurs and polish long emal. $+.0000^{\prime \prime}$
limits ano1" for diams.
sitradille mill flats-mili four (t) slots.

limits (0)2".

Washine and Tools

1)wenport Juto Screw Machine, 5 chucks, 5 plain and form tools, 1 thread die and three gauges.
So. 1 B. © S. $/ 1 /$. s. . I.
1 shuck, 2 form tools, thread die, cmory stick and + gauges

1 chuck, 2 form torols, emery stick and
5 gatuge:s
Hend Mill
Milling fixture, vise and jaws and spere. rutters

(riNK~hift for No, 21 Blas PINCH ['RE:
Oper's. Req'd. (8)
Rough and finish, conter, turn face complete and polish limits diam. +.008", fote" length $\pm .008^{\prime \prime}$. Will concave keyways, $3^{\prime \prime}$ slot and + flats -3 oper's. l.imits $\pm 60\left(15^{\prime \prime}\right.$. 1) rill $3_{4}^{\prime \prime} x^{3} 8_{8}^{\prime \prime}$ hole.

Machines and Tools

Itemly $12^{\prime \prime} \times 5^{\prime}$ lathe, center drill, turning and polishing tools. No. 3 13. \& S . nill machine milling fixtures, arbors and cutters. ('incinnati 1 sp . D): (l). (rill jig and drill

Fig. 1 - Dial Shaft is. (rank Shaft

 new designs athe thanging present dragns with the ohject of impros. ing the qualits of, or reducing the cont of telephone strvice. This means that the proxlects that we are manufaturing ate constambly undergoing clevelopment, with the revilt that we are continually confronted with changing mamblacturing poblems.

The decisons- reached by the barious organizations of the Bell system to proceed with the intrexlation of the new and ehanged design- jet referred to are based entirely on improwed service, lower conts, or beth: comerpteonty, before ally work on new developments catl be clone the Mamblaturing Department must furnish firm eatimates of the cose of one or any momber of pieces of apparalles that maty le reppured.

This is made possible bey our ability to plan a jobl in detail on paper and to make an accurate dppraisal of the mamblacturing conse before production is started. The erost established, selling prices can be determined, and a final decision made by the System as to the merits of any new devopment.

Furthermore, hy scrutinizing the design and concentrating on the various manufacturing operations to be taed before the toobls are built, numerous changes can be introducel on facilitate manulacture and in this way avod getting into the fatery what bave been termed "hospital jobs" which result in retareled prodection and inflated conts.

The two de-igns illustrated in Fig. 2 bring ont what is poseible in a mandacturing analysis of an engineering design. The part shown is the mounting plate used in the calling dial. The design originally showed ears. which were blanked out and turned ower toward the inside of the blank and perforated, as shown in the upper view.

The lower view shows the design as it was developed che to the Manufacturing Department's suggestions to blank the ears from the insicle of the blank and furn them outwarl, thes locating the mounting holes in exaclly the same position as the engineering design, but saving materid. It alsos simplified the bending of the ears. Instead of a double lend, there is an $\$$ bend. The holes were made larger also to permit perforating instead of drilling. The lugs and boles were alow unevenly spated so ats to make it impossible to perforate or asemble the part in the wrong pusition. In shop langtage, the part was made "fool prool" in this respect, whereas the motel was not.

It was formerly common practice among many mannfacturers tr leave the actual plaming of the job to the shop foreman and to some extent this practice still exists. Ohvionsly, under this plan, only the more commonly known methods will be employed at the shop man is not in a position to atail himself of the mass of engineering koowtedge that hats accumulated in comection with such work. We are convinced that the returns from engineering the actual mannfacturing operations are as great as those realized from engineering the design of the product.

Origintl Premosed Desigis
() bjectionalike features lugs formed inward, requiren large blank and at cam ation thal or two operations in forming. Small holes do nen permit perforating

 combined emberssing atml forming in simple toul. Ifoles incre:tsed in sime
ligg. 2- I Moxlifieal P'art

F゙M TORY ARRIVIEMENT

Before dearibing our phtming work more in detail, a few words
 metal working mathine 性partments .tre laid ont in such matmer that the manefacturing operations are gronped into departments by Chss of work or operation abd not he fase of proxlact. Fach department preforms some delinite kind of operation, and each handles all the parts that refuire that particular operation. Thus we have punch press departments, erow mathine departments, a milling department, a drilling department, ete.

The parts produced in these specialized departments pass in proper sequence through all the departments that have work to do on them and finally reach the assembly departments, where they are made up into finished units of opparatus.

The advantages of this methorl of dividing manufacturing work are that it minimizes investment by atroiding duplication, increases machine activity, provides greater tlexibility of equipment, and permits the training of umskillet labor to the point of full productivity in the shortest time.

The conclusion may have been reached that departmental groupings by classes of machines such as bave been elescribed is all right for a business of little variety, but that in such a large endeasor handling so disersified a prorluct, it would seem nearly impossible to maintain a proper balance of equipment in all the departments.

As a matter of fact, adjustments are frequently mate due to increased or decreased demands, and we frequently have to step up or down both our rate of production and our eapacity for certain lines of proplucts or certain definite articles.

To meet this situation, we have capacity data giving the mumber of hours required by machine operations, assembly operations, ette., for one thousand pieces of each kind of apparatus. With this information, we can readily compute the increase or decrease in shop equipment due to changes in schedules.

There are, of course, some departures from this general practice of functionalizing our machine departments in the case of certain products that require a large dmount of special machinery. In these cases, the few "general use" type machines required are gronped with the special machinery into a department for the complete manufacture of the article.

This special practice is also carried out in comection with the manufacture of certain piece parts. These cases are confined to a
few parts manufactured in large quantities where it is found expedient to group a variety of machines in order to reduce the amount of handling to a minimum. An example of this is the manufacture of the top part of the desk stand which supports the transmitter, which we know as the "lug hokder." This part is made from brass tubing. The operations involved in making the part are, cut to length, burr, several swaging operations, and a mumber of punch press operations, such as perforating, embossing, and trimming. We have in this case grouped together in the proper sequence the required number and sizes of milling, hurring, swaging and hammering matchines and punch presses.

Jobising; Silop

We atso have a group of departments known collectively ats the "Jobbing Shop" which is equipped to perform all the usuat machining operations. These departments handle the manufacture of special apparatus, which is made in such small quantities that it does not pay to make the claborate manufacturing preparations which are justifiable in the case of heaty rumning apparatus for which there is an established demand.

To give you some picture of just what we set out to do when we plan a job, the fotlowing different steps or problems which must be worked out are enumerated briefly:

1st. Manufacturing Drawings.
These drawings tell the shop in detail what is to be made and what the requirements are.
2nd. Mamufacturing Operations.
The actual operations recuired to produce the parts and their proper sequence are decided upon.
Brd. The machines on which the operations are to be performed are determined.
thh. The kind of toots, fixtures, gatuges, convering, and other expipment to be used is determined.
ith. An expected hourly output for each operation is set up.
tith. The grade and rate of pay of the operators to be emploged are determined.

Tth. The kind and amoum of raw material recpuired per thousand parts and the form in which it shatl be purchased are determined.

Sth. Mambacturing I..|vomts.
These lowouls lell the entite shop organization cich slep in making the pats - bown on the manntaturing drawings
Whe. The piece rate to be patill for eath pheration is determineal alter atetuld mambetume is started.

The mamafeturing drawings prepared for any piece of Western Electric apparatus comprise complete detail drawings for cath part, an assembly drawing showing how the various parts are associated, a stock list of the parts required and the quantities of each, and a test sheet which shows the meeranical and electrical requirements which the apparatus must meet in order to insure satisfactory performance in the System.

In the preparation of these drawings, stanelards are followed which insure that the designs as far as possible will permit of rugged toxal construction which will insure long tool life; that the holes are of such dimensions ats will permit them to be perforated wherever possible; that thread sizes for the tapped holes selected are such as to insure minimum tap breakage; and other similar details.

M.ANLFACTLRINC; OpER.ITION:

Before deciding upon the manufacturing operations for any part, a careful detailed analysis is made by the Planning Engineers 10 determine just what uperations are reguired and hew the operations shall be performed in order to obtain a satisfactory production in the most cronomical way:

In the casc of simple parts, it is mot a difficult task to determine the mamufacturing operations required and their proper sequence. A large proportion of the parts, however, is in the fairly difficult class, and the ingemity of the Planning Engineer is called upon, together with the advice and guidance of his superiors, in determining the manufacturing uperations to be used in these cases.

A fair prosortion of our pronluct makes up what might be called the "difficult class" of parts to manufacture, and in setting up the proper procedure in these cases, we frecpuently hold conferences where the best talent along the particular lines under consideration is called into consultation in determining the best procelure. In many of these cases actual experimentation is carried on before the final tool line-up in decrited upon.

Machtne Eqtopment

The machine equipment on which the operations are to be performerl is the next thing given consideration, and the most important features are:

1st. To select a machine that is cappable of producing the parts to the desired accuracy:

2nd. To select a machine that will result in the maximum production, keeping in mind, of cousse, the accuracy requirecl.

Brl. To give proper consideration to the investment, maintenance and overhead charges incurred by the machine selected so that these charges do not offiset production economies expected.

Wh. To insure that the machine selected is uj) to date with regard to the latest machine practice developments worked out by Hawthorne and by commercial machine manufacturers.

There are, of course, many other features which must be taken into account in selecting the machines for the manufacture of varions kinds of parts.

In the case of banking uperation on a punch press, the object is to secure the smallest and therefore the fastest press which has sufficient tonnage capacity to perform the operation required.

Where the part is to be manufactured on an automatic serew machine, the problem is to select the fastest machine that will produce the work to the accuracy requirel, and at the same timeselote at machine that has a sufficiont momber of spindles and tool positions. to permit all the operations required being performed before the parts are finally cut from the roxl.

A part having a large mumber of holes to be drilled will necessitate the selection of a multiple spindle machine that can be set up to produce the maximum number of holes in one or several parts at each operation of the drill prens.

We hate worked ont numerons improvements in commeretial machinery that have now been incorporated in the product of many machine tusl manufacturers. Some of the most important of the ere are motor driven punch presses, screw machines, milling machines, lathes, ete.

Fig 3 shows the ohd bett-driven milling mathine. It denes men

Fig. 3 Bett Driven Milling Machine

Fig. f shows the moxlern moter-driven milling machine with the mosor momted in the base and a chat drive enclosed in the housing at the back lriving the spintle.

It our suggestion, several of the largest manufacturers of serew mathines hate incorporated serew shoting devices as standard equipment for multiple spindle mathines.

We have just recently worked ont a design whereby a high speed screw marhine. formerly adapted to brat- pats only, can mow have its spindle sperel refluced through change gears so as to make it aldiptable for iton and nickel silver parts, thus prowiding greater thexibility.

P'unch presses were formerly liable to serious damage if two blanks were accidemtally placed in a forming die. We have worked out a design of ram which contains a "shear ring." This consists of a soft metal ring so incorporated in the commeting rod of the press as to

Fig. 4 Motor Drisen Milling Machine
shear at any prefetermined pressure, thus allowing the connecting rof to telescope instead of breaking the die or frame of the press. This improwement permits operating punch presses safely at greater speeds than are usual on this type of equipmemt.

Numerons other similar improvements have been worked ont, many of which have been patented.

Toors.

The annual demand for the proderet is the most important factor in determining the kind of tool, fixture, and gatage equipment to be provided.

Oar most intricate engine ring prohlems arise in connertion with punch press texals as there is almost mo limit to the variety of operations that can be performed on this type of machene.

If the demamel for a part marle on a pmoth press is small, it is often found more eronomical to huild simple tools which will bank out. perforate and form in separate operations, rather than to build more chaborate tools at a higher cost which will comhine two or more operations into one.

The effect of quantity on the design of toxis may best be shown by a concrete case.

The Effect of Ansuad Demind ds Cume of Manteactiring Methob

Fig. 5
Take, for illustration, the case of a simple brass washer $5 / \mathrm{s}^{\prime \prime}$ in diameter, I/ $16^{\prime \prime}$ thick and having a $1^{\prime} 4^{\prime \prime}$ hole. As shown in Fig. 5, with a reguirement of 5,000 a year, the washer would be made from encl stock in a hand screw machine using general use tools at a cost of $\$ 10.00$ a thousand: for 30,000 a year it would be made from sheet stock in a punch press using at one-at-it-time tool, at a cost of $\$ 2.30$ a thousand; for 500,000 a year a three-at-it-time tool would be used at a cost of $\$ 1.72$ a thousand; for $3,000, f 000$ a year a seven-at-a-time tool would be used at a cost of $\$ 1.52$ a thousand.

In each one of these steps, ats shown in the columns at the right, the additional tool investment, necessitated by the more advanced
method, woukl be liquidated in one year by the decreased mantifacturing cost.

Where a high degree of acouracy is reguired on a piece of apparatus, the overall effect on the tool equipment is to require a greater number of individual tools, as well as to reguire tools of a higher grade of workmanship). For instance, it may be necessary in the case of a punch press part to hold certain dimensions of the blank to extremely close limits, and this quite often rerpuires an additional operation of shaving the blank to size. This adds an additional tool to the equip ment, as well ats reguiring a tool of greater accuracy.

Vou will appreciate that the matter of interchangeability is one of great importance-first, becamse the parts must go together in the assembly departments without any further fitting-and second, the parts and pieces of apparatus shipped over the entire country for repairs and maintenance must be exact duplicates of the old.

It costs more to make interchangeable parts than to make inaccurate ones that are not ahways interchangeable, and the Planning Fingineer can control the tool and manufacturing costs very largely. by his julgment in the sdection of limits.

Ihotris Ohtpet

The llanning Engineer, in analyang the work on a given part for the operations, machines and tooks to be provided, from his experience and training in the particular kind of work he is handling, is able (0) establish an expected hourly production for each operation he handles. He is, of course, guided in this he his experience on similar parts and by the speed of the machines selected for the operation.

The setting up of the expected output for assembling operations is more diffoult, but here atso the special training and experience of the engineer along that line of asembly work enable him to set up an expected output which is approximately accurate. In some cases, we go so far as to tear down and reasiemble models of the apparatus in order to obtain the necessory data.

The output per hour on each uperation emables the engineer to compute the number of each kind of tool, including spares which must be buile, to produce the required guantity of each part. The number of tools recpuired is obsionsly dependent on the speed of the uperation, and here again you see the effect on tool costs if the engineer fails to select the fastent machine suitathle. When it is considered that we hathe nearly $\$ 3,(000,000$) invested in took for the manofacture of pand machine switehing apparatus alone, it can be appreciated What planning means to us.

I.atoos Cik.im:

The Plomming E:nginere in addition to eatablishing the values alrendy mentioned, has alan the responsibility of aderting the grate of lateor which is to be tased in performing the wotous operations. Different grades hase been established for men and women, and caro grade coners asuliciently brobld rathge of rates to emblble us to hire the emplosees at the starting rate of the grade and to advance them in the grate as they become more proficient and experienced.

Riw Materin.

The Planaing Fngineer specifies the kind and amoumt of raw material required for each part incholing the scrap allowance. He alas specifies the form in which it shatl be purehased that is to saty, whether in rexl. tubing, and in the case of sheet stock whether in the shope of sheets, strips, we rolls.

MANtFATIRING L.ivoters

The next step in preparing a piece of apparatus for manofacture is the working up of detailed manufacturing layouts. These layouts constitute the "sailing orders" for the shop, cowering each operation in be performerl. how the work is to be done, the secpuence of the operations. the tonls and machinery to be used, raw material and quantity recfuired, ame the stock romm to which the parts shall he delisered upon completion.

These layouts are got out in the form of duplicated sheets and a complete ldyout for each part is sent to every department having work in perform.

Piece. R.ites

When all the preparation steps have been completed and after the various opreations have been tried out and are rumning in the operating departments on a satisfactory commercial basis, the Ilamning Organization procteds to establish piece rates on each operation.

The piece rates are e-stablished by the same organization of engineerwho plan the work, and the responsibility of seeing that the estimated outputs are realized devolses upon this organization. Before procereling with the studios involved in establishing the piece rate, the Planning Pingineer checks back against the wriginal plaming data and the mamforturing layout, and, in this way, ascertains the methox
as originally laid out, logether with the expected outputs. His task then becomes one of reeing that the expected output or better is attainerd.

This, in many cases, involves a very detailed time and motion study of the elementary operations necessary to complete the job in order that it be brought to a high state of efficiency. In cases where the expected output cannot be realized by the original method, other methosls are worked out wherever possible to loring about the desired result.

Just a word right here on our piece rate policy: when piece work was introduced many years ago, the poliey was established that after a rate had been once issued it should not be cut unless a change had been made in the method of manufacture. In other words, we take the stand that an issued rate is a contract which cannot be rewoked solong ats the operation is done in the same manner as covered by the piece rate card.

To satisfactorily carry out a policy of this kind, it is obsious that our piece rate setting must be something more than mere stop watch observation. In order that piece rates are established which are accurate and fair to both the employee and the Company, it is necessary that the engineers setting the rates be well versed in the class of work being rated, and hate a thorough knowledge of the amount of work which can be consistently produced by the operators.

Our experience with the straight piece work form of incentive has been very gratifying, and in our opinion this is very largely due to the following three reasons:

1st. Our policy of mot cutling rates.
?nd. Our practice of making careful time studies in setting our our rates.

Brel. Our guarantecing the employee's day rate regardless of his carnings on the piece rate.

The work of the Ilaming Engineer is not completed, however, upon the estahlishment of the piece rate, since it still rests with him to chat aty difficulties the shop) may experience due to any shortcomings of any of the planning work.

If the raw material provided will not satisfactorily prodnce the parts, he is called upon either to add operations or to specify other material; if the tools will not prosluce the parts to the required accuraty, or at the reguired rate, he is called upon to have satisfactory rhangen made to the towis or to provide new equipment

In cise the operators are mathle to probluce sullicient parts to make sutisfatory piewe work earnings after a reasomable |rial, the Plaming Fingineer is called noon to either demomstrate that satisface tory earning can le mate, or to increase the rate.

The Plaming lingineer is also called upon to assist in wercoming manufacturing difieutties for which he is mot directly responsible, and a special mit hats been set up to assist the shop in cases of this kinel when diffenties are encountered.

From this, it can be seen that the Plaming Engineer has not only the responsibility of plaming the work, but he is also charged with seeing to it that the plan work: out.

Cost Reductuon Work

There is still one more highly important function performed by our Plaming Organization, viz., Cont Reduction Work.

It might appear that after the careful thought already given to the methexls to be employed in producing a piece of apparatus, the necessity for further study has been eliminated. This, however, is not the case, since in the original planning we must adhere closely to metheds and processes that have been proved in. in order that the products may be prosluced on a specified date and at a predetermined cost.

In other words, we camot take any short cuts at this stage of the work that we are not sure will work ont successfully. However, after the piece of apparatus is in production, we are in a position to review the case and try out new ideas, improved metheds, tools and machinery, without jeopardizing production. Naturally, any in-prowement- worked out sucessfully he the Cost Realuction Eingineers are later used by the regular Planning Organization when applicable on future work.

This cost rerluction work is handed on a strictly business hasis. i.e., the cosit of the case is charged up against the savings effected and our records show that the returns on this work are very high.

There is a typical illustration of a cost reduction case shown in Fig. 6. This is the base for the sub set housing on which the apparatus is mounted. The ald design is shown at the left. There were three separate pieces which had to be assembled together. Part 13 was riveted to the base . le at c, c to form the cars which stand at right angles to the base. Part I) was asombled to the base A with two machine serews, E, E. The design was changed at the suggestion of
the manufacturing department to make the part in one piece. It had previously been thought teo complicated to combine all these operat tions in one part, but the tools were successfully developed, and the sating on this particular job amomed to something like one hundred thousand dollars a year, or about ten rents a piece.

Fig. 6 Sul, Set Base

The Prersonvis.
So far the job we hate to do and how we do it hats only been death with, athd the quatilications athd trating of the persomel reguired hate not beron mentioned.

Our Plaming Organization is latd out in at maner similar to our shop departments: that is, the planning of the varions mambacturing

Oprations is disided into class of work or operations and mot hy class of pronluct, each clasis being handled hy a group of phaming enginerers in charge of ath expert thoroughly familiar with the line of m.tanfacture he lamalles. In this mataber each group performs some eliferent lime of phaning and hamelles all the bariome parts that reguire that particular operation.

The personotel of our Phaning Orgazation, exeluaise of department supervisors abd clerks, consists of shi college gromluates, bis tratiset men who hase come to this organization from our shope elepartments, or who have had experience in wher shops, and 38 men who are ueither college graduates nor shop men. The last group of men are mostly those of high school education who hase been trained in our line of work.

The requirements of the Planning Engineer on whom the responsibility rests for the successful manufacture of our apparatus are quite extensive. He must first hase the ability to plan the mannfacture of the apparatus in the most ecomomical manner consistent with the quantity and quality desired and this, of course, cammot successfully be done without it thorough knowledge of the methods and practices necessary in carrying on manufacturing activities along one or more definite lines. He must have a large measure of foresight, therehy reducing to a minimum the difficulties that are bound to occur when the manufacture of a new or changed piece of apparatus is started.

Furthermore, he must make a study of the design of the apparatus under consideration to determine if there are features of it which present manufacturing clifficulties either from a tool, assembly, or adjustment standpoint. This part of our work involves a discussion of the manufacturing problems on a new design with the Engineering Organization and the men who handle this work must be able to expresis themselses in a clear and concise manner to insure that proper consideration is given to the manufacturing suggestions.

It goes without sitying that the men who fit best into this organization are those who have harl the benefit of an engineering education, preferahly specializing on manufacturing methods.

We have, as you will have noted, a large number of planning engineers who have had actual shop experience either with us or in other manufacturing plants, and litule or no technical education before working in the shops.

It is noticeable that these men, almost without exception, have realized their handicap due to the lack of a technical education and have either taken advantage of our schnols or school work outside.

As stated previously, we have three main sources of supply for the men making up our Plaming Organzation; first, the Engineering Institutions; second, shop men who have the experience and have to some degree educated themselves in engineering; and third, high school graduates whom we have trained.

Such a combination of trained men makes a strong organization in which the man of superior eclucation and the practical man are mutually helpful to each other in the successful working out of our manufacturing problems.

Irregularities in Loaded Telephone Circuits
 By GEORGE CRISSON

Abstract

sinomb. The development of long dishane telephone tranmivaion has made the yuction of line irregularities a mather of great importance because of their harmful effect in prowheing exhe currents and cousing the repesters to sing The structure of enil-loaded circnits permits the e.aldulation of the probatility of obtaining an assigned accuracy of hatane between line and net work when certain data are known or assmmed regarding the acruracy of loading coil inductance and section capacity: Formulae are given and the results of calculations compared with mensurements made on circuits of known accuracy of loading.

1.5REDterton

THE application of repeaters on telephone circats in which the speech currents in the $t w o$ directions of transmission pass through the same electrical path, has caused considerable emphasis to be placed on the matter of making the telephone circuits as free as possible from irregularities. This paper aims to present the theors of the relation between the irregularities in coil loaded lines and the effects resulting therefrom, which have an important bearing upon the operation of two-way telephone repeaters.

The idea of applying the theory of probability to the problem of summing up the effects of many small line irregularities was first suggested in 1912 by Mr. John Mills. The effect upon repeater operation of impedance unbalance had been mathematically analyzed by Dr. G. A. Camplell; and the effect upon impedance of a single irregularity of any type had been insestigated by Mr. R. S. Hoyt. Using a probability relationship which was pointed out by Mr. E. C. Molina, Mr. Mills developed a formula which gives the average or probable impedance departure in terms of average or probable irregularities in inductance or capacity, which served at the time of the engincering of the transcontinental line (1913 14) and for some years after.

With the rapid growth of repeatered circuits in cable it became necessary to calculate what fraction of a large number of essentially similar lines would give a definite imperlance ambalance at a given frequency: The necessary mathematical work to indicate the conditions for a large gromp of similar lines was recently carried out independently by Messers. H. Nyquist and R. S. Hoyt.

The theory which has thas been evolved over a period of years is now presented in a manner which it is hoped will lee found relatively simple and useful. Various charts are gisen which should be of
material aid in the application of the theory. There are also given the results of some experiments made on cable circuits in which comparison is made between the impedance departures of the circuits as obtained by direct measurement with the departures as computed from data cosering the indisidual irregularities. These impedance

Fig. 1
departures are expressed as "return losses," the meaning of which is explained below. The agreement is shown to be close enough to constitute a good check as to the correctness of the underlying theory.

Magnitude of Reflectel) (current

In Figg. 1, are shown three regular ${ }^{1}$ telephome lines of the same type beginning at a certain point A . The first line L_{1} passes through another point B and continues on to infinity. The second line L_{2} terminates at B where it is connected to an impedance Z_{8} which differs from the characteristic impedance Z_{o} of the three lines, thas (enstituting an irregular termination. The third line L_{3} also terminates at β where it is connected to an impedance Z_{t} and a generator G of zero imperlance whose purpose will he described later. At the sending end A each line is provided with one of three dentical generators, C_{1}, G_{2}, G_{3}, having an impedance equal to Z_{o} the characteristic impedance of the line. The internal volages of these generators are all equal and represented by E. The generator G_{1} impresses a

[^105]woltage $F_{\text {o }}=\frac{1}{2}$ IE ugon the sending rad of the line L_{1} and caluses a current l_{0} to thow into it. The voltage and coment wave are propatsated regularly wer the line to the pent B where they set up a poternli.l difference E_{1} between the combluctors and canse a current I_{1} |w thow. E_{1} and I_{1} are smaller in magnitude and later in phose than E_{o} and I_{0} becanse of the fosses and linite velocity of transmisaion of the line L_{2}. These gnomtites have the relation
since the line is regular.
In the second line L_{3} a different set of conditions exists. In this case, the voldage E_{2} and the eurrent I_{2} prowhed at B by the generator have the relation
\[

$$
\begin{equation*}
\frac{E_{3}}{I_{2}}=Z_{t} \text {. } \tag{2}
\end{equation*}
$$

\]

When the e.m.f. of the generator G is zero, the conditions in the third line L_{3} are the same as in L_{2} but by adjusting the phase and magnitude of the e.m.f. of this generator the current in the terminal impedance Z_{t} can be made equal to I_{1} and the drop across this impedance beenmes

$$
\begin{equation*}
E_{3}=I_{1} Z_{1} . \tag{3}
\end{equation*}
$$

Inder these conditions the current I_{1} flows at the end of the line L_{3} and the potential difference E_{1} exists between the conductors at this point. The line L_{3} is then in the same condition as the line L_{1} between the points A and B. When the waves arrive at B over the line L_{3} the generator boosts or depresses the voltage at the terminus of the line by just the amount necessary to cause the terminal apparatus to take the desired current. Then the e.m.f. of the generator G is

$$
\begin{equation*}
E_{G}=E_{3}-E_{1} . \tag{4}
\end{equation*}
$$

Removing the e.m.f. of the generator G makes the conditions in line L_{3} identical with the conditions in L_{3}, but removing this e.m.f. is the same thing as introduring another e.m.f. $-E_{G}$ in series with the generator which annuls its e.m.f. E_{G}. This e.m.f. $-E_{G}$ causes a current I_{3} to flow back into the line

$$
\begin{equation*}
I_{3}=-\frac{E_{i}}{Z_{0}+Z_{i}} \tag{5}
\end{equation*}
$$

Substituting from equations (1), (3) and (1) abowe

$$
\begin{equation*}
I_{3}=\frac{Z_{0}-Z_{t}}{Z_{0}+Z_{t}} I_{1} \tag{6}
\end{equation*}
$$

That is, the effect of connecting an impedance Z_{6} to the end of a line of characteristic impedance Z_{0} is to return toward the source a current whose value is $\frac{Z_{0}-Z_{t}}{Z_{o}+Z_{t}}$ times the current that would exist at the terminus if the line were regularly terminated. The ratio between

Fig. 2
the reflected and the incident current is known as the "reflection coefficient," the value of which is expressed as follows:

$$
\begin{equation*}
r=\frac{I_{3}}{I_{1}}=\frac{Z_{0}-Z_{t}}{Z_{0}+Z_{i}} \tag{7}
\end{equation*}
$$

This ratio can also be expressed in transmission units (TU). When expresserl in TU this relation will be referred to in this paper as the "transmission loss of the returned current," or, briefly, as the "return loss."

If a condition occurs in a line which causes the imperlance at any point to differ from the characteristic impedance it has the same effect as an irregular termination.

Returi Ioos at a Remeater I)ee to a Singel Irregularity
Fig. 2 shows a No. 21-type repeater connected between a line and a network whose impedance is exactly equal to the characteristic impedance Z_{0} of the line. If the line is perfectly regular the repeater will be perfectly balanced and the gain can be increased indefinitely without cansing the repeater to sing.

Assume now that the line is terminated by some apparatus having an imperlance Z_{6} at a distance from the repeater such that the transmission losis of the intersening line is T TU. If a wave of current having a certain magnitude leaves the repeater, it is refluced in strength by T TU when it reaches the terminus. Of this current, a certain amount is transmitted batk toward the repeater, suffering a
further loss of 7 TL on the way; consequently, the relation expressed in Tl' between the strength of the currents leaving and returning to the repeater, that is, the return loss at the repeater, is given by the equation

$$
\begin{equation*}
S=20 \log _{10} \frac{Z_{0}+Z_{t}}{Z_{0}-Z_{1}}+2 T . \tag{}
\end{equation*}
$$

If the gain of the repeater, expressed in TU, is equal to or greater than S the repeater will sing provided the returning current has the correct phase relation to reinforce the original wave. For this reason the term "singing point" has frequently been applied to the quantity S, which is called returned loss in this paper.

If the line is shortened until the impedance Z_{8} is connected directly to the repeater terminals, the transmission loss 7 between the repeater and the irregularity is reduced to zero and the retura loss becomes

$$
\begin{equation*}
S=20 \log _{10} \frac{Z_{0}+Z_{t}}{Z_{0}-Z_{i}} \tag{9}
\end{equation*}
$$

Return Loss of Irregular Lines

In practice, lines are never perfectly regular. Not only is it impracticable to build apparatus which would form a perfectly regular termination for a line, but there are numerous causes of irregularity in the lines themselves, each one of which is capable of reflecting a portion of the waves which traverse the line. These irregularities can be kept smaller than any specified amount if sufficient care is used in building and maintaining the line but they cannot be entirely eliminated; consequently, if a length of actual line is terminated regularly by a network of impedance Z_{o}, the return loss will be high if the line is carefully built and low if it contains large irregularities. The return loss of such a line, when terminated regularly by a network is a measure of the quality of the line from the standpoint of repeater performance. In measuring the return loss of a line it is necessary that a rather long section of the line be available so as to include all irregularities near enough to have an appreciable effect upon the result. If the section measured is too short, the result will be too high because only a few irregularities will be included.

Calculation of the Returi Iosis of Coil loaded Lines

Owing to the facts that the inductance of coil loaded lines is concentrated principally in the loading coils and the capacity is divided into elements of finite size by the loading coils and, further, that the
electrical irregularities are due principally to the deviations of the inductance of the coils and the capacity of the sections from their average values for the line, it is possible to calculate by a fairly simple method the value of the return loss of a coil loaded line if the representative values of these deviations and the electrical properties of the line are known or assumed.

Since the return loss depends upon the accidental combination of a large number of unbalance currents there will not be one definite value applying to all circuits, but an application of the theory of probabilities makes it possible to compute what return loss will prohably be surpassed by any assigned fraction of a large group of lines having the given deviations.

The method of calculating the return loss of coil loaded lines will now be described. The symbols used in this description and their meanings are given in the following table:

TABLE I

A =Attenuation Factor per Loading Section = Ratio of the Current 1.eaving a Loading Section to the Current Entering it.
$C=$ Nornal Capacity per Loading Section in Farads.
$F=$ Fraction of a Large Group of Lines.
$f=$ Any frequency for which a Return Loss is to be Found.
$f_{e}=\frac{1}{\pi \sqrt{L C}}=$ Critical or Cutoff Frequency of the Line.
$I_{C}=$ Representative ${ }^{2}$ Deviation of the Capacity of Loading Sections.
$h_{C}=$ Deviation of the Capacity of a Particular Loading Section.
$I_{L}=$ Representative ${ }^{2}$ Deviation of the Inductance of Loading Coils.
$h_{t .}=$ Deviation of the Inductance of a Particular Loading Coil.
$H=\sqrt{ } I_{c}^{2}+H_{L}^{2}=$ Representative ${ }^{2}$ Combined Deviation.
I. $=$ Current Entering the Line.
$I^{\prime}=$ Representative ${ }^{2}$ Total \ln - ${ }^{\prime}$ 'hase Returned Current at the Sending End.
$I^{\prime \prime}=$ Representative ${ }^{2}$ Total Quadrature Returned Current at the Sending Eind.
$I_{r}=$ Value of Returned Current which will be Exceeded in a Specified Fraction F of a Large Ciroup of Lines.
$i^{\prime}=$ Total In- Phase Current at the Sending End of the Line.
$i^{\prime \prime}=$ Total Quadrature Current at the Sending End of the Line.
$i_{1}, i_{2}, i_{3}, \cdots i_{n}=$ Currents Returned from the $1,2,3, \cdots$ and nth Irregularities.
$i_{1}^{\prime}, i_{1}^{\prime}, i_{3}, \ldots \ldots i_{n}{ }^{\prime}=\operatorname{In}$ - Phase Components of $i_{1}, i_{2}, i_{3}, \cdots i_{n}$
$i_{1}{ }^{\prime \prime}, i_{2}^{\prime \prime}, i_{3}{ }^{\prime \prime}, \ldots . i_{n}^{\prime \prime}=$ Quatrature Components of $i_{1}, i_{2}, i_{3}, \cdots i_{n}$
$k=\backslash \frac{L}{C}-$ Nominal Characteristic Impredance of the Line.
$L=$ Normat Inductance of a I.oading Coil.
$n=$ Number of Irregularities.
$P=$ I'rolability Function for the Absolute Value of the Total Returned Current at the sending lind.
$p^{\prime}=$ Frobability Function of the Total In-I'hase Returned Current.

K_{L} Representatse: Reflection (iselfinemt at Inductane Irregularities.
$r_{1}=$ Keflecton (ientlicient at a (iupacity: Irregularity:
$r_{t}=$ Retlection C'inefficient at an Inductance Irregularit!.
$r_{1,} r_{1}, r_{3}, \ldots r_{n}=$ Kellection Cinellicient at the 1, , , 3, . . . nth Irregularities.
$S=$ Return I.oss, Intinite I ins.
$\mathrm{S}_{\mathrm{N}}=$ Return I.oss, Finite Line.
$s_{A}=$ Altenation Function.
$S_{r}=$ Distribution Function.
$S_{H}=$ Irregularity F unction.
$s_{5}=$ Frequency Function.
$T=$ Transmission Luss in a Finite line.
$H_{1}, t_{2} \|_{3}, \ldots .0_{n}$ - 'hase Ingles of the Currents at the Sending lind Keturned by the $1,2,3, . . . n$ hth Irregularities.

$$
w^{\prime}=f_{1} f_{0}
$$

Rh:fiem fion ir i Cuht. Irregiti.irtity
If a loading coil hats $t(x)$ much or too little inductance, the effect is the some as if a small intluctance $h_{L} L$ had been added to or taken away from the coil. The reactance of this increment is $2 \pi f L h_{L}$. The additional reactame has the same effect wherever it may occur in the load but it is somewhat simpler to assume that the increment is introduced at mid-coil. Within the useful range of telephonic frequencies, the mid-coil impedance of a loated line is gisen closely: by the expression $k \sqrt{ } 1-u^{2}$.

In equation (7) $Z_{0}-Z_{t}$ corresponds to $2 \pi f L_{2} h_{L}$ while $Z_{0}+Z_{t}$ is approximately equal to $2 k \sqrt{ } / 1-w^{2}$ when the irregulatity is small. consequently:

$$
\begin{equation*}
r_{L}=\frac{\pi f L h_{L}}{k \backslash / 1-u^{2}} \tag{10}
\end{equation*}
$$

and, substituting for f and k their equivalents obtained from relations given in Table 1 .

$$
\begin{equation*}
r_{I}=h_{L}, ~ z^{\prime}, u^{2} \tag{11}
\end{equation*}
$$

Reflection it a SiliNi lrregltarity

If a loading section has too much or too little capacity, the effect, neglecting conductor resistance, is the same as if a small bridged capacity $h_{C} C$ were added to or removed from the line. The effect

[^106]is the same for any point in the section, but it is somewhat simpler to assume that the additional capacity is applied at mid-section. The reactance of the added capacity is $\frac{1}{2 \pi f h_{C} C}$ and the mid-section impedance is, closely, $\frac{k}{\sqrt{1-w w^{2}}}$.

When the bridged reactance is large compared with the line impedance, the reflection coefficient r_{C} is given closely by the equation

$$
\begin{equation*}
r_{C}=\frac{\frac{1}{2}}{\frac{\sqrt{1-w^{2}}}{1}} \frac{1}{2 \pi f h_{C} C} \tag{12}
\end{equation*}
$$

from which, substituting the values of f and k as before

$$
\begin{equation*}
{ }^{r} C=h_{C} \frac{w}{\sqrt{ } 1-w^{2}} \tag{13}
\end{equation*}
$$

which is identical in form with equation (11) above.

Approximations Made in Deriving r_{L} a.id r_{C}

The expressions for the mid-coil and mid-section impedances used above in deriving equations (10) and (12) are simple approximations which take no account of the effects of the resistance of the line conductors and loading coils, leakage between conductors or distributed inductance. The errors due to these effects are negligible in the important parts of the frequency range involved in telephone transmission when the types of loading and sizes of conductors now commonly used are considered. The errors due to these causes tend to increase for frequencies which are very low or which approach the cutoff frequency. For accurate calculations relating to very light loading applied to high resistance conductors it would be desirable to take into account the effects of resistance. Because the use of the precise expressions would greatly complicate this discussion and would probably serve no very useful purpose at this time, the approximations given above are used.

Current Returned to the Sending; End of the Line

Consider first a line having only one kind of irregularity as, for example, one in which only the loading coils are assumed to vary from their normal values. If a current I_{0} enters such a line, a current
i_{1} is returned the semding end from the tirst irregularity (ansumed (1) be very near the sembing end)

$$
\begin{equation*}
i_{1}=r_{1} I_{0} \tag{14}
\end{equation*}
$$

a second current

$$
\begin{equation*}
i_{2}=d^{2} r_{2} I_{0} \tag{15}
\end{equation*}
$$

is returned from the irregularity located at a distance of one loading section away from the eroding end, since the current is reduced hy the factor A in going to the irregularity and again in returning.

Similarly, a current

$$
\begin{equation*}
i_{n}=A^{2(n-1)} r_{n} I_{0} \tag{16}
\end{equation*}
$$

is returned from the nth irregularity:
The first current will return to the sending end with a certain phase angle ${ }^{1}$, with respect to the initial current, the second with a phase angle 0_{2}, etc. Each returned current may be resolsed into two components, one in phase with the initial current and one in quadrature.

The in-phase components of the currents are then:

$$
\begin{align*}
& i_{1}^{\prime}=I_{0} r_{1} \cos \theta_{1} \text { from the first irregularity: } \tag{17}\\
& i_{2}^{\prime}=I_{0} r_{2-1} I^{2} \cos \theta_{2} \text { from the second irregularity. } \tag{18}\\
& i_{3}^{\prime}=I . r_{3} I^{4} \text { cos } \theta_{3} \text { from the third irregularity: } \tag{19}\\
& i_{n}^{\prime}=I_{n} r_{n} I^{2 n-1)} \text { cos } \theta_{n} \text { from the } n \text {th irregularity: } \tag{20}
\end{align*}
$$

and the quadrature components are:
$i_{1}^{\prime \prime}=I_{1} \operatorname{rin} \theta_{1}$ from the first irregularity:
$i_{2}^{\prime \prime}=I_{0} r_{2} A^{2} \sin \theta_{2}$ from the second irregularity:
$i_{3}^{\prime \prime}=I_{0} r_{3} \cdot A^{4} \sin \theta_{3}$ from the third irregularity:
$i_{n}^{\prime \prime}=I_{0} r_{n} \cdot 1^{2 \cdot n-1)} \sin \theta_{n}$ from the m in irregularity:

Now the deviations of the inductance (and capacity) resemble the errors of measurement discussed in many text books dealing with the precision of measurement, consequently, they can be studied and their effects combined by the same mathematical law.

Famination of measurements of the inductance of large numbers of loating coils and the capacities of the patirs and phantoms in many: reels of cable have shown that the most reasonable assumption is that the deviations of inductance and capacity follow the "normal" law of the distribution of errors.

The deviation at each irregularity is not known but it is possible to derive from the measurements of the inductance of large numbers of loading coils (and the capacity of many lengths of cable) represemta-
tive value for these deviations similar to the "mean error." Becanse of the way in which the effeets of irregularities combine, this representatize deriation is taken as the square root of the mean of the squares of the deviations (r.m.s. deviation) of the individual coils. If the average deviation of a large group of coils is known, but the individal deviations are not, it may be multiplied by 1.2533 to obtain the representative deviation on the assumption that the deviations follow the normal law of errors.

If then the representative deviation H_{L} is substituted for the particular deviation h_{L} in equation (11), we ohtain the representative reflection coefficient

$$
\begin{equation*}
R_{L}=I_{L} \stackrel{w}{\sqrt{ } 1-w^{2}} . \tag{25}
\end{equation*}
$$

Now in the usual case where no effort is made to select the loading coils and so obtain a special distribution of the deviations the representative deviation and the representative reflection coefflcient are the same for each coil. Substituting R_{L} for r_{1}, r_{2}, etc., in equations (17) 10 (21) each equation gives the representative value, at the sending end of the line, for the current reflected from the corresponding irregularity.

Aconding to the laws for the combination of deviations which are demonstrated in treatises dealing with precision of measurements the representative value of the current due to all the irregularities would be the square root of the sum of the squares of the representative salues of the different currents taken separately, consequenty. the representative in-phase current is

$$
\begin{equation*}
I^{\prime}=I \cdot R_{L} V^{\prime}\left(\cos ^{2} \theta_{1}+A^{4} \cos ^{2} \theta_{2}+A^{4} \cos ^{2} \theta_{3}+\cdots A^{4 n-1)} \cos ^{2} \theta_{n}\right) \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
I^{\prime \prime}=I_{n}, R_{l} \backslash^{\prime}\left(\sin ^{2} \theta_{1}+A^{+} \sin ^{2}()_{2}+I^{2} \sin ^{2} \theta_{3}+\cdots \cdot A^{1(n-1)} \sin ^{2} \theta_{n}\right) \tag{27}
\end{equation*}
$$

By asoming that the represemtative in-phase and quadrature curconts are equal the following steps can be greatly simplified. In view of the varying effects of frequency, distance from the sending enal and nature of the irregularity upon the phase relations this appears to be a justifiable assumption, so combining I^{\prime} and $I^{\prime \prime}$ in quadrature,

For a limite mumber of irresulatites. that is a tinte line terminated ha a perfer network just leyont the nth coil:

$$
I^{\prime}=I^{\prime \prime}=\left.\begin{align*}
& I R_{t} \tag{29}\\
& I_{2}
\end{align*}\right|_{1-1^{n n}} ^{1-1^{n}}
$$

Wheh is ohtatmed by smming up the series of terms under the radical itl explltion (2))

For an intinitely long line $A^{1 n}$ beoones zero since $A<1$ and

$$
I_{\infty}^{\prime}=I_{\infty}^{\prime \prime}=\begin{array}{llc}
l_{1} R_{t} & 1 \tag{30}\\
1 & 2 \\
1-A^{4}
\end{array}
$$

I' corresponds (the r.m.s. error in the ordinary theory of errors. consequently the probability funetion for the distribution of the inphase currents is :

$$
\begin{equation*}
p^{\prime}=I^{\prime}, 2 \pi e^{-\frac{i^{\prime 2}}{2 I^{\prime 2}}} \tag{3।}
\end{equation*}
$$

("hamging the acconts, this equation also applies to the quadrature componemts.

The probability that the in-phase current lies between two near by salues i^{\prime} and $i^{\prime}+d i^{\prime}$ is then entual to $p^{\prime} d i^{\prime}$ and the probability that the guadrature component alos lies between two values $i^{\prime \prime}$ and $i^{\prime \prime}+d i^{\prime \prime}$ at the same time is $p^{\prime} d i^{\prime} \times p^{\prime \prime} d i^{\prime \prime}$. Transferring to polar conedinates, ${ }^{3}$ the probability that the total returned current will be between a value $i=\backslash^{\prime} i^{\prime 2}+i^{\prime \prime 2}$ and a slightly different value $i+d i$ and also have a phase angle between θ and $\theta+d \theta$ is

$$
\begin{equation*}
P=\frac{1}{2 \pi I^{\prime 2} i e^{-1^{2}}}-\frac{2 l^{2}}{-2} d i d \theta . \tag{32}
\end{equation*}
$$

Integrating with respect to the phase angle θ between O and 2π (t) find the probability of obtaining a current hetween i and $i+d i$ of any possible phase displacement

$$
\begin{equation*}
F=\frac{1}{I^{\prime 2}} \int_{l^{2}}^{\infty} i e^{-2 i^{2 / 3}} d i \tag{33}
\end{equation*}
$$

Integrating between $I_{\text {s }}$ and infinity gives the probability that the total returned current will exceed the valte I_{F}.

$$
\begin{equation*}
F=e^{-\frac{i^{2} r}{2 r^{\prime}} .} \tag{3•}
\end{equation*}
$$

[^107]In a large number of lines, F is the fraction of the whole group which will hase a return current in excess of I_{F}.

From the dedintion of the transmission unit the return loss of the line expresed in Tl , is given by the expression

$$
\begin{equation*}
S=20 \log _{10} \frac{I_{o}}{I_{F}}=-20 \log _{10} \frac{I_{F}}{I_{o}} \tag{35}
\end{equation*}
$$

from which

$$
\begin{equation*}
I_{F}^{2}=I_{O}^{2} 10^{-\frac{S}{10}} \tag{36}
\end{equation*}
$$

Sulstituting in (3.1)

$$
\begin{equation*}
F=e^{-\frac{I_{0}^{2}}{2 l^{\prime 2}} 10-\frac{S}{10}} \tag{37}
\end{equation*}
$$

Taking logarithms to the base e and transposing

$$
\begin{equation*}
10^{-10}=-\frac{2 I^{\prime 2}}{I_{0}^{2}} \log _{e} F \tag{38}
\end{equation*}
$$

Taking logarithms to the hase 10

$$
S=10 \log _{10}\left[\begin{array}{cc}
1_{o}^{2} & \tag{39}\\
2 I^{\prime 2} \log _{e} \frac{1}{i}
\end{array}\right]
$$

Sulstituting the value of I_{∞}^{\prime} from equation (30) for I^{\prime}

$$
\begin{equation*}
S=10 \log _{10}\left[\frac{1-A^{3}}{R_{L}^{2}} \times \frac{1}{\log _{e} \frac{1}{F}}\right] \tag{40}
\end{equation*}
$$

and the value of R_{L} from equation (25)

$$
S=10 \log _{10}\left[\frac{1}{1 H_{i}^{2}} \times \frac{1-u^{2}}{u^{2}} \times\left(1-1^{4}\right) \times \begin{array}{cc}
1 & \tag{+1}\\
\log _{e} \frac{1}{F}
\end{array}\right]
$$

By a similar process of reasoning it is evident that if the line contains capacity deviations only, the return loss is given by this same expression with I_{C} substituted for H_{L} and if both types of irregularity oscur the representative deviation is

$$
H=,^{\prime} H_{\dot{L}}+H_{\dot{C}}
$$

When $I_{\text {C }}$ © includes the effert of spacing irregularities as well as capacity deviations in the catbe. The foregoing expression can, for conveniones, lxe put in the form

$$
\begin{equation*}
S=S_{I I}+S_{w}+S_{F}-S_{A} \tag{42}
\end{equation*}
$$

in which ewh term depends upon only one indepenelent variable duel in which the symbols have the following meanings:

$$
\begin{align*}
& S_{I I}=\text { Irregularity function }=20 \log _{10} \frac{1}{I I} \tag{13}\\
& S_{w}=\text { Frequency } f \text { unction }=20 \log _{10} V \frac{V}{2 u} \tag{+4}\\
& 1 \\
& S_{F}=1 \text {)istribution function }=10 \log _{10} \log _{e} \frac{1}{F^{*}} \\
& S_{A}=\text { Aucnuation function }=10 \log _{10} \frac{1}{1-A^{4}}
\end{align*}
$$

Meanina of Equation (42)
To unclerstame more elearly the meaning of equation (42) imagine that a large number of circuits of the same type and gauge are to be huil in accordance with the same specilications so that the representatise (r.m.s.) deviation including all causes has the same value If for eath circuit. Further, imagine that the value of S has been calculated by formula (42) using a particular frequency f and a convenient fraction F. It is to be expected that when the circuits have been built and their return losses measured at the given frequency f the fraction F of the whole group will have return losses lower than S and the rest will have higher return losses.

In cliscussing expected results it is sometimes preferable to state the fraction $1-F$ of the circuits whose return losses will be greater than the assigned value rather than the fraction F whose return losses will be lower. This is done in Figs. 9 to 14 describet below.

Lodation of the First Irregularity

In equations (14), (15) and (16) and all the equations which depend upon them it was assumed that the first irregularity occurs at the sending end of the line. Two other assumptions are equally plausible and might under some circumstances be preferable. These are that the first irregularity occurs (a) at one-half section from the end or (b) at a full section. In the first case (a) the current returned to the sending end from each irregularity will be reduced by the factor A and in the second (b) by the factor A^{2}, that is the return loss given by equation (42) should be increased by (a) the amount of the transmission loss in one loading section or (b) twice the amount of the transmission loss in one loading section respectively.

RIFTLRA L.MAS: OF SHORT LINE:

When a line is short and regularty terminated the returned eurrent will be somewhat less than if it extents to infinity with irregularities and conseguently the return loss will be higher. From equations (29) and (30), the returned current is hwered in the ratie) $\frac{I^{\prime}}{I_{\infty}^{\prime}}=\sqrt{1-A^{4 n}}$ by limiting the line to n sections; consequently

$$
\begin{equation*}
S_{n}=S+\left(S_{n}-S\right)=S+10 \log _{10} 1-A^{4 n} \tag{47}
\end{equation*}
$$

in which

$$
\begin{equation*}
S_{n}-S=10 \log _{10} \frac{1}{1-A^{4 n}} \tag{48}
\end{equation*}
$$

is the increase in return loss.
Since the tramsmiswon lom in n sections of the line is

$$
\begin{equation*}
T=20) \log _{10} \frac{1}{A n} \tag{49}
\end{equation*}
$$

it is easily seen that the increate of return loss can be expressed as a function of this lons. Transposing (49) and substituting in (48)

$$
S_{n}-S=10 \log _{10} 1-\left[\begin{array}{cc}
1 & \tag{50}\\
\log _{10}^{-1} T \\
\hline
\end{array}\right]^{4}
$$

Cullats

The process of computing return losses can be greatly shortened hy using the graphs of equations (43), (44), (45), (46), and (50) to whatin the valuen of the varions functions. The accompanying Figs. is to 8 , inclusive, have been prepared to illustrate these graphs and for ue in rough calculations.

Sit may be obtained from any table or chart giving the relation between It and current atio by using I like a current ratio. Fig. 3 is a chart drawn erpecially for this purpose. For values of $I I$ lying between (0.1 and (0.111 look up) a point on the curve corresponding to 1t)/I amd ade 20 T1 wh the corresponding value of S_{H}, for values of // lying Inetween 0.101 and 0.001 look up a point corresponding to 10th/ and akd $10^{\circ} T^{\prime \prime}$ to the value of S_{H}, and so forth.

Figs. $4,8,6$, and 7 are corves giving the relations between the functions S_{w}, S_{F} and S_{A}, respectively, and the quantities upon whirh

lrpegularity Function - Tu $S_{M}=20 \log _{10} \frac{1}{H}$

Fig. 3

Fig. 4

Fig. 5

Atienlition Flnetion-Tl
In terms of loss per loading section

$$
S_{A}=10 \log _{10} \frac{1}{1-A^{4}}
$$

$A-$ Allenuation factor fer loading section, $L=20 \log _{10} \frac{1}{A}=$ loss per loading section in TI

Fig. 6
 are all pesitise exept ds indicated by the word "Subtract" ont the di,urams.

A simple medhod for extemeling the comere of Figg is is as follows: (.1) chosese a point on the curse within 3 Tl of the fower end. (S_{1}) subtract about 3 TI (accurately, 10) logio 2) from the value of Si: for this peoint, and (6) spatare the whe of F for this pronte. The results obtained for (b) and (c) are the coordinates of another point on the extension of the curse.

Fig. ti gives the relation between S_{A} and the transmission loss per loading section. On account of the wide use of 6,000 ft. spacing the curves of Fig. 7 are ploted w give the relation between S_{A} and the transmission loss per mile for $6,000 \mathrm{ft}$. spacing which is ustually a more convenient arrangentent.

Fig. A gives the amount, $S_{n}-S$, by which the return hoss of a regularly terminated line of finite length (n sections) is greater than that of an infinite line as a function of the transmission loss of the tinite line. This was calculated bẹ formula (.j0).

Calculation of Rettren Loss

The process of finding the return hoss by means of the curves is as follows:
(1) Determine the value of I_{L}, the representative deviation of the loading coils, and I_{C}, the representative deviation of the capacity of the loading sections. These depend upon the variations allowed in the specitications for loading coils and cable and upon the care with which the line is built. Calculate $I I=\backslash / I I_{L}^{L}+I_{C}^{2}$, the representative combined deviation of the section. look up the number of TU^{\top} corresponding to $I I$ in any suitable table or chart, such as Fig. 3, to find S_{H}.
(2) Assume the frequency, f, to be considered. Calculate $w=f$ and look up the corresponding value of S_{s} on Fig. 4.
(3) Assume a value of F and look up the corresponding value of S_{F} on Fig. $\overline{5}$.
(t) Look up the value of S_{A} on lig. $\overline{7}$, corresponding to the transmission loss per mile of the circuit at the frequency f if the coils are spaced 6,000 feet (1.135 miles) apart, or calculate the loss per section and look up S_{A} on Fig. 1j, if some other spacing is used.
(5) Calculate $S=S_{H}+S_{w}+S_{F}-S_{A}$.

Amencithon Finction- TU
In terms of loss pier mile of the circuit length of loading section (0)\%O) ft .

lig. i
Increase of the return loss when the line is limited to n sections

lig. s
(ti) If the return loss of a finite lengeth of line is desired determine the transmission loss of this lengeth and look up the corresponeting watue of $\mathscr{S}_{n}-S$ on lige. s. Whe this amenme to the vilue of S fonmed in [aragraph (i).

Eximers:

As an example to illustrate the application of these methods let Us calculate a return loss at 1,000 cyeles for No. 1! 11 -1-1-1-6i3 ${ }^{4}$ side circuits such that $!0$ per eent. of the circnits may be expected to have a higher value and only 10 per cent. to fall below it. The necessary data are given in T.sble II, below.
(1) $I I=1 \quad 1.00\left(62^{2}+0.0129^{2}+0.00 \cdot 15^{2}=0.01500\right.$.

Fig. 3 gives $36 .$.) Tl as the corresponding value of S_{h}.
(2) A 1.000 cyeles $u=\frac{1000}{2810}=0.3 .5 \mathrm{t}$

Fig. 1 gives s.t TU as the corresponding value of S_{w}.
(3) Since 90 per cent. of the finished lines are to have return losses greater than S and 10 per rent. less $F=0.1$ and Fig. is gives -3.7 TL ${ }^{*}$ as the corresponding value of S_{F}.
(4) The transmission luss per mile is 0.271 . Since the coils are spaced (3,000 feet apart. Fig. 7 gives 8.7 TU as the value of S_{A}. This same value would be obtained less directly by cateulating the loss per loading section, $0.271 \times \frac{6000}{5280}=0.311$ and using Fig. 6. The latter method is used when the spacing is different from 6,000 feet.
(i) ling equation (12)

$$
S=S_{I I}+S_{w}+S_{F}-S_{.1}=36.5+8.4-3.7-8.7=32.5 \mathrm{TU} .
$$

This will be found to agree with the 90 per cent. point on the smooth curse plotted in Fig. 10 which is described below.
(6) In case it is desired lind the return loss of a length of this line having a tranmmission lows of, for example, if TL' instead of the return less of the inflite line. Fig. \& gives $S_{n}-S=0.3$ from which

$$
S_{n}=32.5+0.3=32.5 \mathrm{TU} .
$$

Determination of Telieruble Deviations

To determine the deviations which correspond to an assigned value of the return losi find values of S_{w}, S_{F} and S_{A} as in paragraphs (2),

[^108](3) and (4) above and substitute in formula (42) to find the value of $S_{I I}$. This with a table or chart of TU and current ratio gives the value of II. Limits can then be imposed on the loading coil inductances and section capacities that will insure that the representative deviation witl not exceed the value $I I$ so found.

Comparison of Different Types of Circuits

These formulae are useful in comparing the return losses to be expected in various types of circuits which are built with the same accuracy in the matters of coil inductance and section capacity. In such cases it is merely necessary to calculate the quantity $S_{w}-S_{A}$ for each circuis and take the difference.

Example

As an example compare the No. 19-11-17t-63 side circuits worked out above with No. $16-\mathrm{H}-\mathrm{H}-\mathrm{S}^{5}$ circuits at 1,000 cycles. Since the deviations and the fraction F are the same only S_{w} and S_{A} need be considered. For the No. 16-gauge circuit $f_{c}=5.560$ and the loss in TU per mile is 0.236 . From these figures :

Gauge of Line	No. 19	No. 16
$w=1000$	0.356	0.18
S_{w} TU	8.4	14.8
S_{A} TU	8.7	9.4
$S_{w}-S_{A}{ }^{\text {T }}$ TUT	-0.3	5.4

These figures show that the return loss of the No. 16-H-4-S circuits should he higher than that of the No. 19-H-17-6.6 side circuits and the difference to be expected is $5.4-(-0.3)=5.7 \mathrm{TU}$.

When the circuits to be compared have the same cutoff frequency the process of comparison is even simpler since the quantity S_{w} is then the same in each case. S_{A} is determined for each circuit as in paragraph (1) abose. The difference between the two values of S_{A} is the difference between the return losses.

Example

As an example compare the No. 19-H-17-63 side circuits with No. 16-11-171-ti3 side circuits. In this case the cutoff frequencies are the same so w and S_{w} are the same. It is then only necessary to compare S_{A}. The lass per mile of the No. 16 -gauge circuit is 0.161

[^109]TI at 1.000 cycles from which $S_{A}=11 \mathrm{TI}$ ．In equation（I2）S_{A} is negative hence the No．19－gange will have a higher return loss than the No．Hi－gange circuits and the expected difference is $11-8.7=$ 2.3 Tじ。

Comedrtans of C．aculated ind Me．sistred Returi looses

In order to test the methods of calculation described above a series of measturements of return loss at 500,1000 and 2000 cycles were made on a group of toaded side and phantom circuits in a cable using a No．2－－ 1 unbalance measuring set．

The representative inductance deviations were found by analyzing the inductance measurements on a large group of loading coils similar to those used in the cable．The representative capacity deviations， not including the spacing irregularity were found by analyzing the shop measurements on a number of reels of the cable．This gave representative ligures for reel lengths which were divided by $\sqrt{12}$（in aceordance with the laws of probability since this cable had 12 reel lengths in a loading section）to obtain the representative capacity deviations due to the cable for the loading sections．The spacing deviations were separately determined from the measured distances between the loading points．

The data used in the calculation were as follows：

TABLE II

	Sides	Phantoms
Representative inductance deviation	0.0062^{*}	0.0061^{*}
Representative capacity deviation．	$0.0129 *$	0.0138^{*}
Representative spacing deviation．	$0.0045 *$	0.0045^{*}
Combined representative deviation， 11.	0.0150 ＊	0.0158^{*}
Cutoff frequency fc（eyeles sec．）．	2810	3727
（ 500 eyeles．	0.205	0.271
Transimission loss ${ }_{\text {TU per mile }}(1000$ cycles．．．	0.274	0.279
（2000）cycles．	0.317	0.296

The smooth curves of Figs． 9 to 11，inclusive，were calculated from the data in Table II using the methods described above．The abscissas are the percentages of a large group of circnits which may be expected to have return losses greater than the values given by the ordinates． This percentage is equal to $100(1-\mathrm{F})$ ．The points plotted on the

[^110]Return lces of No. 19-H-1i4-63 sides exceeded by various percentages of circuits at 500 cycles
Smooth curve-theorctical

- 46-H-1i4-63 sides Dittsburgh to Ligenier
- 12-H-17+-63 sides Jigonier to Pittsburgh
A. 52-11-174-106 sides l'ittsburgt: to Ligonier

Fig. 9
Return loss of No. 19-11-174-63 sides exceeded by various percentages of circuits at 1000 Cycles Smooth curve theoretical

- $46-11$ 174-6.3 sides I'ittsburgh to Ligonier
[.] 12-11-17t-63 sides Ligonier to Pittsburgh
© $52-11-174-100$ sides Pittsburgh to Ligonier

Fig. 10

Keturn loss of No. It 11 lit 6.3 siten evecealed by wrious prercentages of circhites at z(MN) iveles
smon the curve theoretical

- Io If 1it os, sides l'ittshurgh to lige nier
- 12 111746.3 sides I igenier to I'iteshurgh - 52-11 1it 100 sides l'ittshurgh to ligonier

Fig. 11
Keturn loss of No. 19-11-1it-63 phantoms exceeded by various percentages of circuits at $5(x)$ cycles
Smooth curve-theoretical

- 25-11-1it-63 phantoms Pittsburgh to Ligonier
- 21-11-174-63 phantoms Ligonier to Pittsburgh

Fig. 12

Return loss of No. 19-11-174-63 phantoms exceeded by various percentages of circuits at 1000 cycles
Smooth curve-theoretical

- 25-H 174-63 phantoms Yittshurgh to ligonier
[- 21 II -174-63 phantons Ligonier to Pittsburgh

Fig. 13

Keturn loss of No. 19-H 174 63 phantoms exceeded by various percentages of circuits at 2000 cycles
Smooth curve-theoretical

- 25-11-174-63 phantoms Pittsburgh to Ligonier
- 21-11-174-63 phantoms Ligonier to Pittshurgh

Fig. 14
rurve sheets give the measured values of return losis foumb in the gromps of circuits listed in the explanatory notes on the drawings.

In general, it will le observed that there is a fair agreement lextween the theoretical eurses and the measured return losaes esperially at 1000 , and 2000 cyeles.

Due to the limited range of the measuring apparatus, readings of return lesses greater than 10.7 TU were not mate exeept in the catse of the Ligonier to l'ittsburgh phantoms shown on Figs. 12, 13, , mad 11, when a special arrangement was available to extend the range to 17.3 TL . For this reasun points representing observed return losses above these limits are not available which catuses the observel values for 500 cycles in Figs. 9 and 12 to appear somewhat low at first sight.

Where the highest point in a given set of data represents many circuits as in the cases represented by the small triangles and circles in Fig. 9 this point probably gives elosely the return loss corresponding to the percentage of circuits it indicates but the points for higher return losses are not available. When the highest point represents only one or two circuits as in the case represented by the square in Fig. 9. it is likely that the actual return loss is higher than the point indicates.

It should also be noted that above 40 TU the actual impedance of the line and its characteristic impedance differ by less than 2 per cent. so that very small departures of the network from the true characteristic impedance of the line would tend to make the observed return loss low.

Concleston

It is believed that the procedure described in this paper offers a reliable method for determining the probability of attaining a particular value of return loss at any assigned frequency when a circuit is built with definite limitations on inductance and capacity deviations so that the representative deviations are known.

The Sounds of Speech

By IRVING B. CRANDALL

Note: Is professor of vocal physiology, Alesander firaham Bell did pioneer research in "devising methods of exhibiting the vibrations of sounds optically:" In 1873, he became familiar with the phonautograph, developed by Scott and Kocnig in 1859 , and with the manometric capsule, leveloped by Kocnig in 1862 . Cireatly impressed by the success of these instruments "to reproduce to the eye those details of sound vibration that produce in our ears the sensation we term timbre, or quality of sound" Bell used an improved form of the phonautograph having a stylus of wood about a foot long. De obtained "large and wery beautiful tracings of the vibrations of the air of vowel sounds" "upon a stmoked glass.

In describing his early attenuts to improve the methods and apparatus for making spech waves visible and to interpret wave form, Bell wrote:
"I then sang the same sowels, in the same way; into the mouth-picee of the manometric eapsule, and compared the tracings of the phomatograph with the flame-undulations visible in the mirror. The shapes of the vibrations ohtained in the two ways were not exacty identical, and 1 came to the condusion that the phomatograph would rexuire considerable modification to be arlapted to my purpose. The membrane was loaded by being attached to a long lever, and the Iriste, (x), at the end of the lever, seemed to have a definte rate of vibration of its own. These facts led me. to imagine that the true form of vibration characterist ic of the sounds of speech had lxen distorted in the phonautograph by the instrumentalities amployed. I therefore made many experiments to improve the construetion of the instrument. I construeted, at home, quite a mumber of different forms of phonautograplis, using membranes of different diameters and thicknesses, and of different materiats, and changing the shape of the attached lever and bristle."

Struck her the likeness of the phonautograph and the mechanism of the luman ear, Bell conceived the iden of making an instrument modeled after the patiern of the ear, thinking it would ! robably produce more accurate tracings of spech vibrations. In 1874, he consulted a distinguished aurist, Dr. Clarence Blake of Boston, who suggested that instead of trving to make an instrument modeled after the human ear, the human ear itself be used. Dr. Blake prepared a specimen containing the membrane of tympanam with two bones attached, the malleus and incus. The other bone, the stapes, was removed and a stylus of wheat straw about one inch leng was sulistitnted. I sort of speaking tube was arranged to take the place of the outer car. "When a person sang or spoke to this ear, I was delighted (1) oliserve the vibrations of all the parts and the stvle of hay vibrated with such amplitude as to enable me to obtain tracings of the vibrations on smokel glass."

In the accompanying paper, 1)r. 1. B. Crandalt describes modern methods wherely with the most refined apmaratus, highly aceurate speech wate forms hate |xen produced. The amalysis and interperation of both sowel and consonant sounds made possible by these records, are the realization of an ohjective sought hive Bell a half century ago.

This article is the result of atn extended study of 100 graphieal records of vowel thd consmant sounds, of which a few are reproduced in the present publication. (3ne limsired and four of these recorts are of vowel someds and formed the basis of the "Winamical Study of the Vowel Somels," In 1. 13. 'rundtll and ('. F. Sucia which wats published in this Journal in April, 1"24. The purpose of the present article is to describe all of the records in sulticient aletail, including in one diseussion the outstanding characteristic's of vensel, remi-vowel and consomant sounds; it is hoped shortly 10 supplement this with a repronduction of a larger group of records from the (timplete collection.-Editor.
(1). 11: 1T

Introxluction
1 Sote on the (haracteristic Prequencies of Speed
11 The Revorling Ipparatu-
111 (hwsitication of the kecords

I Four somi- لowel sounds
II bivecen Conmonant sounds

Introdection

TO the haman spexch is a matter of course, but to the student of scienter, or of language "the amazing phenomenon of articulate speech comes home . . . as a kind of commonplace miracle." I Hence we have infuiries into the nature of speed from miny points of view, beginning with fundamentals based on physiology and acoustic

Speech record made by Bell in 1875
science and leading to important applications in communication engineering, phonetics and vocal music.

The scientific study of speech sounds began with Helmholtz, who also made a fundamental study of hearing. Helmholtz had the advantage, in approaching these problems, of a knowledge of physiology ats well ats a mastery of theoretical physics. With this equipment and such simple laboratory apparatus as he created, he did his great work on speeds and hearing of which we have the record (in English translation) under the title of "Sensations of Tone." 2 Today, with
fereenough \& Kittredge, " 11 urds and Their Ways," N. S., 1901.
"WThe hensations of Tone as a Physiological Basis for the Study of Music." Translateal from the Fourth 1 eerman Edition by . I. J. Ellis: Fourth English Fitition, t.ondun, 1912.
immeasurably superior physical apparatus, and with more specialized theoretical equipment, the individual investigator usually approaches one problem at a time, the problem and the method being selected according to the technique with which he is familiar. The work of 1). C. Miller on sound and sound analysis ${ }^{3}$ represents the beginning of modern physical research on speech sounds. In medical science some altention has been given to the mechanism of speech ${ }^{4}$ and the psychologists are responsible for an enormous literature on voice control and the perception of speech and tones. ${ }^{5}$ The work of Seripture ${ }^{6}$ represents the beginning of a science of experimental phonetics, and in the closely related fiek of philology there is a rapidly growing interest in the physical characteristics of speech sounds. ${ }^{7}$

In this large fied of investigation the physicist finds a real opportunity in providing means for the study and meastrement of speech sounds, and a real responsibility in broadening the extent and improving the accurary of such quantitative data as are obtained.

The results ohtatued from such physical investigations have praclical ats well as scientilic value, and we observe that in a large laboratory concerned entirely with the development of electrical communication considerable effort has been devoted to research on speech and acoustic apparatus.' It has recently been felt that the wave

[^111]forms of the speeth sounds repuired more precise determination, ath indeal reacarch in the art of telephony has emphasized this need. The graphical records of speech sombls, which form a supplement to the preseme paper, are comtributions to this stuly.

1

Speech is, in itself, a soumd wawe a succession of condensations and rarefactions in the air. For the purposes of this study we are not primarily concerned with the merhanism of production, nor with the processes of perception of speech, though it may he neressary to digress to inguiries of this kind. in their bearing on certain characteristics of specth. We are interested primarily in what can be learned from the records of the speed vibrations themselves.
speech sounds are complex, that is, they are composites of simple sounds, each component having a particular frequency, amplitude, phase and duration. Considering speech in the mass, we find its energy distributed among frequencies from $\overline{i s}$ to above 5,000 eyeles with the larger part of this energy contained in the region below 1,000 cyeles. This distribution is shown approximately in Fig. 1 taken from reference (sy) ; the limitation on these clata being that the measuring apparatus was not sufficiently sensitive to measure the speech energy anorociated with frequencies higher than 5,000 eyeles. Inasmuch as the energy of speech resides largely in the vowel sounds, the curse in Fig. 1 can also be taken as applying to the average distribution in the vowel sounds. The energy distribution diagram is of fundamental importance in the physical study of speech sounds; it reseals at once the frequencies of large energy content which are characteristic. For each vowel sound, there is a distinctive energy frespeney diagram.

The consonant sounds present a difficult problem because of the small amount of energy associated with them. Most of our knowledge of the consonant sounds is qualitative: for example Fleteher (reference sh) who studied the nature of speech by the methorl of testing articulation when different frequeney ranges are eliminated showthat for two frieative or sibilant consonants s and z, there are esoential frequency components which lie above 5,000 cycles. The characteristic frequencies of the consonant sounds are usually only part of the whole story; these sounds are richer in transients, and clearly less periodic in their nature than the vowel sounds. And in between the two broad classes of consonant and vowel sounds there is a group
of semi-vowel sounds ($r, l, m, n, n g$) closely related to the vowel group, and yielding readily a determination of their "characteristic frequencies."

There are two physical theories of vowel production; and these two theories suggest different methods of analyzing the vowel sounds into components of simpler nature. These two points of view we

Fig. 1 Encrgy distribution; composite curse for male and female voices
shall brielly consider along historical lines. Whe are indebted to Helmboltz for the greatest single contribution to the study of the vowels, in that he gave a complete diagram of the characteristic frequencies of the vowels (ref. 2, pp. 103-109), which was based on his celebrated experiments in analysis and synthesis ly means of the Helmholzz resonators. But in connection with his seheme of characteristic frequencies he took up the theory of Wheatstone (1837) that these frefuencies are true harmonic components of the cord tones, which were reenfored by resonance in the oral cavities. Some later physicists have followerl this so-called harmonic or steady state theory of the vowel sounds, notably Niller (reference 3, pp. 239-243) who
mate a very careful stuely of the whole matter. Aceorating to this theory the obvious procelure is to apply the ehaswal fourier analysis to determine the charateristic compenents of the vowel somds.

Turning now to the other (and earlier) view, the se-called "Inharmonic Theory" of Willis ($1 \mathbf{N} 29$) later developed hy Itermann and rather recently her Scipture (ref. (6)) we are invited to believe that the "characteristic frequencies" of the vowel sounds are the natural vibrations or transients in the oral cavities, when excited impulsively by the (more or less) periodic puffs of air from the glottis. According to this theory no harmonie relations need obtain between the characteristic frequencies of the rowels and the fundamental or cord tone accompanying them; and the classical Fourier analysis is not considered applicable in resolving the vowel sound into simpler components. According to this "inharmonic" or "transient" theory we must treat the natural vibrations of the oral cavities as damped vibrations and find the frequencies and damping constants of their components, as best we can from the record of the complete sound vibration.

In favor of the Helmholtz or "Harmenic" theory we have the carefub studies by Helmholtz and his successors of the relations between the cord or fundamental tone, its harmonics as reenforced by the oral cavities or other resonators, and the observed characteristic frequencies of the vowel sounds. The oral cavities constitute a vibrating system of two or three degrees of frectom, the theory of which has been fully developed by Rayteigh and others, and it is to be expected that, with the speaking mechanism in normal adjustment the vowel qualities can be well accounted for by postulating harmonic forced vibrations in these cavities. This expectation has been realized in the numerous successful attempts which have been made to produce vowels artificially by using a harmonic series of tones, and reenforcing certain harmonics by suitable resonators. Miller's experiments with organ pipes (ref. 3, pp. 240-250), in which he successfully reproduced certain vowel sounds, are well known.

The Willis-Hermann theory has also suggested much notable experimental work. Scripture (ref. 6, p. 114) constructed a "vowel-organ" in which a reed pipe was used to excite the natural vibrations in resonators designed to imitate the conditions in the oral cavities, and attained some success in reproducing vowels. More recently J. Q. Stewart (ref. Si) has produced an "Electrical Analngue" of the vocal organs with which remarkable results in reproducing vowel sounds and even some of the consonant somels have been obtained. In this electrical arrangement transients excited by an interrupter in oscilla-
tory circuits take the place of the transient vibrations of the oral cavities. Finally Paget (reference (9ia) below) has constructed a whole series of clouble resonators which may be excited by blowing air into them through an "artificial larymx," and from which he has obtained all of the vowel sounds. As the result of this work he has given a very complete chart of the characteristic freguencies of the vowels and he has been led to the conclusion that there are two characteristic frequencies or regions of resonance for each vowel sound.

From the standpoint of practical acoustics both theories have contributed to progress, and it seems that the experimental physicist would not be justified in gartiality to either view. Speech is a variable phenomenon; the cord tones are not always stable; in speaking and in singing there are allowable variations in duration, intensity and frequency of the component tones without essential change in the characteristics of the vowel sounds. Given accurate records of the speech sounds as normally pronounced by a number of speakers, we should expect to arrive at nearly the same characteristic frequencies whichever mode of analysis we adopt. As pointed out by J. Q. Stewart (Ref. Si) Rayleigh has stated (Sound, Vol. II, D. 173) that the disagreement between the Helmholiz-Xiller, or steady state theory of fowels, and the Willis-Hermann-Scripture, or transient theory is only. apparent; to guote stewart, "The disagreement concerns methods rather than facts. Which viewpoint should be adopted is thus a matter of convenience in a given case. When the transmission of speech over telephone circuits is in question, for example, the steady state theory often possesses obvious mathematical advantages. On the other hand, the quamtitative data relating to the physical nature of vowets which are given in 1). C. Mitler's well-known book "The Science of Alusical Sommels" exprensed ats they are in terms of the steady state theory are less compaet and definite than the data of Table I (Stewart's paper) which are expressed in terms of the transient theory. The general agreement between the two sets of data is, of course, obvious."

In stulying the beharior of vibrating systems from the theoretical stampoint, there is a tendency to emphasize the intimate relations that exist between transient and steady state phenomena. Both depend only on the driving forees and the constants of the system,
"(at) Sir K. . . S. Pugel: "The I'rorlaction of Irtiticial Vowel Sounds." Proc. Roy. Sow. 1112, Mar. 1, 1923, p. 7.52.
((1) I second memnir: "The Nature and Mrtiticial Proeluction of Consonant sounds." Proc. Kos. Suc. I 100, Aug. 1, 192t, p. 150, 10 which reference will be made in more delail fater.

Oher papers hy P'uge indude: Nature, Jan. 6, 1923, " Nature and Reprodurtion
 Phys. Dex 36 p1 3, Mpr. 15, 1924, p. 213: Discussion on Loud Speakers.
hence " the solution for transient oscillations of the system is refucen to formulae which are functionally the same as these for steraly state uscillations" (reference [0; see also reference 11). But before leaving this disctassion of apeeth characteristics it should be moted that the esence of the matter lies not so much in reconciling the two therories of the bowel sombls as in astertaining what motionts really take place in the oral cavities, and in the air near the vocal cords. Thongh the process of harmonie andysis is to be applied to the records of the vowel sounds, we must recognize its limitations, and not necessarily infer steady state conditions. Indeed the most casual inspection of the records shows a certain lack of periodicity in the phemomena recorded; and it is hardly to be expecterl that all the phemomena can be satisfactorily summed up on the basis of the harmonic theory.

II

Tite Rr:cording Apparatusis

In providing means for accurately recorling somud wases, use has been made of three devices recently developed in this Laboratory and we believe that hy properly connecting these together we have obtained a recording instrument which is superior in accuracy and power to any heretofore used. These three devices were each nearly free from distortion, and such residual distortions as could not be eliminated were so controlled that they practically offist one amother over a wide range of frequencies.

The first element in the recording set is the condenser transmitter, which has been thoroughly investigated by Wente (refs. Sb, sc, Sf); its frequency characteristics, in both amplitude and phase are shown in Fig. 2. The particular transmitter used was of recent design and had been carefully standardized and calibrated especially for this work.

The condenser transmitter was comected to the input terminals of a seven-stage amplifier as shown in the large diagram of Fig. 5 which gives the details of the electrical circuit, induding the third

[^112]element, a special oscillograph, which was connected to the output terminals of the amplifier. The first six tubes, in cascade, provided a voltage amplification of about 40,000 ; the last eight tubes, in parallel, constituted a "current transformer" working into the low impedance of the oscillograph vibrator, with a small resistance in series. The coupling between the stages, and between amplifier and terminal apparatus,

Fig. 2 Curve A : Output of transmitter in volts per dyne per sq. cm. Curve B : Phase lag of voltage behind pressure in condenser transmiter
was entircly of resistance and capacity, with the capacity reactance minimized. In all tests of the circuit the condenser transmitter and the oscillograph vibrator remained in their fixed positions, as shown in the diagram, so as not to disturb the electrical characteristics of the circuit. The frequency characteristics of the amplifier in amplitude and phase are shown in Fig. 3. In measuring the amplitude characteristic a small electromotive force was introduced in series with the transmitter, in the input mesh; and in measuring the phase lead of the output as a function of frequency use was made of the Alternating Current Potentiometer of Wente (Jour. A. I. E. E. Dec. 1921) the other retails of procerlure being as usual.

The characteristics of the oscillograph vibrator are shown in Fig. 4. This vibrator was specially constructed, with small mass, high tension and damping; when the requisite dymamical characteristics were once obtained, its calibration presented no great difficulty:

In combining the eramomitter, the amplifer and the oscillograph to form the complese recording apparatus there were two primary regnirements; first, the sel ds a whole shoukt lee free from frequency distortion

1.ig. 3- Curve . 1: Implitule frequency characteristic of amplifier. Curve B : Thare lead of output, vs. frexuency of voltage input to amplifier

Vig. + Curve 1: Ampliturle frequency characteristic of oscillograph. Curve B : Ihase lag of amplitude behind current in oscillograph
in both amplifule and phase, and second, the output of the set as a whole should lxe a linear function of the input within the working energy range at each frequency: The first of these conditions is in
general the harder to fulfil. Frequency-amplitude distortion has been practically eliminated as we have seen from each of the thece essential parts of this apparatus; and although it was found impracticable to make each part of the apparatus free from frequency distortion in phase, it was possible to give the complete set good frequeney characteristics in both amplitude and phase as will be explained.

In a vibrating system of one clegree of freedom when we wish to avoill frequency distortion in amplitude, we usually adjust the resonant

Fig 5 - Cencral liagram of recording apparatus showing circuit details
frequency so that it is almeve the range of frequencies within which we desire to work; in addition, it is desirable in most case's to make the damping of the system large. With these adjustments made it is found that there is a phase lag between amplitude and driving force which rises with freguency and reaches a maximum abowe the resonant frecuency, and it is possible to make this phase lag nearly proportional to the freguency over the range of frequencies within which it is desired to work.

It is well known that if equal driving forces procluce equal amplitudes at all frequencies, and if the phase lag of the amplitude with respect to the driving force is proportional to frequency, then a driving force of comple wave form is reproduced without distortion of wave form in the vibrating system. These eonditions hedel very well over the denired range of frequencies in the oscillograph vibrator, as shown in ligg. 1. In the case of the condenser transmitter, however, there
were elephrtures from these conditions in the freguenty inlerval from cere to sthe eydes for which allowance had to be mate.

In the amplifier the effeet of eapacity reactance was nearly eliminited. Owing to the small remaining capacity reactance there was a phase leal of amplifier current with respert to driving force which was applied te offict the excessive phase lag in the condenser transmitter at the low frequencies. The particular atjustment of amplifier finally arrived at represented the best compromise, considering the elifticulty

Fig. 6 therall irespency characteristics of amplitule and phase of the recording svistem. Curve . 1: Ow-illographic amplitude per unit of presulte on 1 ransmitter diaphragm. Curve B: Phase lag of oscillographie amplitede behind pressure on diaphragm
encountered with the transmitter characteristics. With this compromise made there was an unatoidable phase learl in the whole apparatus for frepuencies below 12.) cycles, but this was not serious as most of the speech energy is in higher frequencies. After all final adjustments were made the owerall frequency characteristics of amplitule and phase were as shown in Fig. 6. Thus ultimately there was obtained a system with practically uniform amplitude characteristic from 500 to $\overline{5}, 000$ cyeks, without scrious departure from this ked for frequencies from 50 to 500 cycke; and with phase lag nearly a linear function of frequency from 125 to 5,000 cycles, after passing through a period of lead in the narrow interval from 50 to 215 cycles.

Consider now the second requirement which the recording system had to meet: namely, that the output of the system should be a linear function of the input within the working energy range at each frequency. Thorough investigation of the condenser transmitter had shown that this instrument met this second requirement very well; it was only necessary to test the remainder of the system. Fig. 7 gives

Fig 7-Amplitude frequency characteristics of circuit-oscillograph at different energy levels
the results of these lests, the voltages introduced in series with the transmitter at the input being maintained at different constant levels, while the frequency was varied. An inspection of the data shows that this requirement was very accurately fulfilled, by the whole cefecrical system.

Returning now to the overall characteristics of the apparatus, it was thought adsisable to test the calibrations in amplitude and phase lag by comparing the computed and the observed distortion when a square-topped acoustic wave was impressed on the apparatus. The stecp sides and the flat tops of these wates can be reproluced without distortion only if the apparatus possesses first class characteristics, both in amplitude and phase lag, and the test was a severe one. As would be expected from the calibration curses of Fig. 6 there was a certain amount of distortion in recording this wave, and the square-
topperl wate, with its very harge fumbemental component, made this distortion appear much worse than would an ordinary speed wate.

Fige sillustrates the apparatus used to proxluee the acomstic squaretopped wave. An electrole resombling the back plate of the comblenser tramsmiter was momeded in front of the transmiller diaphragm. Between this electroxle and the diaphragm was applied a high potential Which was made alternately positive and negative by a commutator.

Fig. x-Condenser transmitter coupled with square-topped-wave exciter
Exciter l'ikts
a. Steel Electrode 0.006 inch from Diaphragm. b. Micarta. Insulation. c. Supporting Ring. d. Electrode Terminal.

By this arrangement the desired positive and negative pressures were proxluced on the diaphragm. The distance between the auxiliary electrole and the transmitter diaphragm was about .006 inch. This electenstatic coupling was found to be sufficiently close to give a suitable deflection of the transmitter diaphragm, while the stiffness and damping of the air film did not alter the dynamical characteristics of the transmitter.

Fig. 9 is an oscillogram showing the wawe form recorded by the apparatus when acoustic square-tepped wawes of frequencies 84,153 and 306 cyeles per second are impressed on the transmitter. Timing waves of frequencies 75,150 and 300 are also shown. Analysing the original wave by the Fourier neethod, and allowing for the distortion in amplitude and phase of each component frequency, a computation hats been made of the wate form in the output in the case of the squaretopped waves of St and 15.3 frequency: The results are shown in Fig. 10.

The Fourier series representing the δ-cycle wave contained 30 terms, the component frequencies being ofd multiples of 84 up to a limit of 4.956 cycles; for the series representing the 153 -cycle wave 17 terms were used cowering the range from 153 10 5,049 cycles. The agreement between calculated and observed output wases woukl have been more exact, particularly at the comers of the watse shapes, if calibrations

and calculations had been carrical of frequencies considerably abowe 5,000. As it wats, the performance was considered good; it indicated that the uncorrected records of speech waves as taken were suffeciently accurate for mest purposes, while if harmonic analysis of the records Wats planned accurate results could be obtained over the range from sill to 5,000 eycles, if the correction factors determined by the calibration were applied.

In this description of the recording apparatus the emphasis has been phecel on the dynamical characteristics of the apparatus and its calibration, hut some of its other working features may brielly be montionerl. The apparatus was sufficiently powerful to record sounds
spoken in an ordinary tone of roice, with the -peaker's mouth about there inches from the tramsmitter. I key was pressed by the speater just before the sumal was spoken, this releasing a shater placel belure a rotating film drum on which the record from the useillegraph vibrator was traced. The film drum 11 as some io 2 inches in circumference, and there was mounted on it a length of Eastman super-spect

Fig, t0 (daleulated and oherveal wase forms, as recorded ly the apparatus
film with which records could be made at a peripheral speed of about 20 feet per second. Thus each hundredth of a second correnponds to two inches or more in the time scale on the film. Besides opening the shutter, the key released a mechamism which swung the oscillograph vibrator through an are during the progrens of the record, thus tracing a helical record on the film. By this means recorels up to 200 inches in length, or for nearly one second of duration were taken. The average length of the wave trains recorded was less than 0.5 second; thus it was possible to graph the pressure wave of the whole speech anund from beginning to end. Immediately following the recording of the speech sound a timing wave of 1,000 cycle alternating current, t.then from a standard oscillator, was recorded on the film at one side of the speech record, without disturbing the speed adjustment of
the rotating drum. Thus the lime scale was accurately determined for each record.

Especial care was taken with the optical system to insure fine definition and strong illumination of the spot on the lilm and the films were developed for maximum contrast. As a result, the records were sufficiently clear to permit their reproduction by the line-engraving

$\mathrm{Fi}_{\mathrm{s}} .11$ section of original record showing timing wave
process. Eatch of the plates shown in this praper is made up of overlupping soctions from the original record, each fathfully reproduced, and the whole arranged to give the complete record within the limits of one page. I rection of one of the original records ats taken is shown in the ligure abowe.

In selecting and dawifying the vowel someds for record, use has lexn mbete, with slight alleration, of the phonetic arrangement adopted be Fletcher (ref. ith). This arrangement of the vowed smads is
illustrated in the diagram of Fig. I2. In this diagram elewens stand ared "pure-sowel" smand from on to long e are arranged atoreling to the conventional "triangle" and two related wowel sommets ar ander are interpobateal in their proper plates. I gromp of eight recorets wats male of each of these thirtern vowel soumde, four in each gromp by

Fig. 12- (lassification of wowel sounds
make wices, and the other four by femate voices. Each of these records, Mates 1 to 104 (Ciroups 1 to N111), represents the vowel sound ats spoken naturatly, and continuously recorded from beginning to end.

No attempt was made to record the vowels w, y, ou and long i. These usually have transitional characteristics which are sufficiently indicated by the arrows in the cliagram. The first two of these, when followed by vowels, and the last two, in nearly all cases, fall into the clase of diphthongs.

Following the groups of records of the "pure-vowel" sounds of the diagram it was originally planned to make a group of records of the semi-vowels $l, m, n, n g$, and r, recoreded in connection with certain vowels. It seemed best however to present records for the sounds ar and er in connection with the standard vowel sounds as noted above (ar, er, (iroups $\mathbb{1} 11, \mathcal{X}$) and only these records of the sound r were taken. The four remaining sounds were arbitrarily divided into two groups because of the number of records made, and the first of these (©roup Nil') contains records of l and $n g$. These were mate by two male speakers, using the sytlables loo, lee, la and ngoo, ngee, nga.

Group XV is devoted to the semivowels n and m, each recorded with the three sowel sounds oo, long e and a, by the two male speakers,
 related, and as will appear the four semi-vowel sounds are closely related to the sowel diagram.

When this study was planned, it was thonght that the apparatus would be particularly adapted to recording vowel sounds and no great hopes were entertained of applying it to definitive insestigation of the consonant sounds. As the work progreseed however, it was found that some of the characteristics of the consonant sounds could be recorded and the program was enlarged to include the records of Groups XIV to XVIl inclusive. Each of the records of a consonant and sowel combination can be compared with the corresponding record, by the same speaker, of the pure vowel alone in one of the carlier groups, and certain conclusions as to the nature of the consonant sound can be formed.
(iroup XVI includes records of the six stop (or "hard") consonants $b, p ; d, l ; g, k$; followed by two transitional consonants $d t h$ (as in then) th (as in thin); cach associated with the vowel a, and recorded by the two make speakers. The natural arrangement is in pairs, the related roiced and unvoiced variatiors being grouped together.

The last Croup ($\mathrm{Nl}^{\prime} 1 \mathrm{l}$) inclurles recorels of eight fricative ("soft" or "sibilant") consonants paired in the same way: These are v, f; $j, c h ; ~ z, s ; 2 h$ (azure), sh; each associated with a and recorded by the (wo mate -peakers.

The following table lists in groups all the recorels made. As it is not practicable to engratse and print with this article the whole set of
T.IBI.E 1

Complete List of Speech Records

(iroup)			Plites
1	or) as in powl,	bx light Speakers.	
11	" .s in put,	by light Speakers.	9. 10
111	0 as in turn,	his lighn Sprakers.	17-24
11	d in in talk,	by linht youkers.	25 32
1	0 as in ton,	liy Pight Speakurs.	3,3-40
11	4 , in father,	In light strakers.	+1 +8
111	ar is its patt.	by Sight Speakers.	49-56
1111	ats in lap,	liy light Suakers.	57-64
IX	cas in tern,	his light spakers.	65-72
χ	cr as in prert,	lix lighn suakers.	73. 80
$\therefore 1$	A As int tapr.	biy lizhtit Speakers.	$81-88$
X11	1.15 in lup,	bs ligktit spakers.	89.90
\$111	- 小 ins trom,	In ligha Speakurs.	$97-104$
811	4.tmi \ownd.l. 48	lii ims male speakers	105116
X		Is 1 W0 mate nomakers	117128
S11		ts, transit innal dth, th; hy two	129-140
1111	I'shatritaivel or	tusumats, by two mate speake	$145 \quad 164$

\bar{u} (paol) is. (nut)

1611 reoords, a selection has lecen make of some 13 typical examples which illubtrate characteristic consonatht and wowd wate forms. These are listeal in table It and their properties are dereribex in detail in the follow ing rections. It may wot be amion to summarize here the has is on which thate particular records were chosen for publication.

The most important a oumel (a, as in father) is represented in 7 of these reeords, which include sis instances of $i t$ combination with other soumels. The record of ar (llate I!) which was chosen is the mose charateristic and interesting one of its gronp. The other wowed records (I'lates !), 80, 59) are sufficienty scattered about the vowel triangle (1) give an iflea of the variation in the high frepuency characteristics which is to be an important subject of discussion later. One recorel of a female voice (Plate 10) is probably sufficient to show the distinctive fundamental, about an octase higher, characteristic of such records. llate los was chosen to show the resemblance between 1 and e, which cotablishes a natural transition between the vowel and semi-sowel sounds. From plates 108,110 and 121 a good idea of the relative amplituder of rowel and semi-sowel sounds can be obtained; a similar observation hokds in the comparison of the vowel and consonant sounds of Plates $136,138,151,158$ and 160 . Plates 136 and 135 show two extemed transients of moderate frepuency, the latter in connection with a voiced consonant (hard g) ; Plate 1.51 is similar to 136; but the vowel following the consonant is less suddenly produced. The pair, Plates 158 and 16t), show the voiced and unvoiced hiss 2.and s reapectively) a sound of very high freptuency, which is the limiting case of this type of consonant.

The plates reproduced with this paper are reduced slightly (1.5 or 20 per cent) in scale, ats compared with the original records, to loring them within the page height of the Journat.

In prolucing this system of records we beliese that we have covered the speech sounds as fully as we are justified in doing with the present recorrling apparatus. In the case of each vowel the combined data from the eight records constitute a sufficient basis for the most thorough harmonic analyses that can be made and they should yield accurate results for the characteristic vowel frecpuencies. In analysing these records small corrections are of course necessary on account of the slightly imperfect frequency characteristics of the apparatus, but these corrections can be taken without difficulty from the calibration curves.

The amplitude scale in these records is arbitrary in each case. This is for the reason that, owing to the widely different conditions of voice control among the different speakers, the recording apparatus had to be adjusted to different levels of sensitiveness for each record in order to obtain the requisite maximum oscillation of from 1 to 2 centimeters. No attempt has been made to compare the absolute amplitudes from one record to another on account of these intensity variations. The emphasis has been placed rather on obtaining in each record a good well-defined wave which could be enlarged if necessary:

Notwithstanding the fact that for frequencies above 5,000 cycles the apparatus was not nearly as good as for frequencies within the ealibration range from 75 to 5,000 cycles, the records obtained of some of the consonant sounds are of considerable practical value. It is felt however, that the present apparatus has been used nearly to the limit of its possibilities and that devices other than the usual oscillograph wibrator offer more promise in any further insestigation of the consonant sounds. It is plamed later to issue a more complete set of these records as a supplement to the present paper in order to make the enllection available to those especially interested.

> IN

Statistical. Stidy and Harmonic Analisis of the
Vomma Souvis
A detailed inspection of the records taken, and particularly of the records of the vowel groups shows that much labor would be required (1) analyze these records thronghout their length, according to the usual metherts of harmonic analysis. In nearly every case it would lee impssible to obtain the mean energy distribution in a given reorel, allowing for variations from cycle to cyele of the fundamental,
by choxsing from esch record only a fow such eyoles as representatise and analyaing thene. If, for example, only II iocles were take.s at selected intersals from cath of the IUI rowel records shown there would be reguired ower one thousand such atalyses, athl to le of value these atalyses should inclade components of frequency from 100 th s.bno cyeles. For this reason a mechanical method of dmalysis has been applied to determine from the reoords the werage frepuency spectra of each of the vowel and semi-vowel sounds.

First let hs comsider the wowel records in a simpler ambl more general way: Considerable information has been ohtained by inspection, using such simple apparatus as a pair of compasses and a rule in connection with the time sale on the records. The time saale greatly facilitates the process; it is in most eases possible to count the mamber of eycles of any one prominent component occurring in an interval of on second, and by doing this in tarious parts of the record, 10 arrive at a rough awerage frequency for the component in question.

In the case of the low frequency components (the fundamental and the lower characteristic frequency) the procedure was to make this examination at 3 points; one near the start, one near the middle, and one neatr the end of each record. In this way the most significant changes in pitch and wave form during the course of the record can be broughe to light, and some of the individual characteristics of the speaker revealed. A statistical compilation of these results serves to show certain "normal" characteristics of pitch variation, and permit the detection of a certain amount of "personal bias" of the individual speaker in his departure therefrom. In the examination of the low frequency characteristics a note was made as to the harmonic relation between the fundamental and the lower characteristic frequency; of the amplitude of the lower characteristie frequency as being greater or less than the amplitude of the fundamental; and of the behavior of the amplitule of the lower characteristic, during the cycle of the fundamental. The amplitude of the low frequency characteristic is either substantially constant during the cycle or falls away as a transient vibration.

The high frequency components are clearly shown in the records, but it is more difficult to determine their exat frepuencies, and prattically impossible to relate them harmonically to the fundamental. These oscillations were counted in from four to cight locations in each

[^113]record, and at maximum and minimum figure determined for the frefueney whereser possible. The behavior of the amplitude of the high frequency component during the eycke was noted, and a rough estimate made of its magnitude. Practically all the vowel records show frequencies above 2.500 cycles and the amplitudes in some cases are large. In only two records out of $10 t$ was the high frefuency component ton small in amplitude to give a frequency determination. Thee high frequency components may or may not be characteristic of the given sound; this question is more fully dealt with later.

To complete the examination of each record its duration was noted, and this time was divided into three intervals: (1) a building up period in which the oscillations rise from zero to an amplitude which shows all the components clearly; (2) a middle period in which the general amplitude remains nearly constant, but in which some variations in the amplitudes and phases of the component frequencies ustally take place; and (3) a period of decay in which the components disappear and the oscillation gradually loses its characteristic wave form.

The prosedure may be illustrated by its application to the first record for which the following data were recorded:

Plate No. 1, oo as in pool. Speaker MA. (Male).
Time to build up, . 05 see.; Middle period, .20 sec.; Period of decay, .06 sec ; Total Duration .31 sec .
Fundamental: 102 at start, rises to 108 in middle, rises to 120 at end. Pitch Variation nommal. (Sec explanation below).
I.ow Frequency Characteristic: 400 at start, 430 at middle, 410 at end. Amplitude greater than that of fundamental. Approximately, a fourth harmonic of fundamental, but amplitude variation during the cyde suggests a transient.
High Firequency Component: Minimum, 3300 cycles. Maximum, Bti00 rydes. Noticeable throughout; amplitude variation suggests a transient.
Not other frequencies.

This rontine wats applied to each of the 101 vowel records and a general summary mate of the results, giving approximate values of the whel characteristics which forerasted the more accurate results obtamed later from the mechanical harmonic analysis.

The simples phenomenta tummarize are the gemeral characterintics of the individual speaters. These are based on the mean per-
 useful in the diacussion to follow; they are shan in Table III. Delow:
T.WBII: 111

Speakers' 'harweristus

Male Speakers	Mean Fimblamental Piteh at Start, Mildle and Eind	$\begin{aligned} & \text { Me.an } \\ & \text { l'itrh } \end{aligned}$	Mean 1)uration of Recorils
	27.105111 (normal)	111.	27.5 sece.
N13 low pitelical	112 115112 (hissed)	11.3	222 biaseal foward short recorils
MLE high gitches	$124131-1.34$ (normal)	1.30	2.35 (hibasel Loward] short recorels)
(11) high tritched	131 148 175 (normal)	15.2	305
	Mean for male Speotkers	125	250 sec .
Female Speakers			
F. ${ }^{\text {- }}$ low pitchel	221241209 (normal)	224	290 sec .
VB low pitehed	$256251-194$ (hiased)	23.4	.373 biased loward long records
FC medium	2.33-255-244 (normal)	244	320 .
FI)-high pitchel	271274 27) (hiased)	275	345 (hiased loward long records)
	Mean for female speakers	244	333 sec .
	Mean duration		.296 sec .

These records were made without constraint imposed on the speaker, except that he had to start and stop within an interval of about one second, and was requested to repeat the sound several times at what he judged to be constant loudness. The resulting variation in performance may therefore be of some interest.

Of 52 men's records the vowel sounds 3.5 recorls showed a "normal" effect of progressive rise in pitch during the course of the record. (The mose is taken as the mormal effect, and follows the mean very elosely.) In if records out of 13 , speaker MB showed an individual or biased effect of slight fall in pitch toward the end. The women's records show greater variation, 21 records out of 52 showing a "normal" effect of a rise in pilch, followed by falling pitch, during the course of the record. The individual bias of speaker FB toward progressive fall in pitch was shown in 7 records; that of Fil) toward progressive rise in 4 records.

The relative constancy in fundamental pitch shown by speaker MB is trest exemplified in Plate No. is. Speaker FI) made 3 record, of constant pitch: Nos. 21, 40 and is. Other records of constant pitch are Nus. 19 and 99, both by MC .

In duration, the bias of speaker MB towarts short records was shown in 6 records which fell short by . Os sec. or more of the mean
for the particular sound considered; that of MC also in 6 records according to the same test. Speaker FB produced is records, and speaker Fl), 2 records too long by the same amount.

Consider now the general properties of the spoken vowel sonnd, as deduced from these records. First there is a period of rapid growth in amplitude, lasting about 0.01 second, during which all components are quickly proxluced, and rise nearly to maximum amplitude; second the middle period, the characteristies of which have been noted, lasting alout 0.165 second, followed by the period of gradual deeay lasting about 0.09 second, bringing the total length to approximately 0.295 second. There is at tendency to short duration among the "short" vowels (eg. short o, e, i) and a tendency to longer records among the broader sounds, as might be expected.

The behavior of the fundamental frequency (or "cord tone") during the course of the record will follow normal or individual characteristies as has been described.

The low frequency characteristic appears early, usually before the fourth cyde (for men) or before the seventh (for women) and normally is in harmonic relation with the fundamental. In the eleven pure vowel sounds (omitting the ar and er groups) this point was examined at 264 locations in 88 records with the result that the harmonic relation obtained in at least 211 cases. On the other hand the normal behavior of the amplitude of the low frequency characteristic suggests the decay of a transient oscillation during each fundamental eyclethis effect being noticeable in at least 6.1 of the 88 pure vowel records. This transient effect was also noticeable in 13 of the 16 records of ar and er, where the harmonic effect was not so noticeable. The appearance of the transient effect depends to some extent on the relative frequencies of the fundamental and the characteristic; where the fundamental period is short, (as often in the case of the women's reoords) there is not sufficient time for decay of the characteristic tone before it receives a new impetus in the next eycle of the fundamental.

As moted above, all the records contain high frequeney vibrations which are of such amplitude that they suggest characteristif frefluencies. A general mean of these frequencies would be in the meighborhexel of 32 2th cyckes, and in the case of two records by speaker FC
 Recalling the usuat classification of the vowe sounds into two groups (1) those of "single" resemance, placed on the left leg of the triangle, (Fig. 12) amd (2) those "clouble" resonatice placed on the right leg of the trimgle were are some differences in the behavior of the high frepuency romponents which can be related to these broad chasses.
p.

11 भ181\%.

In the sounds of the first class the high frequency component is usually small in amplitude, more subject to individual bias in its frequency, and may or may not build up in amplitude as early as the low frequency characteristic. In the sounds of the second class the high frequency characteristic is usually prominent from the start and buike up very rapidty; while there is less variation in fts frequency with the individual speaker. In sounds of the first dass there is no decided suggestion of a transient in the high frequeney (23 out of 40 records, Croups 110 V inclusise) while in sounds of the second class the transient effect is pronosunced (39 out of 40 records, Croups VIII, IX, XI, XII, XIII).

With these considerations in mind there is presented in table IV a summary of the data obtained from this preliminary examination of the sowel records. The mean duration time, and its subdivisions, are shown in the second column for each pure vowel sound, with mean duration only for the sounds ar (Group VII) and er (Group X). The fundamental and characteristic frequencies of each sound are shown in the 3 columns headed "Mean Fundamental," "Mean Low Characteristic" and "Mean High Characteristic Frequency" respectively. Each mean is taken from four records. The two columns headed "Scattered Low" and "Scattered High Frequencies" contain mean values of additional components, occurring in one or more records, in certain frequency ranges, the number of records in which such components are noted being shown in parentheses following the mean. The table illustrates and emplasizes many points whieh have been brought out in the preceding discussion, particularly the closeness with which the high frequency characteristies are defined in the vowels of the second or "doubly-resonant" class.

The table however gives no quantitative statement of the energy distribution among the different frequencies and it is necessary now to refer to the results of a harmonic analysis of these records which has been made and published from which the diagram of Fig. 13 is taken. The machane method for analysing these wase-forms lats been deseribed by Mr. Sacia in detail elsewhere; ${ }^{2}$ it suffices here to note merely the essentials in the treatment of the data.

For the dynamical study, the whole record from start to finish was taken as the unit for analysis, and the data obtained are therefore the average daracteristics of the sombls throughout their duration. Ia the form of an entless bedt each of these records was passed repeatedly through the amalysing machine. A single record is of course
" "1)ynamical Stuty of the Vowel Sounts." Bell System Technical Journal, 1II, Di, 2, April, 1924.
${ }^{2}$ (I Sach: "Photomed hanical Wave Analyzer Ipplied to Inharmonic Inalysis;" Jour. (f)t, Sex. Am, and Rev, of Sci. Inst., 9, ()et., 1924, p). 48i.
a mon-perixtic function, representerl analytically by a Fourier Integral, not hy a liourier series. The comtinued repetition of the reworl, however, buiks up a perioxlic function consisting of a fundamental and at series of harmonics. The magnitules of these components bear a simple relation to these of the infinitesimal components of corresponding frequencies in the Fourier lotegral, and it is this series of relative amplitules at difierent freguencies which is given by the nechanical analysis of the records.

It would be possible to present these resules as the sound spectra of the vowels, showing their original aconstic pressure amplitudes ${ }^{3}$ but this treatment has leeen modified for practical reasons to take into account the relative importance of the various pitches in hearing. lsing the axailable data on the relative sensitivity of the car at different frequencies the pressure amplitude at each frequency has been multiplied by the corresponding ear sensitivity factor and the resulting curves are taken as the effectire amplitude frequency relations which are most generally characteristic of these sounds.

The data from the four male records and from the four female records of each sound are separately averaged and the resulting curves are shown in the diagram (Fig. 13). This averaging process was somehwat laborious because the analyses of the separate records were made not with reference to predetermined frequency settings, but rather for those critical frequencies which best determined the shapes of the spectrum curves. The individual curves were therefore plotted on the musical pitch scale and the average ordinates were then read off for small intervals of pitch. These ordinates were then averaged for each group of four analyses. These average ordinates (after being corrected for the calibration of the recording apparatus) were then multiplied by the ear sensitivity factors for the corresponding frequencies. Thus the final spectrum diagram shows the relative importance of the amplitudes of all the components of each vowel for male and female speakers.

The amplitude units are entirely arbitrary; it is only the shapes,

[^114]not the sizes of these curves which are significant. The order in which these curves are arranged is based upon the vowel triangle, and on Table IV: To return to the general discussion, we find that the fundamental voice frequencies do not have large effective amplitudes; it is interesting to note that these can be largely eliminated without impairing the distinctive quality of a vowel sound. The "scattered low frequencics" of the table (Sounds I to V1I) exhibit appreciable amplitudes in the diagram. The "Scattered High Frequencies" of sounds 1-l'Il previously noted exhibit small amplitude in the diagram. These are perhaps not essential to these speech sounds, but we should expect to find them in well trained singing voices. They are to a certain extent (particularly for the male voices), paralleled by the high-frequency regions of resonance for these sounds given in Paget's diagram, to which reference was made in Section 1. Paget, it must be noted, is convinced that these high frequency regions of resonance are characteristic of the sounds of Groups I-VI.

The sound a (No. \I) is as it were the center of gravity of the sowel diagram and occupies the key position in the phonetics of most languages. The broad feature of the diagram is of course the progressive rise in frequency and gradual narrowing in range of the characteristic region of resonance, till the sound a is reached, succeeded by a splitting up into two regions of resonance which recede from one another as we follow the diagram downwards from a to the end. The exact location of sound \mathcal{X} (er) is somewhat indeterminate, but it is evident that it belongs in the scrics of doubly resonant rowels. It is interesting to note that the distribution of the components of ar (refer cither to Table IV or Fig. 13) is simitar to the distributions given by Mitler and by Paget for a form of the vowel a having "double" resonance; it is therefore as well located as any vowel in the series.

The characteristics of the r sound (whether considered as vowel or consonant) offer an interesting study, and in considering them we have an illustration of the practical value of records of the type shown. The problem of pronouncing a pure r sound is difficult; r is probably as variable in quality ans any sound in the language, and it differs more than any other sound from one language to another. The precise lecation of its characteristic frequencies is thus a rather difticult matter. The recorls of ar and er disclose a noticeable tendency in speaking to make these sounds into diphthongs, the eartier portion of the resord leeing nearly a pure a or (short) e while the latter portion of the record increasingly displays r characteristic. One speaker (MA) -uceectest in making records for these two sounds which have nearly the same character throughout (Plates 49, 73), but for the other seven
speakers, the " r " chatacteristics are best displated tow, ord the emd of the record, though there is no sharp transition print. In the stat listical study of these somuds the data were taken from the latter portions of the records; hat in the merhamical amalysis it was thought best (o) wse the whole record. Now abstacting ath combensing the data obtained in these two ways we hase (ignoring fundammond tones) the following table of frequencies:

$$
\mathrm{r}(a r \text { and } \mathrm{er})
$$

	From T.able M		From Fig. 1.3	
	M.ale	Fiemble	Male	Fietmale
Low	1) 570030	701712		512512
Midalle	1) ${ }^{\text {a }}$ (ar)	lotz lar	1218 $1+48$	$\begin{array}{ll}1218 & 1+18\end{array}$
tigh.	10831005	21022189	19332896	$\left\{\begin{array}{l}1625 \\ 2435\end{array}\right.$

These may be compared with l'aget's results (from the second memoir, in which r is classified as a consonant sound) taking one of his general results from a mass of experimental data:
r (Paget: reference 9a, 9b p. 15t)

Throat or back resonance"	400-700 cycles
" Widdle resonance"	1149-1N24 cycles
"Front resonance"	$1824-2169$ cycles

> (all varying with the associated vowel)

The italicized values in the first table above indicate correspondences with laget's data, and we conclude that these roughly deline the r sound, in terms of the steady-state theory:

Before taking leave of the vowel diagram, we should note not only the location of the resonant ranges but also their extent, and their relative separation from other resonant ranges in order to arrive at essential characteristics of the vowel sound. In other words, the individual vowel quality depends not only on a certain characteristic region of resonance but on the relative pitches in case there is more than one region of resonance. This effect is clearly shown 10 some degree in every group save one (VII:r) in lig. 13. It will be noted that for the characteristic maxima of encrgy in the spectrum of a given sound, the peaks in the curve for female voices tend to occur at a
higher frequency than the corresponding peaks in the curve for the male voices; but the musical interval between characteristic peaks for a given sound is about the same in the two cases. It is only in this way that we can account for what is a matter of miversal experience in using the phonograph, namely that moderate variations from normal speed in recording and reproducing speech leave the vowel sounds still intelligible.

V.

Four Semi-Vowel Sounds ${ }^{1}$

Now consider the souncls $l, n g, n, m$, which pronounced with the vowels oo, ce, a, following them, are arranged in Groups XIV and XV. Following the plan previously used, note first the general characteristics of these 24 recorls, made by the two male speakers MA and M13. An outstanding feature of the records is the diphthong quality which is clear in all: the transition is quickly made from semi-rowel to the affixed vowel sound and exeept in two records (Plates Nos. 108 (lee) and 113 (ngee) a definite transition point can be fixed. Marking this point for all records we find an average duration of 0.16 second for the semi-rowel sound, of 0.21 second for the rowel sound, mean total duration being 0.37 second. Noting the fundamental frequency in two locations, namely at the start and just before the transition point, it is found that there is a progressive rise in pitch during the record of the semi-vowel sound; this effect is in agreement with the individual characteristics of these two speakers previonsly noted in the pure sowel records. But in addition it is noted that the average fundamental for these two speakers (see Table V' below) is somewhat below that previously used by them in the vowel records. (Refer also to Table III). This slight lowering of fundamental pitch may possibly be a characteristic of the semi-vowel sounds; and this effect occurs, ats we shall see later, to a pronounced degree in the consonant sounds.

The amplitules of these semi-vowd sounds are on the whole smaller than the amplitudes of the affixed pure rowel sounds, but some of them are surprisingly large. The low frequency characteristic of l is (for these voices) principally a third harmonic of the fundamental. With n and $n g$ (which are nearly indistinguishable) the second harmonic becomes incrasingly important, and in the m records it is very large. The high fregnency characteristics of all four somms lie between 2100 and 2900 , falling somewhat as we pass through a sequence from

[^115]Thate: 1
speaters' ('hurateristios. Semi limed Siounds

Surnem	Wur.tion in seronds			Me.an F und.inemsal Semi- لinell	
	Semi-howel	Vinwel	[0, ${ }^{\text {a }}$)	II Si,art	Biffore framaition
1	16	20	36,	100	107
ng	10	211	in	101	111
n	16	22	3.8	尔	107
m	17	20	37	100	105
Mran	16	21	37	10:)	10%

l to m. We have here, then, a group of doubly resoname somels whose characteristic frequencies, whose amplitules, and general lehatior are such that they must be definitely related to the standard wowel diagram.

The amplitude frequency relations ats obtained from a mechanical harmonic analysis, and corrected for the variation in sensitivity of the ear are shown in Fig. 11. The process of mechanical harmonic analysis has been outlined in connection with the sowed records, and the procedure was the same here, except that only the semi-vowel portion of the records was taken as the unit for amalysis. The recorl for analysis was cut at the end of the last cyele before the transition point, and two profile copies of the semi-vowel wave were joincel together in an endless belt which was pased through the analyzing machine.

Side from the clone resemblane between the frequency spectra of the four sounds the noteworthy feature of Fig. 11 is in the similarity between the l spectrum and that for ee as previonsly given in line XIII of 1 ig. 13. The essential differences are a slight increase in the importance of the low frequency characteristies, and the slight shift of all the resonant regions toward lower frequeney, in patsong from e to l, and on through the seepuence $n g, n, m$. We may thus regard the chart of Fig. 14 as a logical continnation of the generally areepted chart of Fig. 13 and place the four semi-sowel sounds definitely in an extemed vowe diagram, following in regular order the sound long e.
.hir Richard Paget has mate the interesting statement that "all the consonant sounds are as essentially musical as the vowels, i. e., they depend on variations of resonance in the vocal catvity, and should be capable of being imitated in the same way, if their characteristic
resonances could be identified and reproduced in models." It is interesting to compare some observations made by him on $l, n g, n$, m, and reported in his second memoir. Working according to the method previously describerl (\$I) Paget has constructed resnnators which, under certain conditions, will produce transient forms of the four sounds we are dischssing. Their tone constituents are identified by him as follows:

Resusant Frequencies, Seme-Vowel Sounds
Paget: Reference 9b)

	"Throat"	"Middle" (Nasal)		"1pper" (Orat)
$\begin{aligned} & l \\ & n \\ & n g \\ & m \end{aligned}$	$\begin{array}{r} 228-406^{1} \\ 203228 \\ 203 \\ 208 \\ 271 \end{array}$	$\begin{aligned} & 683 \text { (faint) } \\ & 683 \\ & 5+1-724 \end{aligned}$	$\begin{aligned} & 1217-1306 \\ & 12171448 \\ & 1217-1448^{2} \end{aligned}$	$\begin{aligned} & 1025 \quad 1932^{1} \\ & 14+8-21692 \\ & 2298-2579 \\ & 801-1722^{2} \\ & 2434-2579 \text { (faint) } \end{aligned}$

[^116]Studying l'aget's results in connection with those of Fig. 14, we note that the energy spectat clearly show the "throat" resonances for all four sounds in the neighborhood of $2 \bar{t} 6$ cycles. In the case of n the nasal resonance at 683 cycles (Paget) is one of the prominent tones centering around a frecuency of 512 in the spectram diagram. This resonance also appears prominently in the spectrum for m though Paget did not notice it. The higher middle resonances (121-1H48 cycles) which appear in l'aget's table for the last three sounds appear also in the spectrat for these three sounds according to Fig. 14. Allowing for the variation stated in notes (1) and (2) above, it appears that the upper (oral) resonances for the four sounds, as noted hy Paget, are essentially the same as those that appear in all four spectra in the diagram in the range of $2018-2896$ cycles.

With regard to Paget's observations on the transient charater of these somels (he classifies them as consonants) and on the variability. of some of their components (Notes 1 and 2 of table above), depending on the associated vowel, there is room for some difterence of opinion and the reader may form his own conclusions after a detailed inspection of the records shown. Taking the sound I for example, and studying first the three records lon, lee, la by M A and then the three corresponding records hy II B it seems to the writer that such variations as are noted in characteristics are due not so much to change in the associated
bowal as the the ehage in the speaker, and a similar condusion will probbbly be rewhed for each of the other three acmi-vowel somads.

From the evielence in the recorels, it is ditiente to sulmeribee entirely (1) a "transient" theory of these sounds, at least when they preacele the standarel vowel somads. The evidence justities the use which has teen made of the stealy-state ithea, anel the harmonic analyses learding (1) a determination of characteristic frequencies. But there is a powability that the harmonic analysis does mot tell the whole story: These two groups of records and the acoustic spectra based on them furnish outstanding examples of the niceties involved in speech and hearing in order to achieve the miracle of articulate speech. Without harmonic analysis, the most casual observer will note, for example, the similarity between the corresponding records of the l and n sounds, but more astonishing still is the resemblance between the l and ee sommes shown together in Plates Nos. 107 and 108. In this latter case (l and ec) practically the same high and low characteristie frequencies are involved, and it would seem that the distinction, which is sufficiently pronounced to the ear, must be based to some extent not only on the relative amplitudes of these frequencies present, but also on the behavior of these amplitudes during the fundamental cyele. It will be noted in practically all of the records of these semi-vowel sommels that the high frequency characteristic is a transient of more rapid decay than in the case of the pure vowel sounds; it is not of large amplitude exeept at the beginning of the cycle. On the face of the records this is the only explanation avalable for whateser distinctive quality these sounds, as a clans, must posse's.

II

Slateen Conionint Sounds

The last two groups, XVI and XVII contain, respectively, records of the "hard" and "soft" consonant sounds, each with the a sound atiixerl, and pronounced by the two male speakers. Here the classification is somewhat arhitrary; it is difficult if not impossible to arrange the sounts of these two groups in any such satisfactory series as has been determined for the semi-vowels of the two preceding groups. The sounds $d t /$ (that) and $t / 2$ (thin) for example have transitional characteristics that relate them to both groups; but they are placed at the end of Croup XVI, to emphasize their relation to the pair $v f$ of the last group. With these reservations as to arrangement, consider the general characteristics of the consonant sounds of these two groups.

Examination first discloses a relatively easy separation of a given record into a consonant and a vowel portion and, as might be expected, " longer duration for the "voiced" consonants. In all the voiced consonants a sulficient portion of the record is reprofluced to illustrate the voicing or fundamental of small amplitule in the early stages of the record; in the case of the unvoiced consonants of Group XV'l this is not necessary. In the case of both the roiced and unvoiced consonants of Group XVII, longer records are shown, the high frequency component making this necessary, although the fundamental does not appear in the early stages of the unvoiced consonants of this group. The mean duration of the voiced consonants ($b, d, g, d t h$) of Group XV1 is 0.14 second; of the unvoiced consonants $(p, t, k, t h) 0.05$ second. Aside from traces of the fundamental tone (and traces of its second and third harmonics) there is nothing of interest in the early stages of three of these four voiced consonants; in the case of d th there are traces of a high freguency (4200 and 2600 in the two records) in the early parts of the fundamental cycle. The voicing for all four sounds if uniformly of lower pitch than that used later in the records in speaking the vowel sound. Leaving the early stages, the record then proceeds to a transition point, lasting through from one to four cycles of the fundamental, and culminating in the appearance of the vowel sound. Before this transition point is reached, traces of high frequency appear in most cases, sometimes suggesting a single transient vibration. Aside from the lack of the fundamental vibration, there is a further distinguishing characteristic of the "unvoiced" sounds: a tendency of the first transition cycle of the fundamental to appear from 10 to 20 per cent shorter in duration than the mean of several following cycles. With both voiced and unvoiced sounds there is a tendeney for a moderately low frequency (500 to 700 cycles) to appear during the transition; also a high frequency (of mean value 3225 cycles for the 16 records of this group) which latter may be clue to the beginning of the a sound. Some of the individual characteristics of these records are given in Table V1.

The notable distinction between these sounds and the sounds of the mext Ciroup (XV'li) rests on duration factors, and of even more importance, the pronomeed high-frequency characteristics of the sounds of the last group. The mean duration of the voiced sounds in Group X'Il is 0.21 second; that of the unvoiced somads, 0.18 second. Two of the other characteristics are similar to those noted in the preceding group; lirst the voicing, where it oceurs, is of abmormally low frequency, and second in the case of the unvoiced sounds, there is a marked shortness of the lirat fundamental eycle at the transition point. Except
in the case of the somend v^{\prime} (Plates $1 /$ is and 1 lif) the high frequencies are persistent and in many cases of large amplitude, both at the start athel daring the comere of the consomatat sumb. These freptemes rise, As we ge through this group, to values of \quad (0)t and sono cyeles in the cose of the somuds z and s, shown in the lat four records. For -1 full uppreciation of these pronounced high freguency characteristies reference must be mate to the records themselses, or the summary of charateristies, in Table V'II. Here again, in distinguishing these somals the remarkable performance of the ear is manifest, and the reoording apparatus is used nearly to the limit of its utility.

We may best conclude this discussion of the consonamt records by brief comments on some of the individual sounds, and a comparison where possible with data given for them in l'aget's second memoir.

B P.-(IMates 129-132). Both Paget (ref. 9b, p. 16.5) and Miller (ref. 3) have moted the essential impulsive quality of these sounds, and have produced them by sudden closing and opening of the month of a resonator. Paget considers p to be the more suddenly released, i. e. to have the steeper wawe-front. From the records this is not evident; following the voicing period, the b would seem to be more sutdenly produced, as julged by the growth in amplitule of the a sound following.

1) T.-(Ilates 13:3-136). For both of these (see vither Table IT or the records themselses) we note a high freguency characteristic of about 4000 cycles. Paget (9b, p. 168) obsersed "an upper resonance 5 to st semitones higher than that of the associated vowel, and a low resonance of about 362 ." Wie note in the records a low frequency of the order of 500 in the case of d. I'aget notes a "greater amplitude in t due to higher air pressure" and the records show a greater amplitude for the high frequency in the case of t, except right at the transition point, where d shows the high frequency of large amplitude. No conclusion can be given as to relative stecpness of wave-front, d is. l, becatuse in both cases we note for speaker MB (Recorls 13 t, 1315) a steeper wave-front than for M.I (Records 133, 135). The difference between d and l may depend entirely on the voicing and on the complicated phenomena at the transition point.

C, K.-(Plates 13T-140). k shows the characteristic transients (1500 , 4000 ; Table 1 V , notes I and i) to much more pronounced degree than g. From the records it would seem that g, in addition to the roicing, disclosed a steeper wave-front, the four transitional cycles required for k (records 139-140) emphasizing this point. No other
generalizations seem warranted, on account of the complicated series of events recorded. These sounds are treated at length by Paget (9b, p. 171-173) who observes considerable variation in their resonant ranges, flepending on the associated vowel. It will be noted however, that in these four records particularly, consonant characteristics are persistent and of large ampliturle before the vowel sound begins to appear.

DTH/TH.-(Plates 141-144). The high frequencies (2600, 3000, 3200) culminating at the transition point seem to be the key to these records. They are more persistent for $d t h$, while the appears to show the steeper wave-front. Paget states (9b, p. 158) that "in δ [dth] the middle resonance [1149-1932, his figures] is overblown, -- louder than the corresponding resonance in $\theta[t h]$." He gives also an "upper sibilant of $344-5950$," louder for dth than th, and "difficult to identify." It will be noted that in one record for dth (no. 141) there is during the voicing period a faint high frequency which has been set down in Table V'l as 4000 cycles. This faint "sibilant" (which may always loc audible though it fail to be recorded) establishes a certain kinship between these two sounds and those following (the fricative consonants) which are rich in sibiliant sounds.

V F. (Plates $145-1 N$), v shows a pronounced voicing, and as previously noted, a less prominent high frequency component than its partner f, or any of the other fricative consonants. Comparing ${ }^{2}$ ' f with d th th it seems from the records that the former pair are of higher frequency (particularly f) and that for $z^{\prime} f$ as a unit the high frequency characteristic is more pronounced; just the opposite conclusion to that reached by Paget (9b, p. 161-162). f may incleed dilfer more from v than z^{\prime} from dth, thus raising difficulties of classification both physically and phonetically, which cannot be resolved on the basis of the few records avaibable. The exceedingly fine distinetion letween the sounds z^{\prime} and dth could be no more strikingly shown than it is in the records given, for both speakers.

J ('H.- (Plates 149-152). Some of the recorded phenomena of this pair suggest correspondences between them and the pair gik; but the patir j ch shows a higher frequency characteristic during the important mid-portion of its history. Of the pair, ch seems to show the steeper wase-front, that is, the more rapid transition to the vowel sound.
Z.H Sh. (Plates 153-15(i). With this pair we pass to the fiekl of pure sibilants, in which there is no evitence of impulsive action or steppuss of wave-front. The action scems to be that in the soiced
sound, there is, in addition to the presionce of the fumd mental tone, a breaking up of the charateristie high frequency wate-train into discrete anits corresponding to the fandamental tone, whereas in the unvoiced sound the high frequency characteristic is continuous, though irregular. Thas moting thit the characteristic frequency is of 3000 to Hiof cyetes the ont itanding phemomena of sh share well definet. In addition to freguencies of 2018-3219 moter by Poget (96, p. 16i3) he gives a "promonnced midelle resonance of $162 . \pi-20$ Is." This latter observation of P'aget's mbye correspond to the 1 S00-2000 frequency in the recorts of AH (Ilates $1.51,156$) in the transition region, but this component does not seem to be prominent in the recorts.
7. S.-(Phates 15-160). The gencral properties of these sounds can be inferred from the discussion of the preceding pair (sh'sh), adeling only the fact that their principal characteristic is of much higher frequency: From Table V'll we note a range of $1200-80000$ eycles; Paget (0h, p. 162) gives "a characteristic upper resonance of 5690 fisisi," Paget also gives "a middle resonamee of $10 \mathrm{~s} 1-229 \mathrm{~s}$." The reeords do not show as low a range of characteristic frequencies unless it be the frequency range 2200-2s00 (see Note 1, Table VII), within which fall certain vibrations occurring in the carly parts of the fundamental cycles of the roiced sounds zh and z. The true s sound is, as I'aget has stated, "a relatively complex hiss" and this is true of sh as well. And to complete the record, we must olserve that $z h$ and z are even more complex, if possible, and thus not inappropriate examples of the sounds of speech with which to conclude this survey:

To summarize, we have considered some of the more ontstanding features of the wave forms of speech sounds which hase been recorded. Many more detailed properties of these records deserve further study: The progressive change in wave form from cycle to cyele of the fundamental, particularly at the beginning of a sound, is undoubtedly an important factor in determining the character of speech sounds; it becomes most important, as we have seen, in the study of the more impulsive consonant sounds. There is material in these records for extended studies of this kind, which require a harmonic analyzer of a large umber of components. We have not dealt with the question of the inherent power in speech sounds, another very characteristic property; these important data are accurately given in at paper by C. F. Saciat in this issue of the Journal. The relative power in consonant and wowel sounds can also be determined from those recorels in which vowels and eonsonants appear in combination, and it i- hopel to carry this study further. Nany other investigations
of speech are now marle possible on the basis of the accuracy of this set of records; in conclusion we may emphasize the fact that, for the present, the record is the important thing, and we believe that a set of faithful records opens a new prospect in the field of speech investigation.

$\begin{aligned} & \text { llate } \\ & \text { Nu. } \end{aligned}$	Somal	Spatak	Comsmant Charamerixties					Transitional Characheristics				Vowed Fiunlamental	
			Duatun	Nimaritart		Mid Portun to Emi							
					$\begin{aligned} & \text { High } \\ & \text { Frequemey } \end{aligned}$	Vorrng		เィッ Fromeney		No. uf C'yoles	$\begin{aligned} & \text { First } \\ & \text { Curke } \\ & \text { Shu,rt } \end{aligned}$	$\begin{aligned} & \text { Vimar } \\ & \text { itart } \end{aligned}$	$\begin{aligned} & \text { Nerar } \\ & \text { Eind } \end{aligned}$
$\begin{aligned} & 1: 39 \\ & 1: 30 \end{aligned}$	$\begin{aligned} & l_{n t} \\ & l_{n t} \end{aligned}$	$\begin{aligned} & M 1 \\ & \text { M13 } \end{aligned}$	$\begin{aligned} & 12 \\ & 19 \end{aligned}$	$\begin{array}{r} 96.140 \\ 100.200 \end{array}$	$\begin{aligned} & \text { nоми } \\ & \text { nения } \end{aligned}$	$\begin{aligned} & 6(9), 1<10 \\ & 92,1 \times 1 \end{aligned}$	$\begin{aligned} & \text { nowe } \\ & \text { none } \end{aligned}$	$\begin{aligned} & 7(0) \\ & 7(11) \end{aligned}$	$\begin{aligned} & 27(k) \\ & 31(k) \end{aligned}$	1	vis	$\begin{aligned} & 1(x) \\ & 11(t) \end{aligned}$	$\begin{aligned} & 115 \\ & 107 \end{aligned}$
$1: 31$ $1: 2$	$p^{\prime \prime \prime}$	M. 113 M13	12 0 0	unvoicel one till erald. vitration)	нине пини	maviered Gne fin eryele vihrationt		$\begin{aligned} & 11 \times 10 \\ & 901 \end{aligned}$	$\begin{aligned} & \text { Звен } \\ & \text { Звон } \end{aligned}$	1 1	yem	101 119	111 114
$1: 3$ $1: 31$	din	W1 W13	13 10	$\begin{aligned} & !10, \text { 1 } \\ & !\times, 1!4 ; \end{aligned}$	now	$\begin{aligned} & 79,15,1 \\ & 9,196 \end{aligned}$	$\begin{aligned} & \text { (Norte } 31 \\ & \text { 36etw } \end{aligned}$	$\begin{aligned} & 5010 \\ & 1600 \end{aligned}$	$\begin{aligned} & 2(x) \\ & 32(x) \end{aligned}$	3 \geq	y	103 112	115 1103
$\begin{aligned} & 13.5 \\ & 1: 36 \end{aligned}$	111 (11)	$\begin{aligned} & 11.1 \\ & 1113 \end{aligned}$	$\begin{aligned} & 17 \\ & 0 ; \end{aligned}$	нитvicen unvoiced	nom пини	16me 106 cyelt vihratisia) unvoiced	$\begin{aligned} & 4301 \\ & (\pm 10113 \\ & 36410 \end{aligned}$	(\%)	$\begin{aligned} & 3 \because(x) \\ & 30(x) \end{aligned}$	4 2	yen	1111 120	112 113
137 136	! $/ 4$ $y \prime \prime$	M. M1	112	$100,2001), 3101$ $1100,200,300$	mone			5. (i) (1)	$311(4)$ Зсяк)	3 2		101 112	111 112
1331 140	ku kut	M. M13	(1)	$\begin{aligned} & \text { unvoicent } \\ & \text { unvoicen! } \end{aligned}$	nuthe nome	unvoinal namoiced	1.5) (0), $\mathrm{f}(\mathrm{MH})$ Note : $14001,12(0)$	$12(\mathrm{k})$ $133(1)$	3-1) $4(\mathrm{Kx})$	1	y+4 ra	119%	115 1115
$\begin{aligned} & 111 \\ & 112 \end{aligned}$	dthe Ithlu	M. M13	20 1	$\begin{aligned} & \text { S3, } 1 \text { titi } \\ & 100,200 \end{aligned}$	$\begin{aligned} & (1000 \\ & \binom{\text { Note }}{26 i(A)} \end{aligned}$	$\begin{aligned} & 95,1 \times 9 \\ & 100,200 \end{aligned}$	$\begin{aligned} & 1: 309 \\ & \text { ※ote 1) } \\ & 27(n) \end{aligned}$	вi¢\% (i,k)		2 4		111 109	110 110
$\begin{aligned} & 113 \\ & 111 \end{aligned}$	$\begin{aligned} & \text { thint } \\ & \text { thut } \end{aligned}$	$\begin{aligned} & 11.1 \\ & 113 \end{aligned}$	102	unvorired unvoicent	$\begin{aligned} & \text { muse } \\ & \text { nome } \end{aligned}$		$\begin{aligned} & \text { nome } \\ & \text { nomar } \end{aligned}$	$\begin{aligned} & \text { (ink } \\ & \text { fikt } \end{aligned}$	$\begin{aligned} & 32(k) \\ & 32(k) \end{aligned}$	1	$\begin{aligned} & \text { yos } \\ & \text { yon } \end{aligned}$	$\begin{aligned} & 1111 \\ & 113 \end{aligned}$	$\begin{aligned} & 110 \\ & 1117 \end{aligned}$

[^117]A'on-onant Charactoristios
Cirmup IVII Fricative Consomants

Pafo. Dr	Sthan	̇luakir	1 'onsonant Charactoristios					Transitional Charactorivlios				Vowel Fundamental	
			Nearsitart			Mid Portion to limd							
			Inaration	Voicing Fondamental and Itarmonies)	High Fresulacy	Vowing	1ligh Fregtueney	Law Frequency	\|ligh Frefuency (Note:3	No. of (y colos	$\begin{aligned} & \text { First } \\ & \text { f'vile } \\ & \text { Short } \end{aligned}$	$\begin{aligned} & \text { Ne:ar } \\ & \text { ¿tart } \end{aligned}$	$\begin{aligned} & \text { Viour } \\ & \text { Vinil } \end{aligned}$
$\begin{aligned} & 115 \\ & 11 \mathrm{f} \end{aligned}$	riz IV	11. I13	20	$\begin{array}{r} 97,198,390 \\ 112,221 \end{array}$	$\begin{aligned} & 30000 \\ & 3: 200) \text { (1rater } \end{aligned}$	$\begin{array}{r} 87,174 \\ 100,2064 \end{array}$	notis notic	(if) $)$ (i) (1)	$\begin{aligned} & 27(0) \\ & 3100 \end{aligned}$	$\begin{aligned} & 3 \\ & 2 \end{aligned}$.	$\begin{aligned} & 101 \\ & 112 \end{aligned}$	116 107
$\begin{aligned} & 1.15 \\ & 1.15 \end{aligned}$	$f a$ $f a$	$\begin{aligned} & \text { M1. } \\ & \text { MII } \end{aligned}$	1.7 .30	invoiered irregular	$\begin{aligned} & 3100 \\ & 3200, f i 100 \end{aligned}$	Hnvoirer unvoicerl	$\begin{aligned} & 3: 000,7000 \\ & 3200,8400 \end{aligned}$	$\delta 00$ (i) (1)	$\begin{aligned} & 2 \vee 00) \\ & 3+i 00 \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & 112 \\ & 111 \end{aligned}$	$\begin{aligned} & 121 \\ & 101 \end{aligned}$
$\begin{aligned} & 1.19 \\ & 1.01 \end{aligned}$	a $j u$	M1 \13	14	$\begin{aligned} & \text { al:213 } \\ & \text { Irace } \end{aligned}$	$\begin{aligned} & 3.1001 \\ & 3.300 \end{aligned}$	$\begin{aligned} & 81,160^{2} \\ & 90,179 \end{aligned}$	$\begin{aligned} & 2(500,5200 \\ & 2000,14(0) \end{aligned}$	$\begin{aligned} & 450 \\ & 500 \end{aligned}$	$\begin{aligned} & 2700 \\ & 3100 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$...	$\begin{aligned} & 110 \\ & 115 \end{aligned}$	$\begin{aligned} & 1111 \\ & 111 \end{aligned}$
151 15%	cha cha	11.1 M13	178 18	unvoiced nnvoired	$\begin{aligned} & 4 \times 00 \\ & 3(600 \end{aligned}$	unvoicesi unvoiced	$\begin{aligned} & 2500,1500 \\ & 3600,+i 400 \end{aligned}$	$\left\{\begin{array}{l}500 \\ 1500 \\ 5009 \\ 1600\end{array}\right.$	$\begin{aligned} & 30001 \\ & \text { trater } \end{aligned}$	2 2	$\begin{aligned} & y 0 x \\ & y o x \end{aligned}$	$\begin{aligned} & 101 \\ & 119 \end{aligned}$	111 115
153 154	$z h i$ zher	11.1 MIS	$.13$	$s 6,172,3: 11$ 96	$\begin{aligned} & 30(0), 1000 \\ & (2000 \\ & 2600 \\ & 2000 \end{aligned}$	$\begin{aligned} & 57 \\ & 99 \end{aligned}$	$\begin{aligned} & 3000,1000 \\ & (\operatorname{Note} 1) \\ & 30000,1200 \end{aligned}$	$\begin{gathered} 4,50 \\ \left\{\begin{array}{l} 500 \\ 2000 \end{array}\right. \end{gathered}$	2900	4 1	\ldots	$\begin{aligned} & 100 \\ & 111 \end{aligned}$	111 111
155 156	shat	M. M13	$\begin{aligned} & 18 \\ & .17 \end{aligned}$	 ninvoired	$\begin{aligned} & 2 \times 00,36001 \\ & (N 00021 \\ & 2200,5000 \end{aligned}$	Hnvorreal Invoicen	$\begin{aligned} & 2800, H 00 \\ & (\mathrm{Noto} 2) \\ & 2(300,500 \end{aligned}$	$\begin{gathered} 150 \\ \left\{\begin{array}{l} 500 \\ 1800 \end{array}\right. \end{gathered}$	$\begin{aligned} & 3200 \\ & 2 \times 00 \end{aligned}$	3 3	yes yex	$10!$ 117	101 112
1.7 15%	211 $\approx a$	N. 1 N13	.24 .22	$\begin{aligned} & 90,3 \pi 1 \\ & 100,300 \end{aligned}$	$\begin{aligned} & 2400,5600 \\ & \times(01011 \\ & 2=000,1+100 \end{aligned}$	$\begin{aligned} & 59.17 \mathrm{~S} \\ & 100,2000 \end{aligned}$	$\begin{aligned} & 52(3), 7(0) 0 \\ & (\text { Votr } 11 \\ & 2 \times(0), ~ 5 t i 0) \end{aligned}$	$\begin{aligned} & 100 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 31000 \\ & 2 \times 00 \end{aligned}$	4 5	.	98 111	108 107
159 160	80 80	$\begin{aligned} & 11.1 \\ & 111 \end{aligned}$.27 .19	unvoicerd unvoicerd		HINOBCerd tinvoricerl	$\begin{aligned} & 6(0) 0,7500 \\ & 4200, \text { fifi00 } \end{aligned}$	$\begin{aligned} & 5(0) \\ & 6.50 \end{aligned}$	$\begin{aligned} & 2900 \\ & 29060 \end{aligned}$	$\frac{2}{2}$	yes yes	114 117	111 108

Speech Power and Energy

By C. F. SACIA

Intronection

IN the past, much reacarch has been devoted to the determination of the relatise magnitudes of the fretueney components of speech, and the results of these explorations are useful and well known. Thus the communication engineer is apprised of the frequency range wer which his apparatus should respond uniformly in order that the transmitted spech sufter no freguency distortion. But to provide against load distortion, he requires the knowledge of a different kind of rlata: numerical salues of the magnitude of power inwolved in speech waves as a whole. This investigation deals with the magnitudes and forms of speech waves primarily in terms of power, and is not concerned with frequency as the argument.

Athough the subject matter is not fundamentally new, this treatment of it is somewhat of a venture. The broad classification of power is a convenience here, but its future value will be dependent upon enginecring usage. I have also introduced the use of the peak factor, which, being a simple inclex of the wave form, may perhaps find application in vowel study and phonetics as well as in the technical field. A condensed table of peak factors was incorporated in Mr. Fletcher's compilation in the preceding issue of this Journal.

Derivation

The nature of power in a syllable of speech may be most easily comprehended by reference to an illustration such as that shown in Fig. 1. The representation of the instantancous power $\left(P_{i}\right)$ is an enlarged copy of a power escillogram of the word "quite." Because of its extreme jaggedne'ss, the curve had to be represented by a profile rather than by an outline. Athough this is a quickly spoken syllable it plainly displays a cyclic repetition; the cyclic interval (for example, from a to b in the figure) is ordinarily called the vocal period and its reciprocal, the vocal frequency ${ }^{1}$).

One feature of interest may he noted here: the irregularity in the growth and decay of the peaks. This is evidence of a slight vocal

[^118]tremolo. Tremolos usually occur in singing voices and vary widely in their character. They constitute modulations which in actual singing sometimes occur as slowly as two per second. The slower modulations affect the ear as beats or pulses, while the most rapid ones affect the quality by the resulting sidebands of overtones. Those

lig. 1 Instantancons and mean power. Enlarged copy of original oscillugram of the word "QUITE"
shown in the figure are of the latter types, their modulating frequency being about 50 per second.

From the instantaneous power we derive the mean power, P_{m}, whose chief signilicance lies in the fact that it is the kind of power that woukd be read by a culuickly acting wattmeter; it is likewise proportiomal to the deflection shown by the ordinary a.c. voltmeter or
ammeter, or ly the volume indieator. A graph of the mean power may he ohtaned by drawing the average power in each vocal cycle and then drawing a smooth curve through the resulting broken line. This would be an impracticable way of obtaining curves of mean power; actually they have been obtained independently of the ?", curves in this work, in a manner described later.

Vowel sounds carry by far the most of the power and energy of speech, and it was to them that the above considerations were tacitly applied; but the definition of the mean power is similarly applicable to the semi-vowels, voiced consonants, and fricative consonants.

The peak factor is the square root of the ratio of a peak value of $P_{\text {}}$ to the corresponding value of P_{m}.

Still another commonly used interpretation of power is made in terms of its average over an entire syllable, word or speech. Such an average, although the same for instantaneous and mean power, is most casily determined by means of the latter: it is the total energy divided by the time involsed. Graphically it is the area of the $P_{\text {. }}$ or P_{m} curve divided by the base. If the base includes the silent intervals between syllables the result will be called the long average; if the silent intervals are excluded from the base, the result will be called the short average.

Thus it is seen that the word "power" when applied to speech has a variety of meanings and always needs to be qualified. For example, the specch of a certain person may have shown a long average power of 10 microwatts while the instantaneous power frequently rose to 2,000 microwatts.

In obtaining the power, we obtain indirectly the pressure on the condenser transmitter, which is located 9 cm . from the speaker's lips. In the treatises on acoustics, the power of a simple-harmonic wave is derived in terms of the pressure, ${ }^{2}$ the numerical result being at $20^{\circ} \mathrm{C}$,

$$
\begin{equation*}
P=\frac{p^{2}}{415} \tag{1}
\end{equation*}
$$

where P is the power in microwatts across $1 \mathrm{sq} . \mathrm{cm}$. of wave front, and where either mean or peak value is taken for both power and pressure. Here we are not concerned with simple harmonic waves, but the same result holds for instantaneous, mean, or average values in any kind of wave, since

$$
P=\frac{1}{10} p \frac{d \xi}{d t} \text { microwatts across } 1 \mathrm{sq} . \mathrm{cm} .
$$

[^119]and the air particle displacement,
$$
\xi=\frac{1}{41.5} \int p d t
$$
(41.5 is a resistance factor)
for a wave travelling in the positive direction.
From the power intensity thus found at the transmitter we can obtain an estimate of the power developed by the speaker. With the transmitter surrounded by a plane reflecting surface so as to give reflection for speech frequencies, the pressure is doubled and the power intensity quadrupled over the values they would have in free air, hence the observed intensity is divided by 4 . The usual assumption is made that this same intensity is distributed over a hemisphere whose center is at the speaker's lips. Hence the required estimate of the speaker's power is obtained by multiplying the measured power intensity at the transmitter by the factor $\frac{\pi 9^{2}}{2}=127$. For the sake of convenience, these two values are always given together in the accompanying tabulated results.

Instantaneous and Mean Power

In dealing with the power in a syllable, the matter of greatest interest is the maximum values attained by P_{i} and P_{m} throughout the entire syllable. These maxima will be denoted by \bar{P}_{i} and \bar{P}_{m}, respectively. Table I shows their approximate ranges in the case of accented syllables.

$$
\begin{gathered}
\text { TABLE I } \\
\begin{array}{c}
\text { Instantaneous and Mean Power } \\
\text { Typical Maximum Values for an Accented Syllable } \\
\\
\text { Speaker's Power }
\end{array} \\
\vec{P}_{3}
\end{gathered} \frac{\text { Mower Per Cm. }{ }^{2}}{} \begin{aligned}
& \text { Microwatts } \\
& \bar{P}_{m}
\end{aligned}
$$

At this point it is worth while to consider an application of the foregoing. A salient characteristic of speech waves is the generally high ratio of peak value to mean square value (peak factor), as can be inferred from Fig. 1. Failure to take this into account frequently catuses load distortion in speech transmitting aniplifiers. It sometimes happens that the effective output voltage or current has been measured, and the assumption of an equivalent sine wave (i.e., one having the same effective value) is made; but this leads to a large error in the estimate of the peak value. Thus with an insufficient allowance made for the peak voltage impressed upon the grid of the tube, there is the possibility of the grid becoming momentarily positive due (0) insufficient negative bias or still worse, the plate may be over-
loaded liy the peaks. The resulting suppression of the peaks in the sound output can readily be chetected by an aecustomed ear, prowited that the whole system is reasomably free from frequency distortion.

Atermie: Power

In Tables II and III are summarized the olvervations made upon the two speeches which were used in this work. There are two reasons for showing them separately: the two speeches were not spoken in immediate succession; and they differ somewhat in character, the first being declamatory while the second is of a more consersational nature. This difference is not very great, lut should account nevertheless, for the slightly higher values in Table II. By' taking the weighted mean of the first number in both tables, we obtain 7.4 microwatts as the long average power in normal speech. ${ }^{3}$

TABLE 11
First Speech, 50 Syllables
Average Power in Microwalls

	L.ong Average		Short Iverage	
	Speaker's l'ower	Per cm^{2} at Trans.	speaker's Power	Per cm^{3} at Trans.
Composite of 10	86	0.067	1.31	0.102
Composite of 8 male	82	0.064	12.7	0.099
Composite of 8 female	911	0.070	13.5	$0_{0} 105$
Maximum male .	10%	0.082	171	${ }_{0} 11.33$
Maximum female	170	0) 1.3 I	218	()169
Ninimum male	70	0 0) 05	1118	() 08t
Winimum female	5.7	() 0.4	8.8	0069

1.AB1.E III

Second Speech, 72 Syllables
dverage Power in Microwalts

	I.ong Tierage		Short Average	
	Sreaker's P'ower	Per cm^{2} at Trans.	Speaker's Power	Per cmi at Trans.
Composite of 16	66	1) 0.54	90	00880
Composite of 8 male	6.2	0050	89	() $0: 2$
Composite of 8 female	71	01157	10 s	0087
Naximum male.	S 1	1) 065	1311	(1)105
Maximum female	98	0079	151	0122
Minimum male	39	0 0.32	57	0046
Sinimum female	40	(1) 01.3 .3	60	0048

[^120]
Stress

Since our observations have shown qualitatively that the louder syllables have the greater rise of mean power, means are available for calibrating the stress modulation of the voices under test. To form a discriminant for each speaker we proceed in the following way:
(1) Measure the \bar{P}_{m} of each syltable;
(2) Find the ratio of each \bar{P}_{m} to the greatest \bar{P}_{m} occurring in the speech; call this ratio ϵ;
(3) Find the proportional number, s / s, of syllables for which ϵ is greater than the magnitude n, where n may vary between 0 and 1;
(4) Plot the variables s / s and n against each other to give the required curve.

17ig. 2a Cimposite stress curves of 16 voices
The analogous relation between syllabic energy and stress is found by using the total energy of each syllable instead of P_{m} in the above.

A large number of these curves has been so obtained, but it will suffice in consider here a few of the representative types. Fig. 2a
shows compersite curses and Fig. 2h gites a series of eath kind of curses for four speakers. Note the changing moxle of stress which is shown in the sequence from top to bottom: in the first calae the syltables of weaker stress greatly predominate while in the last cane there is a more nearly uniform distribution of the syllables with respert to the degree of stress. It is evident from a comparisen of the two series

Fig. 21-Types of stress eurves
that the speaker's type is much the same whether judged hy the power or energy standard. An exceptional case might arise, however, if one should put emphasis on a syllable by prolonging the time of utterance, for here the increased energy of the syllable would not necessarily mean a greater stress. But from the point of view of phonetics, the energy method should be useful in calibrating emphasis, which can be taken as a function of time of duration as well as of mean power.

Relative Power of Vowels

One test which was made on the speakers was for them to utter disconnectedly and without accent eleven monosyllables, each of which contained a fundamental vowel sound. The restults of this test give a general indication of the inherent power, \bar{P}_{m}, in unaccented (but unslighted) vowels relative to each other. The difference between the

Fig. 3-Inherent relative power
male and female voices in this respect warrants separate charting of these characteristics. Fig. 3 shows the chart in which the vowels are arranged in the sequencet) the first half of which accompanies an increase in the angle of the speaker's jaws, and the succeeding half accompanies an increase in the elevation of the tongue.

It might have been anticipated that the more open vowels have more power; but there is apparantly one irregularity in this tendency in the case of the vowel o (as in ton). Furthermore, the vowel \bar{e} (as in teem) looks somewhat different for the two voices, when compared with the vowels immediately preceding it in the serics. There is some dlifficulty in uttering it so as to make it carry, in the case of female woices a fact which 1 have previously encountered when recording them. The male woice, on the other hand, shows a decided rise in this direction. The adrantage in the case of \bar{u} (tool) is reversed: here the male wrice legins to fall off while the female voice stays about the same. These results suggest a difference in the resonant structure

[^121]between the male and female woices, which, however, does not affee the higher frequencies enough to atter the vowel characteristies.

> PEAK Factor

The tests just described were also used to ohtain the peak facturs of the vowels. These were determined by measurement of the maximum $P_{\text {a }}$ and P_{m} of each syllable and are charted in Fig. 4. Here again there

are differences between the sets for the male and female voices, the former being somewhat higher, especially for the vowel \bar{e}. In both cases such rasping vowels as á (tap), e (ten), ã (tape) have sharp waves and high peak factors. Having listened attentively to all these voices under test, I have become able to associate peak factors with vocal qualities in the following way: the roices with the higher peak factors are those which in the ordinary terminology are said to be "resonant"
or "vibrant"; they have the greater carrying power, especially over the telephone; they are rich in the musical sense and are therefore well suited to singing, although many such voices, unfortunately, are never applied to the art.

To illustrate an application of the peak factor to engineering, we shall again take into consideration the specch amplifier whose mean effective output voltage is indicated by a suitable device such as a volume indicator. From this, the peak value of the instantaneous voltage is wanted; to find it necessitates a knowledge of the peak factor. Now since the latter differs somewhat for different sounds and speakers, it is necessary to use one factor which makes allowance for the worst cases (highest voltage peaks) which can occur often. For most purposes, the factor 5 will suffice, hence the rule is: the mean effective voltage should not exceed one-fifth the overload voltage of the system.

Apparatus

In order that the apparatus (see Fig. 5) be a faithful recorder, it was made with the following characteristics:
(1) A nearly distortionless reproduction of wave form by the condenser transmitter and amplifier.
(2) A full-wave parabolic rectification of the amplifier output.
(3) Load capacity sufficient to transmit the high sharp peaks of speech waves without cutoff.
(4) Uniform response, from 0 to 6000 cycles in the oscillograph vibrator recording instantaneous power.

The calibration of the amplifier and condenser transmitter is shown in Fig. 6. To make the overall characteristics so nearly uniform it was found necessary to use the resonant circuit in the output of the sccond N tube, this compensating for an irregularity due mostly to the 15 feet of cable which leads from the transmitter and first stage of amplification in the sound-proof room to the main part of the amplifier.

The oscillograph (see Fig. 5) was provided with two series connected vibrators one of which was sensitive to low frequencies only, and recorded the mean power. Although it did not completely suppress the fluctuations of rocal frequency, it reduced them to the order of small superimposed ripples through which the P_{m} curve could be drawn. The instantaneous power was recorded by the other vibrator whose characteristics are noted in item (4) above.

Fig. 5-Specch power recording circuit

TABLE \mathbb{N}°
Calibration Constants
(a) Constants of Vibrators $I D=$
(1) Low frequency 5 \{ milliamperes
(2) Instantancous power 286 \{ per cm.
(b) Rectifier constant $E^{2} \quad I=/ 40$ (volts) ${ }^{2}$, milliamp.
(c) I'ressure on transmitter vs, amplifier output $p^{2} / E^{2}=1 / 2.95^{2}$ dynes $^{2} / \mathrm{cm}^{4}$ volt ${ }^{2}$.
(d) Power intensity at transmiter vs. pressure $P, p^{2}=1415 \mathrm{~cm}^{2}$ microwatts, dynes ${ }^{2}$.

Fig. 6-Calibration of condenser transmitter with amplifier
The product a bcd gives $P_{m} / D_{m}=0.192$ microwatts per sq. cm. of wave front as indicated by a deflection of 1 cm . of the oscillograph low frequency vibrator. Similarly $P_{i} / D_{i}=11.1$ for the instantaneous power vilorator.

Method

Records were made on sensitized paper strips 6 cm . wide moving at a velncity of about 20 cm . per second. Three graphs were traced simultaneotsly, the instantateons power, the mean power, and the timing ware of 100 cycles from an oscillator. When connected speech was being recorded, the oscillograph operator listened to the speech as reprofluced hy the loud speaker and punctuated the record at frequent
predetermined points hy tapping a key which momentarily displaced the timing wave. By the aid of these punctuations we were entabled to identify the words and syltables on the records after development. The areas for computing average power were measured from the mean power curve, while the instantaneous power curve was measured only for its peak values.

Although chosen at random, the speakers used in these tests represent all sections of the United States. Their types range from soprano to bass-baritone, neither extreme type-high soprano and bass - being available; but this assortment is sufficiently representative for our purpose. Extraneous disturbances were to a large extent eliminated by the sound-proofing on the walls and ceiling. Lest the novelty of this situation be a distraction to the speaker, he was allowed to practice and become accustomed to the new condition.

Conclusion

One advantage in having speech data available in terms of its power rather than its amplitude is the fact that in most instruments used for making quantitative speech measurements, the force which operates the meter is proportional to the square of the wave amplitude. Common examples of such instruments are the dynamometer and the ordinary a.c. meters.

To summarize, the power is classified into:

1. Instantancous power, P_{i}.
2. Mean power, P_{m}.
3. Long average power.
4. Short average power.

Stress calibrations are here derived from the maximum values of P_{i} and P_{m} ($P_{\text {, and }} P_{m}$, respectively) in each syllable, while the use of the total energy of the syllable for calibrating emphasis also shows possibilities. The peak factor is the square root of P_{i}, P_{m} and is a useful index of the wave form.

The measuring apparatus-excluding the rectifier and oscillographis essentially a good quality speech-transmitting system. In view of the fact that good quality systems are now used commercially as well as in the laboratory the data naturally fall into two classes:
(1) Measurements which characterize the speech solely from the standpoint of the transmitting apparatus;
(2) Estimates or approximations concerning the total power from the roice.

Regarding (1) we note that the divergence of waves causes some frequency distortion which is greater, the nearer the source, and becomes negligible as the distance increases (see the appendix). We should accordingly expect the peak factors to be different at the speaker's lips. The estimates of total power, however, are as close as their importance necessitates.

When the data are applied to a case in which the speaker's distance is other than 9 cm ., the required power intensity is found by the law of inverse squares and the pressure by the law of inverse distance.

APPENDIX

Frequency Distortion in Spherical Waves

A spherically diverging sound wave (see H. Lamb: "Dynamical Theory of Sound," page 206) is represented by

$$
r \phi=f\left(v_{0} t-r\right)
$$

where $\quad r=$ radius of the wave front
$\phi=$ velocity potential
$t=$ time
$z_{0}=$ velocity of sound
$\rho_{o}=$ mean density of air
The pressure

$$
\begin{aligned}
p & =-\rho_{0} i_{0} \partial \phi / \partial r \\
& =\rho_{0} i_{0}\left[\frac{1}{r} f^{\prime}\left(z_{0} t-r\right)+\frac{1}{r^{2}} f\left(z_{0} t-r\right)\right]
\end{aligned}
$$

1.et $f\left(z_{0} t-r\right)=\sin \omega\left(t-\frac{r}{v_{0}}\right)$,
so that

$$
p=\frac{\rho_{0} r_{0}}{r}\left(\frac{\omega}{i_{0}} \cos \omega\left(t-\frac{r}{z_{0}}\right)+\frac{1}{r} \sin \omega\left(t-\frac{r}{z_{0}}\right)\right) .
$$

When a wave composed of any number of such components (each having a different pair of values for ω and α) diverges from one radius (1) a larger one, it not only changes in size, due to the factor $\frac{\rho_{0} \text { oro }^{\prime}}{r}$ lut also in shape, due to the factor $\frac{1}{r}$ in the second term. When r
is large compareal with $\frac{t_{0}}{\omega}$, this chathge in shape becomes negligible. In the case of speech, since the source is of binite size the effective rowlius is somewhat greater that that measured from the speaker's lips, and the wave front is not exactly hemispherical, so the comparison is only qualitative. Nevertheless, a difference in quality of transmitted speech can be detected when the speaker's lips are within 2 cm . of the transmitter diaphragm.

Some Contemporary Advances in Physics IX The Atom-Model, Second Part ${ }^{1}$

By KARL K. DARROW

G. Recapitulation of the Facts to be Explained

EVERY atom-model that is worthy of notice was designed in view of a certain limited group of facts. That is to saly, every valuable atom-model is the invention of somebody who, being acquainted with certain of the ways in which matter behaves, set himself to the devising of atoms of which an assemblage should behave like matter in those ways. Of course, it would be a most wonderful achicvement to conceive atoms, of which assemblages should behave like matter in all ways; but this is too exalted an ambition for this day and generation, no man of science bothers with it. Each atommodel of the present is partially valid, not universally; and nobody can rightly appreciate any one of them, unless he knows the facts for which it was designed. I might add that he should also know the relative importance, in the world and in life, of the facts for which it was designed. But this also is too exalted an ambition; we do not know much, if anything, about the relative importance of facts sub specie aternitatis, and can hardly refrain from regarding with an especial favour the facts which happen to have been successfully explained. At all events it is clear that every account of an atommodel should he preceded by an independent account of the things it is meant to explain. For the favorite atom of these days, the atom of Rutherford and Bohr, I have provided this preliminary account of the facts in the First Part of the article. Let me give a brief outline of the most important among them, before entering upon the task of constructing an atom-model to reproduce them.

First and foremost, the elements are very definite things; each of the ninety of them is distinguishable from the other eighty-nine, not in one respect only but in many, and in many cases the contrasts are very severe. The atom designed for each of them must therefore have definiteness and fixity and a sharply-marked chatacter.

Next: although the atom must be definite, it must not be absolutely immutable; it must be capable, under stress, of assuming various distinct states or forms or configurations or whatever you choose to call them. This is prescribed hy that great and essential fact of the Stationary States, to which so much of the First Part of

[^122]this article was tevoted. For an atom, when initially in its mormal state and properly stimulated, is able to rewo comerg in certain welinite messurable amemots, and to retain it for a while; and this is tantamount tos s.ly ing that cath atom may exial for a while in one or another of eretain states distinet from the normal state, in e:wh of Which it possesses at eertain distinctise amonmt of extrat entergy. Thus a helium atom moy receive 19.75 equis.alent wolts of energy from an impinging vectron, no less and (within certain limits) no more: and this is bantamonent to soying that a heliom atom may exist, not only in its mormal state but also transiently in an abmormal state in which its energy is greater by 19.75 equivalent volts than in the normal state. The atom-model for each element must therefore be designeel to be delinite in each of several distinct and interchangeable states, and not in one only.

The energy-values of some few of these stationary states are determinable directly; but most of them (and they are very numerous) are eleduced from spectra. The spectrum of an element is the family of ratiathons of varions frequencies which it emits when it is in the gaseous state. These are commonly ascribed to the individual atoms. The first task of the spectroscopist is to measure these frequencies; his second, to elassify them. In certain spectra his task of classification is easy, for there is a natural arrangement of the spectrum lines which "leaps to the eye." This is an arrangement of lines in one or several converging series, like those of which there were photographs of the First l'art of the article. Let me represent by

$$
\nu_{1}, \nu_{2}, \nu_{3}, \ldots \nu_{i}, \ldots
$$

the frequencies of the consecutive lines of a series, and by $\nu_{\text {lim }}$ the frequency of the series-limit upon which they conserge. Now the frequencies of the various lines may be described by a formula

$$
\begin{equation*}
\nu_{i}=\nu_{l m}-f_{i} \tag{1}
\end{equation*}
$$

in which ν_{t} is expressed as the difference between two lerms. The term f_{i} varies from one line to the next: and in some instances this function f_{i} is algebraically of an extreme simplicity, just the sort of a simple elegance which is apt to suggest that the formula has an inward plysical meaning. Also one and the same term may ligure in the formulae for lines loelonging to different series, a fact which enhances the feeling that the terms are physically "real." Thus the spectroscopist seeks "terms" wherely to classify the lines of a spectrum; and the analysis of a spectranı leads to the measurement of a multitude of terms.

Now multiply both sides of equation (1) hy Planck's constant h; it becomes

$$
\begin{equation*}
h v_{i}=h v_{i m}-h f_{i} . \tag{2}
\end{equation*}
$$

On the left-hand side we have $h v_{i}$, a quantity of the dimensions of energy. Now there is much reason to beliese that when radiant energy streams out from a substance in the form of radiation of frequeney ν, it emerges often if not always in pareels or packets or units or quanta, each consisting of an amount of energy equal to $h \nu$. Suppose that the radiant energy constituting any line of a series is emitted in quanta such as these; then whenever an atom performs the act of radiating that line, it loses the amount of energy which stands on the left-hand side of Equation (2). The right-hand side represents the same thing, and is itself the difference between two terms which are spectrum-terms multiplied by h; these are themselves the values (reckoned from a suitable zero) of the energy of the atom before and after the radiation oecurs, they are the energy-values of the atom in the state before radiating and in the state after radiating. The spectrum-terms, when multiplicd by Planck's constant h, are translated into the energy-zalues of the Stationary States of the atom. When expressed in proper units, terms are energies and energies are terms. In the decades during which the spectroscopists were analyzing linespectra, disentangling line-series-by no means a light labor, for the perspicuity of the series shown in the photographs of the First Part is anything but common-and disengaging terms, they were unknowingly recognixing and locating the Stationary States of the atom. Spectrum analysis culminates in the fixation of the Stationary States. This is the greatest of the ideas for which the work is indebted to Bohr, and eventually through him to Planck.

These Stationary States constitute one of the great systems of facts, which the atom-model of Rutherford and Bohr is designed to interpret. let me formulate the demands which thus are made upon this atom-model. It must have features to account for these facts:

First, that there are such things as Stationary States;
Second, that in passing over in a "transition" from one stationary state to another of which the energy is less by ΔL, the atom releases the energy ΔL^{\prime} in radiation of the one frequency $J U h$;

7 hird, that certain transitions do not occur, or occur under abnormal circumstances only, or occur less frequently than others; and

Fourth, that the stationary states of each particular kind of atom have the particular numerical energy-salues which they are observed to have.

The lirst three of these dembuls ate of a general and fundamental batare. If someone were to design an atom-model for these phemomena of the Statimary States and these dome, he would probably begin by imagining an atom which wonk sutisfy these gemeral demands: then he would proceed so to speciatize it that it wonld comply also with the fourth. It might have been well, hat this happered; the course of history was otherwise. The atom-model of Rutherfored Wats designe origimally to interpret phemomenat of guite another fielt. and then Boher modilied it by violence to satisfy the fourth of the foregoing demands.

Of the fucts which Rutherforel chevised his atom-morlel bo interpret, the cardinal one is that the atom eontains electrons. The best evidence for this fact is, that electrons can be extracted from atoms. ${ }^{2}$ ()ne can even measure the amount of energy required to extract an electron from an atom in other words, the difference between the energy of an atom in its normal state, and the energy of the same atom in its "ionized" state. ${ }^{3}$ This has a elirect bearing on the phenomena of the Stationary States; for the spectrum-terns, when they are multiplied by Ilanck's constant h, yied the energy-values of the corresponding Stationary States, reckoned from the energy-value of the ionized state ats zero of energy.

Granted that the atom contains electrons: it must contain positive electricity also, to compensate their negative charge. Now it is easy to imagine the positive electricity so arranged, that the electrons can be fitted into various places within and around it , and remain in equilibriums; it is possible to imagine that the positive demericity acts upun the electrons with a force which is compounded of the familiar inverse-square attraction and a particular sort of a repulsion, so adjusted that the electrons will remain in equilibrium in various positions. It seems as though the Stationary States might be interpreted in this fashion, and several attempts have in fact heen made; lut they are diseouraged by the experiments of Rutherford and his followers on the deflections of alpha-particles and electrons which pass through atoms. For these dellections occur exactly as if the positive electricity were concentrated at a point or "nucleus," and an inverse-stpuare clectrie fied prevaled in the region between this nucleus

[^123]and the electrons. ${ }^{5}$ They may be compatible with other atom-models; it is certainly incumbent upon the elesigner of any other to prove that they are compatible with his. Furthermore these deflections indicate that the positive charge on the nucleus of the atom is just sufficient to compensate the negative charges of a number N of electrons, equal to the "atomic number" Z which is the cardinal number defining the position of the element in the Periodic Table of the Elements. This confirmation of the splendid idea of van den Broek and Moseley is so delightful and so precious, that anyone would hesitate long before rejecting the atom-model whereby it is deduced from Rutherford's experiments.
let this nuclear atom-model cannot be accepted, without being instantly modified. A system consisting of a positively-charged nucleus and electrons surrounding it, all acting upon one another with inverse-square forces of attraction between nucleus and electrons and repulsion between one electron and another, is not a stable system; it is a suicidal system, doomed to quick and permanent collapse. If the electrons were initially standing still, they would fall into the nucleus; if the electrons were initially swinging in orbits about the nucleus like planets around the sun, they would steadily radiate their energy into space - not in radiation of one single frequency either, but in a mixture of all possible frequencies and would wind their ways spirally into the nuclens. Therefore, the nuclear atom-model must be altered; for instance, by adding a proviso, that the electrons thall stand still, and shall not be sucked into the nucleus; or a proviso, that the electrons shall revolve in closed orbits planetwise, without radiating any of their energy ${ }^{6}$, and without gliding by a spiral path into the nucleus.

Suppose then that we decide to make one or the other of these provisos, in order to sate the interpretation of Rutherford's experiments. Could we then so shape the proviso, that it would satisfy the four demands which I described as being made upon the atom-

[^124]maklel by the facts of the Sotionary States? Conld we for instance so -hape the first pron iso, could ze thoose sueh hatations for the electrons assumed stationary. That the soxlium atom (for instanee) woukl displa! only there energy-values which the spectrom of sextion allews for its stationary Stater, dind mo others?
lombubtedly we comble. The sexlium atom is suppored to comsist wi: ele en cheetrons surrounding a nuchens of charge + Ite. If the elee-trent- were all stationary in asigned positions about the mudens, we could cateulate the conergy of the arrangement. The energy-values of the balious Stationary States being known, it wouk not be difieult th find, for each one of the Stationary States, at least one arrangement of the eleven electrons identical with it as to energy-value. Having done this, we could loy it down as a law that the electrons shall stand still in eath and any one of these arrangements; but mot in any other arrangement whatsored.

But would this be all explanation of the Stationary States? Not. I think, in any significant sense of that valuable word. It coukl justly be designated as an explanation, as a theory, only if the varions arrangements so prescribed for the various Stationary states should turn out to be interrelated according to some law to be gewerned by some unifying principle to display some intrinsic quality of simplicity and elegance and beaty, distinguishing them from all the other and rejected arrangements. This has not been achieved.
la't me now take up the other of the two suggestions which were male abwe. Suppose that we accepted the nuclear atom-model, with the proviso that the electrons should revolve in closed orbits planetwise, without radiating any of their energy, and without gliding by a spiral path inter the nucleus. Could we so shape this second prowiso, could we choose such orbits for the electrons assumed revolving wulhoub loss of energy, that the s xlium atom or the hydrogen atom (for instance) would display only those energy-values which the spectrum of sodium or the spectrom of hydrogen prescribes for the hationary States, and no others?
. Igain, there is no doubt that we could; but the value of the achievement, again, woukd depend on whether on not the orbits which we thus selected were intericlated according to some law, or governed by some unifying principle, or distinguished from all the other orbits by something seemingly fumlamental. Consider Rutherford's motel for the hydrogen atom, which consists of a nucleus and an electron. If we adopt the provist which was just set forth, and suppose that the electron may revolve around the nucleus in circular orbits without raliating any of its energy, then we can seleet particular circular orbits, such
that when the electron is revolving in one or another of these, the energy of the atom shall have one or another of the values prescribet by the Stationary States. If we arbitrarily say that the electron can revolve only in one or another of these orbits, then we have an atommodel competent to interpret the Stationary States of the hydrogen atom. But is there anything distinctive about these selected orbits, anything peculiar, anything which marks them out and sets them apart from the other, from the discarded orbits? Have they any feature in common, apart from being necessary to give the observed energyvalues of the Stationary States?

It is hardly possible to lay too strong an emphasis upon this requirement; the value of the contemporary atom-model depends upon satisfying it. Let me put the matter another way. From the moment that we imagine that the electrons within the atom are cruising around the nucleus in orbits without radiating energy and without dropping into the nucleus, we are sacrificing the unity and the coherence of the classical theory of electricity. So grave an action is not to be undertaken lightly nor with indifference; it were foolish to make such a sacrifice without recompense; and there is no recompense to be found in merely proving that especial orbits can be so selected as to copy the energy-values of the Stationary States. If one is going to deviate from the rules of the classical theory of electricity, one must deviate by rule. If one is going to disrupt the system which prevails in one great elepartment of theoretical physics, one must systematize another department in exchange. If one proposes to violate some of the principles of modern physics, by asserting that electrons can travel in certain orbits without radiating, he must reconcile the congregation of physicists to his sacrilege by proving that the selected motions are themselves governed by a principle, as imposing as those he lacerated. If the innovator cannot show that his imovations are systematic, he is not likely to prosper; but if his innovations are derived from a principle, it may supersede those which he contradictel.

To discover such a principle is the ambition of, probably, half of the theoretical physicists who are active today.

There are other general statements which might be made at this point; Jut they will be more intelligible, and so will the foregoing paragraphs be, after I have given an illustration. For this purpose I will describe two motels of the hydrogen atom, each of them consisting of a nurleu- and a single electron, each capable of being so constrained that its energy-values will copy those of the Stationary States of hydrogen. With one of these, however, the description can be carried no farther. With the other, I shall show-following Bohr-that the
orbits in whish the chetron is eomstrameal to revolve howe certain peculiar leatures. distingui-hing them atose all other orbits; and there distimetive features may be conserpurnero of the desired athed still hidden principle.

Ityilowen being the lirst element in the perioxtic todble, Rutherford's atom-monlet for it consints of a nuelens ant one deecrons. The electen hears (or is) a negative charge amounting to $-e$ or $-1.7 .1 .10^{-10}$ electrostatic units, and its mats is approximately $9.10^{-2 x}$ grammes. The nucleus bears a positive charge amounting to $+e$, and its mass is about I , 10 times ats great as that of the electron.

The stationary states of the hydrogen atom possess the energyvalues $-R h,-R h 1, R / 4,-R h 16,-R h 2.5$, and so on; in general, the values $-R h n^{2}(n=1,2,3 \ldots)$. The constant ${ }^{5} R$ is equal to $3.29 .1)^{15}$; the comstant /t is Planck's constant $6.5\left(5.10^{27} \mathrm{erg}\right.$. sec.

Rutherfort's atom-medel for the hydrogen atom must now be so medified, that it will admit the energ-values just specified, and no others.

I will legin by doing something which amounts tosetting uf a straw man, to be knocked down immediatels, but not, I hope, before he dien us some service. Lee us suppose that, in spite of all the laws of dynamics, the electron may stand still at a distance r from the nucleus, witheut starting towarels and falling into it. With the electron in stuch a position, the energy of the atom is $-e^{2} r$. This is an energyvalue referred, like all energy-values, wa particular zero; in this case, the zero-salue if energy corresponds to the condition in which the electron is inlinitely far away from the nucleus. We recognize at once the "state of the ionized atom," to which the energy-values of the Sitationary States as given by the spectrum-terms are automatically referred. This quantity $-e^{2} r$ must be permitted to assume the successive energy-values of the successise Stationary States, and no others; we must have
$-e^{2} r=-R / h$ for the lirst (or normal) stationary state
$-c^{2} r=-R h+$ for the second statiomary state
$-e^{2} r=-R h 9$ for the third stationdry state; and so forth.
${ }^{3}$ I deviate here tro the more frequent usage of defining R from the equation

$$
\begin{array}{cc}
1 \\
\lambda & R\left(\begin{array}{cc}
1 & 1 \\
m^{2} & n^{2}
\end{array}\right)
\end{array}
$$

for the re if reals of the waveleneths of the s.arous lines ol hydrogen; in which equation $R=109677.6^{\prime \prime}$) hy measurements of tremendots arcuracy, ard is to be meltiplied by 6 to get what I have called R.

Now cach of these equations defines a value of r; we have

$$
\begin{align*}
& r=e^{2}, R h \text { for the normal state } \\
& r=4 e^{2} R h \text { for the second stationary state } \tag{4}\\
& r=9 e^{2} R h \text { for the third stationary state; and so on. }
\end{align*}
$$

Each of these values of r represents the distance at which the electron must stand from the mucleus, that the atom may have the energyvalue of the corresponding stationary state. If we say that the electron may stand still at and only at the distances given hy

$$
\begin{equation*}
r=e^{2} ; R h, 4 e^{2} / R h, 9 e^{2}, R h, \ldots \ldots \ldots \tag{5}
\end{equation*}
$$

we thus define an atom-model interpreting the Stationary States. It is scarcely an atom-model to he recommenderl, and I certainly am not taking the responsitsility of recommending it. Nevertheless the reader had best beware of picking out the obvious objections to it, and condemning it becatse of them. For if he objects that I have gisen no reason why the electron should stand still at all, nor why it should stand still in these and only in these positions, nor why it should cause radiation of a peculiar and well-defined frequency when it passes from one of these positions to another if he makes these oljections, I can retort that the atom-model favored by Bohr himself suffers from every one of these deficiencies. In fact, the only defects peculiar to this "atom-model of the stationary electron" appear in be two. The first is, that the distances specified by (5) do not have distinctive features such as I shall presently show for the orbits specified for the "dtom-model of the revolving electron": and this defect, as I have tried to emphasize, is a grave one. The second is, that an atom in which the charges are stationary is not ipso facto magnetic, whereas an atom with revolving electrons is.?

Following Bohr, and practically all the other physicists of today, we now assume that the electron revolves planetwise around the nucleus describing a closed orbit and radiating none of its energy as it revolves. A planet revolves in an elliptical orbit; this elliptical orbit may he a circle, or it may not be; but for the present paragraph we will think of the circles only. Let us suppose, then, that the electron may revolse in a circle about the nuclens, without radiating its enorgy and spiralling into the nucleus. Designate the radlus of the circle hy r. With the chectron rewolving in a circle of radius r, the conergy of the atom is $-e^{2 / 2} \cdot 2 r$. This value is obtained by adding tugether the potential energy of the atom, which is $-e^{2} / r$ just as it

[^125]Wis when we suppoed the electron to be stamding still, .mat the kinctic energs of the electron, which is ? mz². In this last expression, r stand for the speed of the electron in its oblat: 1 ow, mr $^{2} r$ is the "eventifugal fore" ateting upon the chectron, which is equal (and (pposite) to the attraction wercised by the mulens upon the electron, which is $t^{2} r^{2}$; st that $\frac{1}{2} m t^{2}$ is extual to $+e^{2} \frac{2}{2}$, and the etotal energy of the atom has the value $-e^{2}{ }^{2} r$. As before, this is the energywhe referred to the state of the ionized atom.

This quintity - $e^{2}-2 r$ must be permitted to assume the surcessive energy-values of the suceessise Stotionary States, and no others; we must have

$$
\begin{equation*}
-e^{2} \cdot 2 r=-R / n n^{2}(n=1,2,3,1, \ldots \ldots) \tag{ti}
\end{equation*}
$$

Wiach of these equations defines a value of r, as follows:

$$
\begin{equation*}
r=n^{2} e^{2}, 2 R h(n=1,2,3,4, \ldots \ldots) \tag{7}
\end{equation*}
$$

If we suly that the electron may rewolve in and only in such circles as have the ratii given by the equations (7), we thus detine an atommoxel interpreting the Stationary States. Is this atom-moxlel superior to the tentative one which was described just before it? Not in any way which has yet been brought to notice. No reason is given why the electron shoukd revolve in a circle instead of spiralling into the nucleus, nor why it should revolse in these and only in these circles, nor why it shoutd catuse ratiation of a peculiar frequency to be emittel when it passes from one of these circles into another. All of the objections which I suggested, a few paragraphs above, that the reater might ratise against the then-mentioned atom-motel with the stationary electron, may equally well be raised against this atommodel with the revolving electron. Why then should we attach sreater importance to this one than to that? Partly, as I said. becathe this atom posseses intrinsic magnetic properties, while to the other one magnetic qualities would have to be ascribed by an additional assumption; but chiefly because Bohr diseovered certatin distinctive features of the circular orbits elefined by (7), which set them apart from all others. These we now examine.

To understand the first of these features, it is necessary to consider the angular momentum of the atoms. Sooner or later we shall have (o) make a slight alteration in the reasoning indicated in the list paragraphs; it may as well be made now even thongh it is not yet necessary: Heretofore I have tacitly assumed that the moclets stands still while the electron revolves around it. Is a matter of fact, if the atom may he represented as a solar system in miniature, the muclens and the
electron both resolve about their common centre of mass in ellipses we will think, as before, only of circles (Figure 1). The radii a and A of the circular orbits of the nucleus and the electron, being the respectise distances of the particles from their centre of mass, stand in the reciprocal ratio of the masses M of the nucleus and m of the electron; and as they deseribe their onbits in the same period (since the centre

Fig. 1 -Diagram to illustrate how the electron and the nucleus revolve around their common centre of mitss in syuchronous orlits
of gravity is at rest and alwaṣs between them) their speeds v and I stand in the same ratio:

$$
\begin{equation*}
a A=r, V=M, m \tag{8}
\end{equation*}
$$

I introxluce the symbol μ to denote the equal quantities

$$
\begin{equation*}
\frac{M}{M+m}=\frac{a}{a+A}=\frac{v}{v+1} \tag{9}
\end{equation*}
$$

The potential energy of the atom, reckoned as always from the state in which the mucleus and the electron are infinitely far apart, is obviously $-c^{2} /(a+A)=-c^{2} \mu / a$. The kinetic energy of the atom is the sum of the portion $\frac{1}{2} m v^{2}$ belonging to the electron and the portion $\frac{1}{2} \mathrm{~J} / \mathrm{I}^{2}$, belonging to the nucleus. I point out that the "centrifugal force" acting upon the electron is $m v^{2} a$, and that acting upon the nuclens is $M \Gamma^{22}, A$, and each of these separately must be equal to the reciprocal athatetion $e^{2}(a+A)^{2}$ of nucleus and electron; and I leave it to the rearler to show by means of these equalities that the kinetic entrgy ammunts $10 \frac{1}{2} e^{2} \mu, a$. The total energy of the atom is there-
fore equal to $-\frac{1}{2} e^{2} \mu a$ and this is the gumatity to be equatiod to the observel enersy-values of the stationary states; "phation (ti) is replated log

$$
\begin{equation*}
-c^{\prime \prime} \mu \ddot{U}_{a}-\text { - Rh } n^{2} . \tag{1}
\end{equation*}
$$

The angular momentum of the chectron is meat the angular mumentum of the nuelens is $1 / \mathrm{V}$: ; the angular momentum of the atom. for which 1 use the symbel p, is the sum of these:

$$
\begin{equation*}
p=m v^{2} a+.115 \cdot 1=m s^{2} n \mu . \tag{11}
\end{equation*}
$$

I leave it again to the reater to use the foregoing statements to arrive at the expression

$$
\begin{equation*}
p=c \backslash m a \tag{12}
\end{equation*}
$$

and by combining (12) and (10), at the expression

$$
\begin{equation*}
p_{n}=n e^{2} \backslash \overline{m_{\mu} 2} R / h \tag{13}
\end{equation*}
$$

for the value p_{n} of the angular momentum of the atom, or rather of our atom-model, in its nth statimary state.

Thus the values of the angular momentum of the atom-model, in the various states in which it has the prescribed energy-values $-R h$, -Rh 4, and so forth, increase from the first of these states onward in the ratios $1: 2: 3: 1$. . They are the consecutive integer multiples of a fundamental quantity, the quantits

$$
\begin{equation*}
p_{1}=e^{2} \backslash m \mu \cdot 2 R_{l}^{\prime \prime} . \tag{14}
\end{equation*}
$$

Now it happens that this fundamental quantity is equal, within the limits of experimental error, to $h^{\prime} 2 \pi-101 / 2 \pi$ times that same constant h which has already figured in this discussion:

$$
\begin{equation*}
p_{1}=h 2 \pi ; p_{n}=n h 2 \pi . \tag{15}
\end{equation*}
$$

This occurs because the value of R is equal, within experimental error, to the combination of m, e, and h on the right of this equation:

$$
\begin{equation*}
R=2 \pi^{2} \mu m c^{4} h^{3} . \tag{16}
\end{equation*}
$$

The atom-model which I have been describing at some length could therefore be deseribed in a few words by saying that the electron is permitted to recolve only in certain circular orbits, determined by the condition that the angular momentum of the atom shall be equal to an integer multiple of $\mathrm{h} 2 \pi$. This condition is in fact sulficient to impone the values given for the radii of the circular orbit: in equation: (10) which values in turn entail the desired energy-valuen for the stationary: states. The reader can easily prove this by working backwart
through the train of equations; and indeed this is the manner in which the Bohr atom-model is usually presemted, so ats to arrive finally at the agreement hetween "theory" and experiment which is expressed in equation (16), and is a most striking climax to the whole exposition. By working through the train of equations in the inverse sense, I hase considerably mitigated the effect of the climax; and this procedure seems hardly fair to the auhor of the theory, but it is not without its merits, for it enables us to see the exact role of equation (15) more clearly than the commoner procedure.

The situation now is this. It is possible to construct, out of a nucleus and an electron, an atom-model possessing stationary states of the energy-values displayed by the hydrogen atom, provided that we assume that the electron may revolve only in circular orbits for which the angular momentum of the atom is an integer multiple of $h, 2 \pi$. There is no known reason why an electron should do a thing like this, there is good reason to suppose that it cannot do anything of the sort, for if it started out to revolve in a circular orbit it would radiate its energy and descend spirally into the nucleus. If nevertheless we assert that the electron does just this sort of thing, we have nothing with which to support the assertion, nothing extrinsic ly which to render it plausible; it must stand on its own merits as an independent principle.

These merits, had we no data other than the energy-values of stationary states catalogued in equation (6), would probably be regarded as scanty: After all, the agreement between the constant p_{1} and the quantity $h / 2 \pi$ might be fortuitous. But there are other stationary states of the hydrogen atom, beyond those listed in (6). For instance there are the stationary states which are evoked by a strong electric field acting upon hydrogen, and there are the stationary states which are called into being by a magnetic field applied to hydrogen, as I related in earlier sections of this article. There is atso the fact, that at least one of what I have been calling the stationary states of hydrogen is not a single stationary state at all; there are two states of which the energy-values lie exceedingly close together and to the value $-R h 4$, so close that nearly all experiments fail to discriminate them. And there is the great multitude of stationary stattes exhihited by other elements than hydrogen; but we will not think about these for the time being.

Now the situation is transformed into this. Consider all these additional stationary stattes, exhibited by the bydrogen atom under unmsual or even under usual circumstances. Is it possible to trace, for eacls one of them, an orbit for the electron, such that while the
electron is desoribing that orbit, the energy of the atom posersos just the value appropriate to that Siationary State? Aond grouting that this is prosible .mal acomplisherl; con it he shown that these wditional orbits are distinguished by some feature resembling that feattere of the circular orbits which is eleserileal by equation (1in)? Our condition haid upon the circular orhits, that in cials of them the angular momentum of the cereron is ath integer multiphe of $h \frac{2 \pi}{\pi}$ this condition valid for the limited case, can it le generalized into a condition governing the Stationary Seates of the hydeogen attom under all eircumstances? Can orbits he described which account for all of the Stationary States of hydrogen under all circmmstances, and which are determined by a general condition of which the condition set forth in equation (15) is one particular aspeet? If so, that generat condition might well be such a Principle as the one towards which, as it was sabl in the last section, so many physicists aspire. Thus the test to which this comdition laid upon the angular momentum must be submitted is this: can it be generalized?

Before trying to generalize it let us examine some other distinctive features of the circular orbits defined in (7) - 1 will call them henceforth the "permissible" circular orhits, but we should remember that perhaps it is only ourselves who are "permitting" them and forlhiding the others, and not Nature at all. Let us calculate the integral I of the doubled kinetic energy $2 K$ of the atom over a complete revolution of the clectron (and mucleus):

$$
\begin{equation*}
I=\int_{0}^{T} 2 K d t \tag{17}
\end{equation*}
$$

It is casy in this case, for K is constant in time, so that $I=2 K T$. Now K is equal to $\frac{1}{2} m 2^{2}{ }^{\prime} \mu$, and T is equal to $2 \pi a^{\prime} v=2 \pi^{2} m a^{2} \mu K$; which expression the reader may reduce, by means of that equation $K=$ ${ }_{2}^{1} \epsilon^{2} \mu a$ which he was invited to derive, to

$$
\begin{equation*}
T=\pi e^{2}, ~ \sqrt{m \mu / 2 K^{3}} \tag{18}
\end{equation*}
$$

multiplying which ly K, and using equation (10), we have

$$
\begin{equation*}
I=2 \pi n \cdot e^{2} \sqrt{m \mu} R h . \tag{19}
\end{equation*}
$$

The reader will recognize the factor which appeared in (1|) and wats there stated to be numerically equal, within the error of observation, is $h 2 \pi$.

Therefore this atom-model could alme be described by satying that the electron is permilted to revole only in certain circular orhils delermined by the condition thal I shall be equal to an integer multiple of h.

For future use I interpolate the remark that the factor n is called the total or principal quantum number; in German, IIauptquantensahl.

The reater will think that this is not a new condition, but only a futile way of re-stating the condlition laid upon the angular momentum. So it might be, in this case. But when we come to the more complex cases, we shall find that the two conditions diverge from one another. Il'hich of the taio can be generalised, if either? Only experience can show.

I will describe one more distinctive feature of the permissible orbits; it may seem more impressive than either of the others.

We have seen that the frequency of the radiation emitted, when the hydrogen atom passes from one stationary state to another-say from the state of energy - $R h n^{\prime 2}$ to that of energy - $R h_{1} n^{\prime \prime 2}$ - is

$$
\nu=\frac{R}{n^{\prime \prime 2}}-\frac{R}{n^{\prime 2}}
$$

which may be written

$$
\begin{equation*}
\nu=\frac{R}{n^{\prime 2} n^{\prime \prime 2}}\left(n^{\prime}-n^{\prime \prime}\right)\left(n^{\prime}+n^{\prime \prime}\right) . \tag{20}
\end{equation*}
$$

Suppose that $n^{\prime}-n^{\prime \prime}=1$, that is, that the transition occurs between two adjacent stationary states of the atom; and let n^{\prime} and $n^{\prime \prime}$ increase indefinitely. In the limit we shall have

$$
\begin{equation*}
\operatorname{Lim} \nu=\frac{2 R}{n^{\prime 3}} \tag{21}
\end{equation*}
$$

Accepting the atom-model with the electron revolving in a circular orbit, we take from (1s) the value for the period of the revolution, substitute for K by the aid of (10), and arrive at this expression for the frequeney of the revolution:

$$
\begin{equation*}
\omega^{\prime}=v / 2 \pi r=1 \triangle R^{3} / h^{3} \quad 2 \pi n^{\prime 3} e^{2} \sqrt{m \mu} \tag{22}
\end{equation*}
$$

Comparing this expression for ω^{\prime} with the expression for $\operatorname{Lim} \nu$ in (21), we see that they are identical, if

$$
R=2 \pi^{2} m \mu c^{4}, h^{3}
$$

and this will he recognized as being that very value of R which was given in equation (13), as the value established by experiment. Thus the experimental value of R is such that

$$
\begin{equation*}
\operatorname{Lim} \omega=\operatorname{Lim} \nu \tag{23}
\end{equation*}
$$

In this equation the symbol ω stands for the frequency of revolution of the electron in its orbit, when the energy of the atom is $-R h^{\prime} n^{2}$. It therefore stands for the frequency of the radiation which the atom

Would be expected to emit; for ath electrital tharge performing a periextic motion shouhl, acording to the fumbemental doctrines of the efectromanetio theory, be the origin of a stream of ratiation with periex equal to it own. The symbol v stamela for the freguency of the radiation which the dtom does emit in phesing between fwo adjacent stationary States. Secorting to (I!), this actual frequeney is mone nesorly egmal to the experted freguency, the more remote there two deljacent stationary States are from the normal State; and in the limit, actual freguency atme expeeted freguency merge into one. The numerical value of the constant R is just such as to bring alont this relation.

Here again we hase a curiots numerieal agreement which, like the other correlated fact that the angular momentum of the electron in the nth orbit is $n h 2 \pi$, may loy itself he merely a cosincilence; but this one h.s a much greater inherent , upeal. We have relinguished the expectation that the efectron, eruising around the nuctens in a ryclic path, will send forth radiation of the frequency of its own revolutions, as every inference from the laws of eleetricity indicates that it shoukd; but here is a case even if it is only a limiting casein which the frequency emitted from the atom agrees with the one which we should expect. Generally there is discord; but in the limiting calse there is consonance. Does this not suggest that the desired Principle maty be one which in , limiting case merges with the classical thenry of electricity pos-ibly, indeed, nothing less than the found ation of a general theory of eleetricity, of which the classical theory expresses only a special case?
l.et us review our situation.

Having supposed for hydrogen an atom-model consisting of a mucleus and an electron;
llaving supposed that these revolve around their common centre of mass according to the laws of dynamics, but without spending any energy in radiation:

Having supponed in particular that they rewolve only in circular orbits, and only in such circular orhits as yield for the atom-motel the energy-valuen - Rh n^{2} measured by experiments upon the Stationary States:

Having traced these "permissible" circular orbits.
We have found that they are distinguished from all the other circular orbits by at least three pectuliar features (wiz.. the features expressed by the equations $p=n h 2 \pi$, and $I=n h$, and $\operatorname{Lim} \omega=\operatorname{Lim} \nu$).

Wie do not know that there is any revolving electron at all. We know only that if all our suppositions be correct, the consequences
expressed by these three equations are correct also. Are these consequences impressive enough to prove the suppositions true?

The answer to this question depends on our degree of success, or rather on the degree of success attained by Sommerfeld and Bohr and their followers, in generalizing these equations 10 other and more complex cases. Usually the process of generalizing will invole difficult labours of orbit-tracing. But it is possible to make a significant comparison between the spectra of hydrogen and of ionized helium, without additional studies of orbits.

1. Relations Between the Spectria of Hydrosien and the Spectrum of lonized Helata

To make trial of the validity of the foregoing ideas about the origin of the hydrogen spectrum, one naturally applies them to whatever other spectra may reasonably be ascribed to an atom consisting of a nucleus and a single electron. As according to the view adopted in this article the atom of the nth element in the Periodic Table consists of a nucleus and n electrons, the only way to produce such a spectrum is to produce a sufficient number of atoms of some clement or other, each atom lacking all but one of its electrons; helium atoms deprived each of one electron or "once-ionized," lithium atoms deprived each of two or "twice-ionized," beryllium atoms deprived each of three electrons, or in general atoms of the nth element of the Periodic Table divested each of ($n-1$) electrons. This we should expect to require violent electrical or thermal stimulation of the vapor of the element, more violent the more electrons have to be remosed. Hence it is not surprising that the spectrmm of onceionized helium is the easiest of these spectra to produce; but it is more than a little strange that this is not merely the easiest but the only spectrum of this kind which has ever been obtained. Even the spectrum of twice-ionized lithinm has not been generated, in spite of efforts quite commensurate with the value it would have. ${ }^{8}$ The spectrum of once-ionized helimm remains the only companion of the spectrum of hydrogen; these are the only two known spectra which are ascribed to atoms consisting of a nucleus and a single electron.

Wie have seen that if we imagine that the electron of the hydrogen atom can revolve, without spending energy by radiation, in and anly in those circular orbits for which the angular momentum of the atom is equal to $h h^{\prime} 2 \pi, 2 h / 2 \pi, 3 h, 2 \pi, \ldots n h^{\prime} 2 \pi, \ldots$, then the veregy of the atom-moxlel can assmme only the values $-R h,-R h_{1}$, ,

[^126]-Kh! ! $-R h n^{2}$, which we the energy values fore the whersed stationary states of hydrogens. If thi is not all aceidental eone idence, then by imagining that the electron of the ioniad helium atom like"ise call rewolse only in orbits for which the angular momentum of the atom is some integer multiple of $h 2 \pi$, and 1 eg esleulating the corre-ponding emergy-talues for the atom-mondel, we should arrise at the ensergy-values of the olsersed stationary states of ionized helium. Now the charge on the nuclets of the helium atom is 20 , twie the charge of the hedrogen nuclens; the fore which it exerts ont all clectron at distance r is $2 e^{2} r^{2}$, instead of $e^{2} r^{2}$. If the rember will work through the equations of Section H , making this alteration wherever appopriste, he will lind for the energy-values of the stationary state- the sequence
$$
-\mid R h,-+R h!!,-+R h \quad 16, \ldots-1 R / h u^{2}, \ldots
$$
in which
\[

$$
\begin{equation*}
R=\frac{2 \pi^{2} \mu m c^{\prime}}{h^{3}} \tag{2.5}
\end{equation*}
$$

\]

.s. heretofore. The quantity μ will be different from what it was for hydrogen; but the difference will be very slight. Therefore if the condition that the electron may revolse about the nucleus only in circular orlhits for which the angular momentum of the atom is $t h 2 \pi$ is an essential condition, and gowerns the atoms of hydrogen and isnized heliuns alike, the stationary states of ionized helium correspond one-to-me with those of hydrogen, but with energy-values almose exactly four times as great. So also with the lines of the spectrum; to each line of the hydrogen spectrum should correspond a line of fourfold frequency in the ionized-helium spectrum; the spectrom of ionized helium shoukd be the spectrum of hydeogen on a quadrupled frequency-scale.

This conclusion is verified. The historical sequence of ohservaltions and theories is rather interesting. Certain lines of ionized helium were earliest olsersed in stars; their simple numerical relations with hydragen lines being noticed, they were naturally ascribed to hydrogen, and when they were generated in mixtures of hydrogen and helium whthin a laboratory they were still attributed to the firstnansed of these gases. Bohr in his lirst published paper reasoned in the manner I have followed in this section, and inferred that these lines reatly belonged to helium; which was shortly afterward- verified by seeking and linding them in the spectrum of helium made as pure as possible. A number of arditional lines of the spectrom hase since been found, although the lines corresponding to transitions into the
normal state the state of energy $-(R /$) are so far out in the ultraviolet region of the spectrum that no one hats yet succeeded in detecting them.

We will now take account of the faet that the numerical values of the constant R calculated for hydrogen (equution 16) and for ionized helium (equation 2.5) are not quite the same; they are in fact proportional to μ, the quantity which determines the motion of the nucleus, and which varies from one atom to another. In particular

$$
\begin{equation*}
R_{H C} R_{H I}=\mu_{I f c} \quad \mu_{I I}=\left(1+m \quad M_{H}\right)\left(1+m \quad M_{I I c}\right) \tag{26}
\end{equation*}
$$

in which the symbols $m, M_{I I}, M_{I f}$ denote the masses respectively of the electron, the hydrogen nucleus and the helium nucleus, which stand to one another as $000.512 ; 1.000: 3.9(58$. Consequently the right-hand member of equation (2i) is equal to 1.000103 , and the ratio of the frepuencies of corresponding lines in the spectra of ionized helium and of hydrogen is

$$
\begin{equation*}
4 R_{\text {He }} R_{\text {II }} \text { calculated }=4.001642 \tag{27}
\end{equation*}
$$

The values of $R_{\text {Ife }}$ and $R_{I I}$ deduced from frequency measurentents yield the ratio

$$
\begin{equation*}
+R_{l f e} R_{l l} \text { observed }=1.0011(212 \tag{28}
\end{equation*}
$$

The very-exactly-known obsersed value hes well within the margin of uncertanty of the calculated value. The calculated value of the ratio clepends on otherwise-made measurements of the mutual ratios of the three masses (those of the electron, the hydrogen nucleus, the helium nucleus). These otherwise-mate measurements are not of the grade of precision clamed for the measurements of $4 R_{H,} R_{H}$ he the olservations on the spectra. Hence if we combine the observed value of the ratio) $4 R_{H /} R_{I /}$ with (for instance) the ratio $M_{I I} . M_{I I}$ derived from density-measurements upon the wo gases, we can calculate a value for the ratio $M_{/ \prime} m$ ostensibly much more precise than the amosunt ascertamed by direct measurement. This value is

$$
\begin{equation*}
M_{H} m=1815 . \tag{2!}
\end{equation*}
$$

Let me state briefly what the numerical agreement between the "caleulated" and "olsserved" salues of $t R_{H /}, R_{\| /}$specilies. It is a lest of this set of asoumptions; the hydrogen atom and the ionized helium atom may each be represented by a single electron and a muclen- of charge $+e$ in one case and $+2 e$ in the other; each stationary
state corresponde to a certain circular orbit of the electeon; the A neular Momente of the tao atoms are identizal when they are in corresponding stotionary states. Is a test, it is favorable. It does not insolve the relation between angular momenta and integer maltiphes of $h 2 \pi$ which was stressed in the foregoing section. It is independent of that relation, and may fairly be considered as the seoond numerical agrement offered by this atom-moxlel, if that relation be considered the lirst. The ideat is due (1) Smmmerfeld; the data whereby the test was made were obtained by Paschen, as a by-product of the work cited in footnote 12 .

Athough the statements in the foregoing paragraphs are literally true, they donot prove that the condition Angular . Momentum $=n h 2 \pi$ is the distinetive feature par excellenec of the permissible circular orhits. The result would have been exactly the same if 1 had defined the stationary states of the ionized helium atom as those for which $I=n h$ or as those for which $\operatorname{Lim} \omega=\operatorname{Lim} v$.

J. Tracting of Orbits

We must now seek for opportunities to make and test generalizations of the notions about the hydrogen atom explained in section H.

I began by saying that the electron should be supposed to revolve in the inverse-square electrostatic field of the nucleus, according to the laws of dynamics, without spending energy in radiation; and continued by saying that I should speak of circular orbitsonly: Now the laws of dynamics prescribe elliptical orlots, of which the circular orbits are but special cases. In fact, for each one of the sequence of energy-values - Rh u^{2} corresponding to the sequence of Stationary States, there is atl infinity of elliptical orbits possessing that energyvalue, of which the circle of radius specified by equation (7) is only one. suppose we should inquire what, if any, are the distinctive features of these elliptical orhits which set them apart from all others?

Again: when racliating hydrugen is exposed to a strong electric field, new stationary states appear, and their energy-values are known. The orbit of an electron, in a tied compounded of an inserse-sequare central hedel and another fiek uniform in magnitude and direction, is no longer a circle nor even an ellipse nor even a closed orbit (except in special cases). Could the orbits having energy-salues equal to those of the stationary states be ielentified and traced, and could discinctive features be found which mark them out from among all the others?

Again: when ratiating hydrogen is exponsed to a strong magnetic
fiekd, new stationary states appear, and their energy-values are known. Could the orbit of an electron in a field compounded of an inversesquare central efectrie foed and an uniform magnetic field be traced? and could the orbits having energy-values equal to those of the stationary states be identified? and could peculiar features be found which mark them out from all the others?

Or comersely: is it possible to make "trial" gencralizations of one or another of the conditions $p=n h /^{\prime 2} 2$ and $I=n h$ and $\operatorname{Lim} \omega=\operatorname{Lim} \nu$? 10 insent features for the more complex orbits, which sound like reasomable generalizations of these features of the simplest ones? and, having done so, to trace the orbits exhibiting these "trial" features, determine their energy-values, and compare these with the observed energy-values of the stationary states?

Whichever of these two ways is employed to attack the problem, it is necessary to trace orbits more complex, and usually in more complex fields, that the circular orbits imagined for the hydrogen atom. This problem of tracing orbits is the fundamental problem of Celestial Mechanics-the oldest and the most richly developed department of mathematical physies, which in its two centuries and more of history hats developed a language and a system of procedures all its own. It is chielly on that account that many of the recent articles on the atom-morlel of Bohr are so excessively difficult for any physicist. unless he is of the few who practieed the arts of theoretical astronomy diligently and for a long time before passing over into the fied of physics.

In this section I shall guote the equations for the motion of a particle in an ellipse under the influence of an inverse-sguare central field, and give the derivation with all necessary detail. For the other relevant cas: motion of an electron in a central electric field upon which an uniform electric lield, or an miform magnetic field, or a small central fiek varying aceording to some other law of distance than the inverse sofure, is superposed I shall give only some of the results, without even attempting the derivation. I shall make no allowatner for the motion of the nuclens; the electron will he supposed to rexolse around the mucteres considered ats lixed. The very smatl correction required to take acemut of the motion of the melens can easily be applied by the reater, if he so desire. The principal disadsantage involved in negherting it is, that one tow easily thinks of the angular momentem of the electron in itsorbit as belonging to the electron alone, whereas it is ratly the ancular momentum of the atom-mosel. I shall also put E. for the chatge on the nuclets; E will be equal to e for the hydrogen
and to 2e for the innizal-helimin atom-mokel, no wher cinses matter for the time being."

II. Motion of an Eletron in an Ineerse-Square (entral Fiald

Most perple recognize the equation of the edlipere ment casily in the form

$$
x^{2} a^{2}+y^{2} b^{2}=1
$$

in a eoredinate-system of which the origin is at the centre of the cllipse, the x-axis and the y-axis parallel respectively to the major and the miner ases of the ellipse.

The symbol a and b denote the semi-major and semi-minor axes of the ellipse; they are related by

$$
\begin{equation*}
b^{2}=a^{2}\left(I-\epsilon^{2}\right) \tag{30}
\end{equation*}
$$

in which t stands for the "eccentricity" of the ellipse. The foci of the ellipse lie on the major axis at distances at to either side of its contre. Transferring the origin to one focus, sive the focus at $x=+a \epsilon$, and using conrelinate-axes parallel to the former ones, we have

$$
(i+a \epsilon)^{2} a^{2}+y^{2} b^{2}=1
$$

Transforming coordinates again, this time into polar coordinates r and ϕ with the origin at the focus of the ellipse and the direction $\phi=0$ pointing along the x-axis, by means of the substitutions

$$
5=r \cos \phi \quad y=r \sin \phi
$$

We arrive after somewhat tedious but not difficult algebras at the equation for the ellipse in the form in which we shall use it

$$
r=\frac{a\left(1-\epsilon^{2}\right)}{1+\epsilon \cos \phi}
$$

and at the derivative thereof

$$
\begin{equation*}
\binom{d r}{d \phi}^{2}=\frac{r^{1} \epsilon^{2} \sin ^{2} \phi}{a^{2}\left(1-\epsilon^{2}\right)^{2}}=-\frac{r^{\prime}}{a^{2}\left(1-\epsilon^{2}\right)}+\frac{2 r^{3}}{a\left(1-\epsilon^{2}\right)}-r^{2} . \tag{31}
\end{equation*}
$$

[^127]All this is geometry: We must now prove that a particle moving under the infloence of an inverse-square attraction, drawing it towards a fixed point, will describe an ellipse with that fixed point in one of its foci-will describe, otherwise expressed, a curve defined by equation (31).

As the particle is an electron, and the fixed point is occupied by a nucleus of charge E, the mutual attraction is $c E$, r^{2} when their dis-

Fig. 2-Diagram to illustrate the notation used in describing elliptical erbits
tance apart is r. Equating this attraction to the product of the mass of the electron into the sum of its accelerations, linear and "centrifugal," we have

$$
\begin{equation*}
c E / r^{2}=-m \frac{d^{2} r}{d t^{2}}+m r\left(\frac{d \phi}{d t}\right)^{2} \tag{32}
\end{equation*}
$$

It is necessary to assume the law of conservation of angular momentum; the angular momentum of the electron $m r^{2} d \phi d l$ about the centre of attraction remains constant in time:

$$
\begin{equation*}
m r^{2} d \phi=p \tag{33}
\end{equation*}
$$

inserting which into (32) we have

$$
\begin{equation*}
c E, r^{2}=-m \frac{d^{2} r}{d t^{2}}+p^{2} j m r^{3} \tag{34}
\end{equation*}
$$

This is (1) Ix integrated in the ustal way, be moltiplying eath term with 2(dr dt) ; the result is

$$
\begin{equation*}
\binom{d r}{d t}^{2}--p^{2} m^{2} r^{2}+2 c l \vdots m r-c \tag{3.5}
\end{equation*}
$$

the last symbel standing for a con-t.ant of integration. Fïnally

$$
\begin{align*}
\left(l d r d p^{2}=(d r d t)^{2}(d \phi d t)^{2}\right. & =(d r d t)^{2}\left(m^{2} r^{\prime} p^{2}\right) \\
& =-\left(m r^{4} p^{2}+2\left(E m r^{3} p^{2}-r^{2} .\right.\right. \tag{36}
\end{align*}
$$

We reognize at once the islentical form of this equation for the path in whele the attracted particle moves and the equation (31) for the ellipse drawn about the centre of attation as focus.

It remains only to ilentify the constants. Equating the coefficients of r^{3} in the two equations, we have

$$
\begin{equation*}
p^{2}=c E m a\left(1-\epsilon^{2}\right) . \tag{3i}
\end{equation*}
$$

This is the equation giving the angular momentum of the electron in terms of the major anis and the eccentricity of the orbit. Equating the coefticients of r^{\prime} in (31) and (36) we have

$$
\begin{equation*}
C=p^{2} m a^{2}\left(1-\epsilon^{2}\right)=c E \quad a \tag{38}
\end{equation*}
$$

to determine the constant of integration in (35). If now the reader will take the expression for the energy of the system

$$
\begin{equation*}
\|=\frac{1}{2} m i^{2}-e^{2}, r=\frac{1}{2} m\left((d l d l)^{2}+r^{2}(d \phi d t)\right)^{2}-e^{2} r \tag{39}
\end{equation*}
$$

and substitute for ($d \phi, d t$) according to (33) and for ($d r r^{\prime} d t$) according to (3.5) and (35), he should arrive at

$$
\begin{equation*}
\Pi^{\prime}=-e^{2} \quad 2 a \tag{40}
\end{equation*}
$$

This is the equation giving the energy of the system in terms of the constants of the ellipse; we see that the energy depends only on the major axis, not on the eccentricity, of the ellipse.

The period of revolution T is a little more difficult to calculate. The most logical procedure woukl be to take the reciprocal of the expresision (35) for $d r d t$, and integrate

$$
\begin{equation*}
t=\dot{1}-p^{2} m^{2} r^{2}+2 e E m r-e E(a)^{-1} z d r \tag{41}
\end{equation*}
$$

around a complete revolution. The derivative $d r r^{\prime} d t$ passes twice through zero in the eourse of the revolution, once at the point of the orlit nearest to the mucleus (perihelion) and once at the point farthest away. At these points $r=a(1 \mp \epsilon)$, as can lie seen from the geometry of the ellipse or by inserting these values into the expression for $d r / d t$.

By integrating (41) from one of these values to the other and doubling the result, we get the period of the revolution

$$
\begin{equation*}
T=2 \pi \sqrt{m a^{3} \cdot e} \cdot E . \tag{42}
\end{equation*}
$$

J2. Motion of an Electron in a Central Field Differing Slightly from an Incerse-square Field

Suppose we modify the atom-model composed of a nucleus and an electron by imagining that the force exerted by the one upon the other varies not exactly, but very nearly, as the inverse square of their distance apart. For instance, one might imagine that the force varies as $r^{2.001}$; or that the nucleus acts upon the electron with an attraction equal as heretofore to $c E r^{2}$, plus an additional attraction (or repulsion) varsing inversely as the cube of the distance. In any such case the potential energy of the atom-model would not be quite equat to $-e E, r$; there would be an additional term $f(r)$. In the case of an inverse-cube field superposed upon an inverse-square field, the expression for the potential energy would be

$$
\begin{equation*}
r^{\prime}=-e E r-C r^{2} \tag{43}
\end{equation*}
$$

The second term on the right hand side will be much smaller than the first, at and only at distances much greater than $2 C / e E$; but by imagining C sufficiently small, we can arrange to have the inversecube field very much smatler than the inverse-square field, over alt the region in which the orbit of the electron is likely to lie; and this is all that matters.
The orlhit of the electron may be described, in all these cases in which the force deviates very slighty from an inverse-square force, as an ellipse precessing in its ow plane. That is to say: an ellipse of which the major axis swings at a uniform rate around the nucleus as if around an axle perpendicular to its own plane-as though the clectron were a car, romning around and around an elliptical track, cquite unaware that the track itself is endowed with a revolving motion of its own. (Or, in other and more sophisticated words, the orbit of the electron is an ellipse stationary in a coordinate-system revolving around the mucleus at a uniform rate). Such an orbit is known as a "roselte," and a part of a rosette is shown in Fig. 3.

Another way of describing the important feature of this orbit is (1) say that the two coordinates r and ϕ of the electron in its orbit (referred to O as origin and $O P$ as the direction $\phi=($), in Fig. 3), while they are both perisalic, to not have the same period. While r is rumning through its entire cycle from $r_{\text {max }}$ to $r_{\text {min }}$. and back again,

The electen is moving from one proint of tangeney with the dowed circle, inward aromad the muclens, batk to the new point of tan-
 (1) 2π, and in adelition through the angle 1ϕ. Thus th. perimel $\%$, of r stard io the periex I_{ϕ} of ϕ is

$$
\begin{equation*}
I_{r}: I_{\phi}=\frac{2 \pi+1 \phi}{2 \pi}-\frac{2 \pi+2 \pi \omega}{2 \pi} \tag{11}
\end{equation*}
$$

in which expressinn the symbol ω stands for the frequency of the precession (i.e., the recigorocal of the time the major axis regnires of

f.g. 3-Rosette orbit, resulting from a rrecession superposed upon an elliptical orbit
trace ont the entire dashel circle). One might siy that the two frequencies $\omega_{r}=1 T_{r}$ and $\omega_{\phi}=1 T_{\phi}$ are slightly ont of tune with one another. So long ats the force acting upon the electron is exactly an inverse-scquare force, these two frequencies are perfectly in tune, the ellipse is stationary; when the inverse-square force is slighty altered. the two frequencies fall out of the and the ellipse rewolves. In general, the two frequencies will be incommensurable with one another: the rosette will never return into jtself, the electron will go on winding its path wer and over and over the interior of the dashed circle, passing eventudly within any assignable distance, no matter how small, of any point selected at random, and "covering the interior of the eircle everywhere dense" as the mathematicians say. Therefore, although the variables r and ϕ are individually periodic, the
motion of the electron never quite repeats itself. Such a system is called conditionally periodic.

When we come to consider the atom-models proposed for atoms with more than one electron, we shall make use of these ideas; but that will not occur before the 'Third Part of this article. However. one application can be made to the theory of hydrogen and ionized hclium.

J3. Motion, in an Inerse-square Cen'ral Field, of an Electron of IThich the . Wass Varies as Prescribed by the Theory of Relalizily

According to "relativistic mechanics," as distinguished from "Newtonian mechanics," the mass m of an electron (or anything else) varies with its speed v in the manner

$$
\begin{equation*}
m=m_{0} \sqrt{1-\tau^{2}} c^{2} \tag{45}
\end{equation*}
$$

and the force F acting upon it produces an acceleration $d v / d t$ given not by the familiar equation force $=$ mass \times acceleration, but by the equation

$$
\begin{equation*}
F=d(m z), d l \tag{46}
\end{equation*}
$$

If we suppose the electron revolving in a perfect inverse-square field about the nucleus, and apply these equations of relativistic mechanics, we arrive at the same result as though we had used the equations of Newtonian mechanics, but had assumed that the field acting upon the electron is the sum of an inverse-square attraction and an inverse-cube attraction. Specilically; the result is formally equivalent to the result attained by contiming to use Newtonian mechanics, and assuming that the potential energy of the atommodel is given by (43) with the following value inserted for the constant C :

$$
\begin{equation*}
C=-e^{2} E^{2} / 2 m_{0} c^{2} \tag{7}
\end{equation*}
$$

The orbit is a rosette; and all the general remarks made in section J2 about rosette orbits may be repeated for this case.
J. Motion of an Electron in a Field Compounded of an Inverse-square Central Electric Field and an Uniform Magnetic Field

Here we have a famous theorem of Larmor's to help us. According to this theorem, a magnetic field $I I$ acting upon a revolving electron, or a system of revolving electrons, produces no other effect than a
precemion of the entire syatean about the direction of the magnetic tiedel at the frepterney

$$
\begin{equation*}
\because l=r l l \quad \mid \pi m c \tag{l}
\end{equation*}
$$

In other words, the msion of the electenn or electenns is, when re ferred to a comrdinate system revolving about the direetion of the lield with freguency ell 1π me, the s.unk ats whethe the lied it would be. when referred to at stationary evordinate system.

If the fied happens to be normal to the plate of an elliptical orbit leing deacribed by an electon abont a meleas, the ellipse will be transformed into a rosette. If the tied is nether exatety normal nor exactly parallel to the plane of the ellipse, this plane may be imagined (0) swing arembl the direction of the field (around the line through the muclens parallel to the lield) like a precessing top, carrying the orbit with it.

These statements are inexact if the rate of precession so calculated is not quite small in comparison with the rate of revolution of the electron.

J.5. Molion of an Electron in a Field Compounded of an Ineerse-square Central Electric Field and 1 \&n Uniform Electric F゙ield

This problem may be regarded as the limiting catse of a more general problem phrased as follows: (o) determine the motion of a particle attracted by two fixed points accoreling to the inverse-square law. Imagine one of the fixed points to recede to infinity, its attractingpower meamwhile rising at the proper rate to keep the fied in the region of the other at a finite value; and you have the case described in the sub-title above. Jacolsi solved the general problem a century or ar) ago.

The motion is difficult to realize and impossible to describe in words, and seems also to be imporsible to represent by any adequate twodimensional sketch. The electron makes circuits around the line through the nucleus parallel to the uniform field, and in each circuit it describes a curve which is very nearly an ellipse; but the consecutve loxps, as in the case of Fig. 3, do not coincide: furthermore, they are not alike in shape, and they are not plane. The electron winds around and around through the volume of what I am tempted to call a doughnme, surrounding the aforesaid line as its axis; and in the course of time its path tills up the donghnut "everywhere dense," as the path of the electron in ligg. 3 would lill up the interior of the dashed circle.

I hope it will be appreciated that the foregoing statements about the orhits are fatally incomplete, except in the lirst case. Nothing could be done unless it were possible to know, not merely the general shape of each type of orbit, lout the exact mathematical expression for it, and for the energy-value of each orbit of eath type. In some cases this knowledge is asailable; in others, it is not. For the cases designated here by J3, J4 and J5, it is available; wherefore it is possible to go about the process of seeking the distinetive features of orbits possessing the preassigned energy-values, or insersely the energyvalues of orbits distinguished by certain features.

に. Further haterprethtion of the spletra of Hydrotien asd lowizen Helacis

Continuing for the moment to accept the energy-values of the stationary states of the hidrogen atom as given by

$$
W_{1}=-R h, \Pi_{2}=-R h+, W_{3}=-R h 9, \ldots
$$

and continuing to accept the atom-model consisting of a moleus and a revolsing electron; let us consider what are the properties of the elliplical orbits, in which if the electron revolsed, the atom-model would possess one or another of the required energy-ralues.

Arcording to equation (40), the energy of the atom-model, when the clectron is revolving in an ellipse of which the major axis is $2 a$, is given by

$$
\Pi=-c E / 2 l
$$

irrespective of the eccentricity of the ellipse. In this, as in all following equations, E is equal to e for hydrogen and to $2 e$ for ionized helium. If we set this expression equal to one of the required energyvalues, for instance to Π_{1}, we have

$$
\begin{equation*}
2 a_{1}=-e \Leftrightarrow \quad \|_{1}=e E, R h . \tag{3}
\end{equation*}
$$

The atom-model therefore has the proper energy-value IF_{1} for the normal state of the hydrogen atom, if the electron is revolving in any ellipese for which the major axis is $c E$ Rh. The circle of diameter ef: Rh of which we have heretofore been thinking is only one of these eflipses, it is the one for which the major and the minor axes are identical and $\epsilon=11$; there is an inlinity of whers.

Should we then divest the circular orbits of the prominence which hats been atcorded to them, and assume for instance that when the attom is in its mormal state the electron is mowing in any one of the infmity of ellipses of which the major axis is eEE, Rh? '1his might be
dancerous, for we hase identified sertain distinetive features of the

The second and the thired of the three distinctive features which I cited are tratisferable that is they catl la eveneled to the whatity of all ellipeses hatige one or amother of the emergy-alue - Rh x^{2}, and they differentiate there from all other ellipsen. For it cat be shown, hy integrating the kinetic energy \mathcal{K} (the lirst term on the right hand side of (39)) around an elliptical orbit, that

$$
I=\mid 2 K d l=2 \pi \backslash \text { ame } l:
$$

depending only on the major axis a of the orbit. Now we bave shown that $I=n$ h for the nth of the permissible circles; hence for eath dllipe having the satme major axis ats the nth permissibe circle, in other words for each ellipse of energy-value $-K h n^{2}$, we have

$$
I=n h
$$

and the reond of the distinctive features is transferable to the ellipses. It is the sume for the third; for T is by ($(\underline{2})$ dependent on a only, and so

$$
\operatorname{Lim} \omega=\operatorname{Lim} \nu
$$

But it is otherwise with the lirst.
In the first place it was shown that the angular momentum of the electron in the circle of diameter eE $R h$ is equal to $h 2 \pi$. Obwinusly this cammet be true of all the ellipses of major axis $e E$ R h. Fior according to (37), the angular momentum of the electron in such an ellipse is

$$
\begin{equation*}
p=\sqrt{\text { ćEma }}\left(1-\epsilon^{2}\right) \tag{52}
\end{equation*}
$$

depending on the eccentricity. This is equal to el $m a$, which by (12) is equal to $h 2 \pi$, only if $\epsilon=0$. The circle therefore is the only orbit for which the energy-salue and the angular momentum of the atom are simultaneously edual $16-R h$ and t o $h 2 \pi$ respectively. If we admit the ellipses to expal salue with the circle, we concerle that the equality of the angular monentum with $h 2 \pi$ is of n) significance.

There is a partial esape from this conclasion for the remaining stationary states. Take for instance the second, of energy-value $-R h \mathrm{I}$. The circular orlit of diameter teE: Rh, for which the atom possenes this energy-a alue, is distinguished by the angular momentum $2 / 22 \pi$. For each of the infinity of ellipses phosessing the same major axis $4 e E$ Rh there is a different value of the angular momentum:
but there is one among them for which the angular momentum is equal to $h 2 \pi$. And in general for the nth stationary state of energyvalue $-R h n^{2}$, there are n elliptical (including one circular) orbits which woukl give the same energy-talue and n values of angular

c.

d

Fig. ta Diagram to show the proportional dimensions of ellipses with identical total quantum-number $n=I$ h and different azimuthal quantum-numbers $k=1$, ?n ! rom left to right we have the cas:s $n=1,2,3,4$, on scales varying as indicated by the subjoined arrows.
momentum equal respectively io $n h 2 \pi,(n-1) h, 2 \pi, \ldots h^{\prime} 2 \pi$. These, as the reader can show from (52), are distinguished by the following values of ϵ :

$$
\begin{equation*}
1-\epsilon^{2}=k \quad n \quad k=1,2 \ldots n . \tag{53}
\end{equation*}
$$

Thus if we desire to regard the equality of angular momentum with an integer multiple of $h 2 \pi$ as Seing essential to the permissible orbits, we can keep, along with the circles, some of the other elliptical orhits compatible with the prescribed energy-values; but except for these

Fig, 4 - The stme cllipses as appear in lig, ta, drawn confocally as they shoukd appear, insteat of concentrically
few, the infinty of elliptical orbits will remain unavailable. There is additional reason for liking to do this; for it amounts to a quite natural generalization of the comelition imposed on the angular momentum, which as we saw it is highly desirable to generalize if possible. The angular momentum $m r^{2}(d \phi d t)$. which I shall hereafter call $p \phi$ inseteat of simply p, stands on an equal footing with the rarlial momentum $\mathrm{pr}=m(d r$ d $l()$ of the electorn; in the Hamilonian equations for the motion of the patricle, these two quantities stand side by side. Now the condition impord upon the angular momentum
$p \phi$ of the electron in its varions circular wrlits is $p \phi=n h \quad 2 \pi$, which maty be written

$$
\begin{equation*}
\int_{0}^{-2 \pi} p_{\phi} d \phi-n / h \tag{.う1}
\end{equation*}
$$

the integral being baken aromad a complete revolution, a formulation in which the somewhat distressing factor 12π comeniently vanishes. Correspontling to this integral we have atnother

$$
\begin{equation*}
\int p_{\phi} d r=m \int_{d \phi}^{d r} d \phi \tag{i.j}
\end{equation*}
$$

alat to be taken around a complete revolution, therefore from $r_{\text {min }}=$ $a(1-t)$ 10 $r_{\text {max. }}=a(1+t)$ and back again. The materials for performing this integration are furnished in equation (3.) ; if the reader can perform it he will arrive at the value.

$$
\begin{equation*}
\int p_{r} d r=2 \pi p_{\phi}\left[\frac{1}{1-\epsilon^{2}}-1\right] \tag{.jif}
\end{equation*}
$$

and if the eccentricity of the ellipse conforms to equation (53), so that the integral of the angular momentum of the electron is $k h$, then the integral of the radial momentum is

$$
\begin{equation*}
\int 1 h, d r=(n-k) h \tag{5i}
\end{equation*}
$$

Our position may mow he described in the following words. We have accepted the values $-R h n^{2}(n=1,2,3 \ldots)$ for the successive stationary states of the hydrugen atom; we have accepted ant atomroolel consisting of a molets and a revolving electron; we have traced the orbits whith would entail these various energy-values, and we have found that for each of these energy-values there are infinitely many elliptical orbits which would entail it,-to wit, for the nth stationary state, all the infinitely many ellipses of which the major axis is given ly

$$
\begin{equation*}
2 a_{n}=n^{2} h^{2}-2 \pi^{-} m c E . \tag{5}
\end{equation*}
$$

Fiurthermore we have sought for distinctive features which might discriminate these ellipses from all the others which email "wrong" energy-values, i.e., energy-values which are not included in the list -Rh. - Rh I. $-R h_{h} \ldots \ldots$ One such we found in the integral $12 K d t$ of the kinctic energy of the electron armond the ellipse: this integral assumes the value $n h$ for each ellipse which entails the energyvalue $-R h n^{2}$, so that we could define the permitted orbits as those
for which $\mathrm{f}^{2} 2 \mathrm{~d} d=$ any integer multiple of h. Another such distinctive feature we found in what was expresed by the equation (23) $\operatorname{Lim} \omega=\operatorname{Lim} v$. First of all, however, we tried to apply a principle of the effect that the angular momentum of the atom when the electron is rewolving in one of the permitted orbits must be an integer multiple of $h 2 \pi$. We found, in essence, that this attempt amounted to picking out for each of the preseriled energy-values, one or sereral out of the imfinity of elliptical orbits which would entail it, and eliminating all the rest. But is there sufficient reason for doing a thing like this?
Apparently there is; and the reason for so believing lies precisely in the details of the hydrogen spectrum which I have hitherto passed wer-in the doubleness of the lines of the Balmer series, which shows that instead of a stationary state of energy-value $-R h^{\prime} 4$ there are two stationary states of which the energy-values lie extremely close to one another and to this value, and which suggests that the other stationary states may likewise be resolvable into groups of stationary states (a suggestion confirmed by the spectrum of ionized helium). At the beginning, let us consider only the state of which the energyvalue is $-R h .4$. We have seen that this is the energy-value corresponding to any and every une of the elliptical orbits of which the major axis is

$$
\begin{equation*}
2 a_{2}=4 h^{2}, 2 \pi^{2} m e E \tag{59}
\end{equation*}
$$

among which intinity of elliptical orbits, there is just one (a circle) for which the angular momentum of the atom is $2 h 2 \pi$, and just one other for which it is $h^{\prime} 2 \pi$, and no others for which it is any integer muhiple of $h, 2 \pi$ at all. But these two, like all the rest characterized by (5 s), entail the same energy-value and so are indistinguishable among the crowl if every one of our assumptions is absolutely: true. But if one of them should deviate slightly from the truthif for instance the law of force between the nucleus and the electron should deviate slightly from the inverse-square law, or if a small extraneous force should be impressed upon the atom, or if the mass of the electrom should slighty vary as it revolves in its orbit-then we hase seen that all the orlits would he altered, and these two orbits may he so altered as to be distinguishable from the rest. And this in fact is what appears to be responsible for the fine structure of the hydrogen and ionized-helimm. Owing to the variation of the mass of the electron, with its speed, each ellipse is transformed into a rosette; and though the energy-values of all the ellipses would be equal, the energy-values of the rosettes are not.
l.et its new revere the procedure of the foregoing paragriphs. Instead of asking what is the angular momentum of the atom when the eleetron is revolsing in steh an orbit that the enersy of the atom is - Rh I, Aet tsa ask what is the energy of the atom when the clectron is rewolving in a rosette such that the angular momentum of the attom is $2 / 292 \pi$. It is hest to put the question thas: what is the energy of the atom when the eleetron is revolving in a rosette suth that the integral if the angular momentmon around a revolution is $2 h$?

$$
\begin{equation*}
i_{p_{\phi}} d \phi=2 h \tag{61}
\end{equation*}
$$

The energy-value in question, which 1 , lesignate ly H_{22} for a reason which will presently appear, is found by calculation to loe

$$
\begin{equation*}
W_{22}=-R h+-R h \alpha^{2} 61 \tag{62}
\end{equation*}
$$

in which α is a symbol meaning

$$
\begin{equation*}
\alpha=2 \pi c^{2} \quad h c=7.29100^{3} \tag{63}
\end{equation*}
$$

(This expression incidentally is not the exact consequence of the equations of the motion, but an approximation to it, quite sufficiently accurate under these circumstances). Nest let us ask what is the energy of the atom when the electron is revolving in a rosette ${ }^{10}$ such that

$$
\begin{equation*}
\int p_{\phi} d \phi=h \tag{64}
\end{equation*}
$$

Calling this cnergy-value Π_{21}, it is calculated that

$$
\begin{equation*}
W_{21}=-R h 4-R h 5 \alpha^{2}, 61 \tag{i}
\end{equation*}
$$

Incidentally it is found, as in the previous simpler case, that when I $p_{\phi} d \phi=h$, then alsn $!p_{r} d r=h$.

The energy-values corresponding to the two orbits delined by (68) and (71) therefore differ by the very small amount

$$
\begin{equation*}
W_{22}-W_{21}=-R h \alpha^{2}, 16=-R h\left(3.320^{6}\right) \tag{66}
\end{equation*}
$$

I said at first that the various "lines" of the Balmer series in the spectrum of hydrogen correspond to transitions into the stationary state of energy-value $-R / h 4$ from other stationary states; and that unusually genel spectroscopes show each of these lines to be a pair of lines very elose together. May this be explained by the theory culminating in equation (liti)? If so), the frepueney-difference between the two lines of each doublet must be the same, and equal to

[^128]$\left(W_{22}-\Pi_{21}\right) h=R \alpha^{2} \quad 16=1.0010$. The wave-length difference, which is the quantity directly measured by spectroscopists, varies from one doublet to another; for the first doublet of the Balmer series, known as $I I_{\alpha}$, the mean wavelength of which is $6.563 \cdot 10^{-5} \mathrm{~cm}$., it should be equal to $1.5810^{-9} \mathrm{~cm}$.

Many independent measurements of these wavelength differences have been made, most of them upon the first doublet of the series, a few upon other doublets as far along as the fifth. Some were made long lefore, others after Sommerfeld published the foregoing theory. The various values found for the various wavelength-differences have all been within 20° of the value required by equation (66); within this range they hase fluctuated, one or two spectroscopists of repute have maintained that the actual values are unmistakably different from the computed value; but the balancing of evidence now seems to point more and more closely to the desired value as the right one ${ }^{11}$.

This prediction of the wavelength-differences between the components of the doublets which make up the Balmer series may be taken tentatively as the third of the numerical agreements which fortify Bohr's atom-model. So taking it, let us generalize the theory to the full extent already suggested. Returning for a moment (merely for ease of explanation) to the over-simplified case of an atom consisting of a mucleus and a revolving electron of which the mass does not vary with its speed: we saw that the energy-value $-R h^{\prime} n^{2}$ is entailed by each and every one of the n elliptical orbits for which the integral of the angular momentum and the integral of the radial momentum are given by assigning the n valtues $k=1,2,3 \ldots n$ to the symbol k in the following equations:

$$
\begin{equation*}
\int p_{\phi^{\prime}} d \phi=k h_{i} \int p_{r} d r=(n-k) h \tag{67}
\end{equation*}
$$

This I will express in another way by saying that the energy-value -Rh. n^{2} is entailed by each of the n orbits having the azimuthal
${ }^{11}$ This is one of those embarassing questions as to which the experimental doctors still disagree, making it folly indeed for anyone else to pretend to decide. The three latess measurements, which are those of Shrum, Ohlenberg, and Ceddes, agree passably with the value resulting from the theory I have presented. Jet (iehreke and lau defend their measurements, made in 1920 and 1922, which give values about 20, too low; and (iehreke at least is an athority to whom lack of evperience in this field ecrainly camot be imputed. I evade this issue by referring the rearler to the articles by Shrum (Proc. Roy. Soc. A105, pq. 259-270; 1923) for the biblingraphy of carlier work and the accomt of the latest; of Ruark (t. c, supra) for the contention that the data sustain the theory; of Lau (Phys. ZS. 25, pp. 60.68: 192t1 for the contrary contention.

The issue is further complicated by the predictions quoted in the next paragraph atowe, althongh not seriously enough to disqualify the foregoing remarks.
quantum-numbers $k-1,2, \ldots$, meaning lọ azimuthal qusmtumnumb er the quentient of i Pold by h. If now we take aceonent of the variation of the mass of the electron with its speed, atme calculate the energy-d alnes for the n roseltes obdane by assigning the values 1, 2, 3 . . n sumessively to the symbel k in (167), we shall lime that these n energy-values are all distinet, deviating slighty from - Kh n^{2} and from eath other. Therefore, there should be theee stationary states of energy-values $\left\|_{3,},\right\|_{32}, \mathbb{H}_{31}$, all differing ty a little from - Rh 9 and from each other; there shoukd be four stationary states
 - Rh 16 and each other; and so forth. (The reason for such symbols ds W_{2} will now appear; the first subscript represents the total, the serond the azimuthal quantum-mumber of the orbit in question.) In general there are n stationary states in the group corresponding nearly to the mean energy-value $-R h n^{2}$; and the expressions for their several values are obtained by putting k equal to the various values $1,2,3 \ldots n$ in the formula.

$$
\begin{equation*}
E=-R h n^{2}\left[1+\frac{\alpha^{2}}{n^{2}}\left(\frac{n}{k}-\frac{3}{4}\right)\right] . \tag{6is}
\end{equation*}
$$

Owing to these complexities the lines of the Balmer series should be not doublets, but groups of many more lines; e.g., the transitions from what I had called the stationary state of energy-talue $-R h^{\prime} 9$ Io the stationary state of energy-value $-R / f+$ are transitions of six sorts, from each of three initial states to each of two final; and the first "line" of the Balmer series might be expected to be sextuple.

The trial of these ideas is hest made upon the spectrum of ionized athum. The separation between the energy-values of stationary states sharing the same total quantum-number and differing in azimuthal quantum-number is increasel, when we pass from an atom-model in which the charge on the nuclens is e to one in which it is $Z e$, in the ratio $Z^{\prime}: 1$; in this instance $16: 1$. The system of component lines, or the so-called "fine structure" to be expected for any "line" of the hydrogen spectrum should be spread out on at scale sixteenfokl as great for the corresponding "line" of the ionizedhelium spectrum. The trial was mate by Paschen; the comparison between the fine structure of several of the "lines" of ionized helium and the components to be expected from the foregoing theory, yieted what appear to be very satisfactory results. This matter I discussed wer several pages of the First l'art of this article; and for economy of space 1 refer the reader back to them, and at this place say only that the "other numerical agreements between the production and
the data" to which I there allude, are agreements of the same character as the agreement between the spacing of the component lines of the Balmer series doublets, and the numerical value of the expression in equation (73). That is to say: the pattern of the fine structure, into which by a good spectroscope the lines of ionized helium are resolved, agrees more or less with the pattern to be expected from the theory, not only in appearance but in scale. Combining these agreements with the other one, we are probably justified in counting the latter as the third of the conspicuous numerical agrecments which make Bohr's atom-model plausible ${ }^{12}$.

Now let us examine the situation again. (Considering the abstruseness of these matters, 1 hope that few readers will resent these frequent repetitions of past remarks.) Accepting for the atom of hydrogen (and of ionized helium) an atom-model consisting of a mucleus and an electron, we have traced orbits for the electron such as entail energy-values for the atom equal to those of the known stationary states. At first we ignored both the experimental fact that the lines of hydrogen and those of ionized helium have a fine structure, and the theoretical likelihoorl that the mass of the electron varies with its speed; and we found that the orbits are ellipses. Later on, we took cognizance of both these things; and we found that the orbits are rosettes. let merely to trace the orbits which yield the required energy-values, the so-called "permissible" orbits, amounts to little. It is essential to find distinctive features which set the permissible orbits apart from all the others-on success in achieving this, the whole value of the therry depends.

Now at the very beginning it was shown that, if we ignore the variation of the mass of the electron with its speed, and if we consider circular orbits only-then the permissible circular orbits which yiedd the required energy-values $-R h \quad n^{2}$ of the stationary states (finestructure being ignored!) are those for which

$$
\begin{equation*}
\dot{\int} p_{\phi} d \phi=n h \tag{69}
\end{equation*}
$$

in which erpuation p_{ϕ} stands for the angular momentum of the motion, and n for any positive integer; and the integral is taken around a complete cyele of ϕ.

[^129]It w.s meat shown that when we make allow, ance for the beriston of the mase of the electron with its speral, then the permisuble rosethe
 (fine strueture being taken into , weount') are thase for which

$$
\begin{equation*}
\text { iprdr=}=n_{1} h \quad \text { i } p_{\phi} d \phi=n_{2} h \tag{70}
\end{equation*}
$$

in which equations $p_{\text {r }}$ and p_{ϕ} stand for the ratial and angular mosmenta the momenta belonging to the variables r and ϕ respertively .thel n_{1} and n_{2} for any pasitive integers: amel the integrals are taken around complete eveles of r and ϕ respectively.

The equations ($\overline{6}(1)$ loosk like a very natural and pleasing gemeraliattion of the equation (bit?). It is passible (1) gat somewhat further. Consider that, when the electron was supposed to mowe in a circle, it- pesition wats delined by one variable ϕ; and the permisible circles were determined by one integral. Further, when the electron was -4ppored to mose in a rosette, its position was defined by two variables r.and ϕ; and the permissible rosettes were determined by two integrals. Now when the electron is subjected, for instance, to an uniform magnetic lield superposed upon the fied of the mucleus, it- motion is three-dimensional. Three variables are required to deline its position; for instance, the variables r, θ and ψ of a polar conodinate system with its polar axis parallel to the direction of the magnetic bield. Three corresponding momenta p_{r}, p_{θ} and p_{t} can to delined. It seems natural 10 generalize from (6 湿) through (70) to a triad of equations, and saty that the permissible orbits are those for which

$$
\begin{equation*}
\dot{I} p_{r} d r=n_{1} h \quad \text { I } p_{\theta} d_{\theta}=n_{2} h, \quad \text { I } p_{\psi} d_{\psi}=n_{3} h \tag{11}
\end{equation*}
$$

in which equations n_{1}, n_{2}, n_{3} all stand for positive integers, and the integrals are taken around complete cycles of r, θ and ψ respectively.

When this is done for the specific case of an electron moving under the combined intluence of a uniform magnetic lied and the fied of a nuckens, the realt is entirely sithelactory. That is to say: when the permissible orbits are determined by using the equations (71) upon the general type of orlit deseribed in section J t and when their energyvalues are calculated, it is fond that they agree very well with the observed energy-salues of the stationary states of hydrogen in a magnetic fied. This maly be resarded at the fourth of the numerical agreement- which fortify Bohr's atom-model. Is I shall end this part of the present article hy a presentation of the effect of the mas-
netic field made in a somewhat different manner, I reserve the details for the following section.
let it cannot be said that equation (71) is the utterance of the much-desired General Principle, of the distinctive feature par excellence which sets all permissible orlits apart from all non-permissible orlits in every case. The most that can be said is this, that equation (71), if properly interpreted, is the widest partial principle that has yet been discovered. But it suffers limitations. I do not mean, as might be thought, that cases have been discovered in which the permissille orbits determined by such equations as (71) have energyvalues not agreeing with those of the observed stationary states. The difficulys is, that equations such as (71) cannot even be formulated in many cases, lecause the necessary mechanical conditions do not exist.
This matter is a hard one to make clear; but the limitation can be at least partially expressed in the following way. Revert to the equations (70) which were applied to the rosette orbits. The first of the integrals in ($\bar{T}(0)$ is to be taken over an entire excle of the variable r. Now it was said in section J2 that the periods of the two variables r and ϕ are not equal, and in general they are incommensurable. When the variable r describes a complete excle, r and $d r d t$ both return to their initial values; but ϕ and $d \phi d t$ do not have, at the end of the cycle of r, the same values as they had at its beginning. It follows that if p r depends on ϕ or on $d \phi d t$, the first of the wo integrals in equation (70) will have different values for different eycles of r. If so, the conditions imposed upon the permissible orlhits by (70) would have no meaning. The conditions have a meaning, only if each of the integrals in (70) has the same value for every cycle of its variable - therefore, only if p_{r} depends on r only, and p_{ϕ} depends on ϕ only: And in general, such a set of equations as (71) has a meaning, only if it is possible to find a set of variables such that the momentum corresponding to each of them depends on and only on the variable to which it corresponds; or, in teclunical language, only if it is possible to effect separation of cariables.
Separation of varialles is possible in some cases, and in others it is not. When the periods of all the variables are equal, as they are when we imagine an electron of changeless mass revolving in an inseres-spuare fiekl, it is clearly always possible; the difficulty described in the foregoing paragraph dhes not occur. In the other case which I have outlinet-when the electron is imagined to mose in an inserse-siquare fied according to the laws of relativistic mechamics, and when it is imagined to move in a field eompounded of
an inverse-stpare lieh and an uniform magnetic fied separation of variables is presible. For these cases, therefore, the conditions ($\bar{\sigma} 0$) and (71) are applicable, and have meaning.

There is one other important case in which it is prasille su to select the variables that separation can be effected. This is the case of ant electron mowing acording to the laws of Newtonian medhanis in a fiehl compounded of an inserse-square liehl and ant uniform electric fiekl. Athongh the motion is three-dimensional, and three conerlinates are required and suffiee to determine it, these three condinate may not be chosen at random; and the three obvious ones would be worthless for our purpose. If we shouki choose the polar coordinates r, θ, and ψ emplosed in formulating the equations (71), we shoukl find that the momenta p_{r}, p_{n} and p_{ψ} do not depend eath exclusively upon the variable to which it corresponds. The procedure to be followed is anything but ohsions; hut Jacobi fommel that if paraboloidal coordinates are used instead of polar, separation of variables can be effecterl. One must visuatize two families of coavial and confocal paraboloids, their commen foeus at the nucleus, their noses pointing in opposite directions along their common axis which is the tine drawn through the mucleus parallel to the clectric fied. The position of any point through which the celecton may pass is given by the paratmeters ξ and η of the two paraboloids which intersect at that point, and by an angle ϕ defining its azimuth in the plane normal to the axis, quite like the angle ψ of a system of polar coordinates. When the motion of the electron is expressed in terms of these courclinates, the corresponding momenta p_{ξ} and p_{η} depemb only upon ξ and η re-pectively and p_{ϕ} is eonstant; hence the integrals taken over eycles of ξ, η, and ϕ respectively, on the right-hand sides of the equations,

$$
\begin{equation*}
\int p_{\xi} d \xi=n_{1} h, \quad\left|p_{\eta} d \eta=n_{2} / t \quad\right| \frac{p_{\phi} d \phi}{} l \phi=n_{3} h \tag{72}
\end{equation*}
$$

have definite meanings, and the equations themselves define particular orbits. Epatein determined the orbits defined by these equations, and calculated their entergy-values. These agreed well with the energy-values of the stationary states of hydrogen in an electrie fiekl, inferred from its spectrum. This is the lifth of the striking numerical agreements upon which the credit of Bohr's atom-moxel chiefly depends ${ }^{13}$.

[^130]It is important to note that if we had made allowance for the variation of the mass of the electron whth its speed-if in other words we had meded the equations of relativistic mechanies, which are probably the right ones 10 use separation of variables could not have been effected either in this paraboloidal coordinate-system, or in any other. Vet the stationary states are found by experiment to be sharply defined, and to have approcimately the energy-values determined by (72). This can mean only that the desired General Principle for determining the permissible orbits is not completely expressed by such sets of equations as (71) or (72). Those equations are valid only for systems of a certain kind (hose for which separation of variables is possible). The General Principle mast be valid for systems of this kind and the other kind as well. For systems of this kind, it must become equivalent with the conditions formulated in (71) and (72) - the General Quantum Conditions for Separable Systems. Or at least, the results to which it leads must be indistinguishable from the results to which these lead. The General Principle for systems of every kind has not been discovered; perhaps it does not exist. Bohr is striving to infer it by generalizing from the third of the properties of the permissible circular orbits, which I mentioned in Section H and expressed by equation (23). He has attained some notable successes, which I hope that it will be possible to expound in the Third l'art of the article.

L. Migni:tic Proplerties of the Atom Monel

After this rather arduous pilgrimage through a succession of abstract reasonings, the reader may welcome an account in simpler fashion of the manner in which Bohr's atom-model is adapted to explain the hehavior of the atom in a magnetic field. This is an alternative method of arriving at the same results as are attained by means of equations (71).

It was stated in section EOG of the First Part of the article, that the spectrum of a radiating substance in a magnetic field indicates that the fied acts low replacing each of the stationary states, which the substance possesses when there is no magnetic fied prevailing, hy wo or more new stationary states. The energy of each of the new stationary states differs from that of the stationary state which it replaces, by the amount

$$
\begin{equation*}
\Delta U=s c l l h+\pi m c \tag{73}
\end{equation*}
$$

in which $/ /$ stands for the magnetic fied strength and s for an integer,

Which must promes two or more shluen aperal at inters.als of one thit ${ }^{\text {b }}$.

 tionars nuclens; the miner variations due le the sariatioss of tive mass m of the clectron with it - speal. and to the metion of the nuelens. are now of comparatisely litale importanse. In electron circulating in a clesed orbit with frequency ν pasore ν timen per setond throngh shy fuill of its orbit, at that the charge phasing per seotod throngh any such prim is equal to that which wotal phas, if a continuens current $I=e{ }^{\circ} \mathrm{e}$ (measured in elertromagnetic units) were lhwing around the orlit. Nisw a current I flewing continusuly around the curve bexumbing an areat A in equivalent so far ats it fied at a distance keses to a magnet, of which the magnetie moment.$/ /$ is directed normally to the plane of the curve and is equal in magnitute to 1.1 . The area of an ellipee of which the major axis is demoted liy a and the miusor avis $b=a \backslash 1-\epsilon^{2}$ is expual io $\pi a b=\pi a^{2} \backslash 1-\epsilon^{2}$. Hence the magnetic momen of the atom-mextel in equal to

$$
\begin{equation*}
M=e v \pi a^{2} \backslash 1-\epsilon^{2} c \tag{7}
\end{equation*}
$$

Further we have seen, bye equations (37) and (12), that the angular momentum of the eleetron in its orbit is equal to

$$
\begin{equation*}
p=2 \pi m \nu a^{2} \backslash 1-\epsilon^{2} \tag{7.5}
\end{equation*}
$$

(ionseguently

$$
\begin{equation*}
M p=e \cdot 2 m c \tag{7ib}
\end{equation*}
$$

a rather surprisingly simple relation!
Xow when a magnet of moment M is placed in a magnetic field of field-strength $I I$, it acquires a certain potential energy Δl in addition to the intrinsic energy which it posiseses when oriented normally to the fied which depends on the angle θ between the

[^131]direction of its magnetic moment and the direction of the fiedd, and is given by
\[

$$
\begin{equation*}
د U=M I I \cos \theta \tag{行}
\end{equation*}
$$

\]

According to equation (73), the observed stationary states of hydrogen atoms in a magnetic field have specific discrete energy-values. These must correspond to specific discrete values of the angle θ; the orientation of the atom in the magnetic field must be constrained to cerlain particular directions, an extraordinary idea! We ascertain these "permissible directions" by equating the two values of ΔU figuring in (73) and (77), obtaining

$$
\begin{equation*}
\operatorname{seh} 4 \pi m c=M \cos \theta \tag{7S}
\end{equation*}
$$

into which we then insert the expression for M in terms of p :

$$
\begin{equation*}
\operatorname{sh} 2 \pi c=p \cos \theta \tag{79}
\end{equation*}
$$

We have experimented at length with the notion that the angular momentum p of the electron in its orbit is constrained to assume only such values as are integer multiples of $h / 2 \pi$; let it be introduced here also. If $p=k h, 2 \pi$, then

$$
s=k \cos \theta
$$

The angle θ may assume only such values, as will give to the quantity $s=k \cos \theta$ two or more values, differing by one unit. For instance, if $k=1$, the values $\theta=60^{\circ}$ and 120° will suffice.

This, the most spectacular of all the remarkable consequences of Bohr's interpretation of the stationary states, is also the only one which has ever been directly verified.

The verification has not been made upon hydrogen nor upon ionized helium, but upon the atoms of certain metals ${ }^{15}$. I shall therefore reserve the accoumt of it for the following sections of the article, where also there are certain other reasons for desiring to put it. Nevertheless, the reader shoukd be aware of it at this point.
${ }^{16} 1$ gave an account of the carliest of these experiments in the first article of this series (This Journal, 2, (etober, 1923: pp. 112-114). The subsequent experiments have added nothing fundamentally new.

Electric Circuit Theory and the Operational Calculus

By JOHN R. CARSON

Abstract

Nots: This is the first of three installments ly Mr. Curson which will emberly material given loy him in a course of lectures at the Deroee teherel of Eilectrical Engineuring, "niversity of T'ennsylsania, May, 1925. Do effert hats heen spared by the atthor to make his treatment dear and as simple as the subject matter will permit. The method of presentation is destinctavels peeligogic. To electrical engineers and to engonewring instructors, this expessition of the fund amentals of electric eirenit thesory and the operational caleulus should be of great value.-EDitor.

Foreword

THE following pages emborly, substantially as delivered, a course of fifteen lectures given cluring the Spring of 192.5 at the Noore Sthool of Electrical Engincering of the L'niversity of Pennsylvania.

- H ter a brief introluction to the sulbject of electrie circuit theory, the first chapters are devoted to a systematic and fairly complete exposition and eritigue of the Heaviside Operational Calculus, a remarkably direet and powerfal method for the solution of the differential equations of electrie circuit theory:

The name of Oliver Heaviside is known to engineers the world over: his operational calenlus, howewer, is known to, and employed by, only a relatively few specialists, and this notwithstanding its remarkable properties and wide applicability not only to dectric circuit theory but ales to the differential equations of mathematical physics. In the "riter's opinion this neglect is due less to the intrinsic difficultien of the subject than to monformate obscurities in Heaviside's own exposition. In the prement work the operational calculus is made 10 depend on an integral cquation from which the Heaviside Rukes and Formulas are simply but rigorously deducible. It is the hope of the writer that this mokle of approach and exposition will be of service in securing a wider use of the operational calculus bere gineers and physicists, and a fuller and more just appreciation of its unique adsantages.

The second part of the present work tleak with advanced prohems of electric circuit theory, and in particular with the theory of the propagation of current and woltage in clectrical transmiswion systems. It is hoped that this part will be of interest to dectrical engineers generally because, while only a few of the rewts are original with the preacnt work, most of the transmisaion theory dealt with is to be found only in scattered memoirs, and there accompanied by formidable mathematical difficulties.

While the method of solution employed in the second part is largely that of the operational calculus, 1 hase not hesitated to employ developments and extensions not to be found in Heaviside. Fer example, the formulation of the problem as a l'oisson integral equation is an original development which has proved quite useful in the actual numerical solution of complicated problems. The same may be said of the Chapter on Variable Electric Circuit Theory:

In view of its two-fold aspect this work may therefore be regarded either as an exposition and development of the operational calculus with applications to electric circuit theory, or as a contribution to advanced electric circuit theory, depending on whether the reader's viewpoint is that of the mathematician or the engineer.

I have not attempted in the text to give adequate reference to the literature of the subject, now fairly extensive. In an appendix, however, there is furnished a list of original papers and memoirs, for which, however, no clam to enmpleteness is made.

CHADTER I

The Fundmestals of Elditric Circut Theory

While a knowledge, on the reader's part, of the elements of electric circuit theory will be assumed, it seems well to start with a brief review of the fundamental physical principles of circuit theory, the mode of formulating the equations, and some general theorems which will prove useful subsecguently:

First, the circuit elements are resistances, inductances, and condensers. The network is a connected system of circuits or branches each of which may indude resistance, inductance and capacitance elements together with mutual inductance, and mutual branches.

The equations of circuit theory may be established in a number of different ways. For example, they may be based on Maxwell's dynamical theory: In accordance with this methorl, the network forms a dynamic syotem in which the currents play the role of velocities. If we thenefore set up the expressions for the kinetic energy, potential energy and dissipation, the network equations are dedueible from genteral dynamic equations.

The simplest, and for our puposes, a quite satisfactory basis for the equations of cirmuit theory are found in Kirchhoff's Laws. These l.tws state that

1. The total impresset force taken around any chosed loop or citcuit in the network is equal to the potential drop due to (a) resistance, (h) inductive reaction and (c) capactive reatance.
2. The sum of the currents centering any loranch point in the neswork is alwiys zero.
I.et us now apply these laws to an elementary circoit in order to deduce the physical significanee of the eirctite chements.

Consiler an elementary eironit consisting of a resistance chement R, an inductamee dement L and a capacity element C Co in series, and Let an eleetromotive force E be applied to this sirenit. If I denote the current in the circuit, the resistance drop is $R I$, the inductance drop is $L d I$ dl and the drop across the condenser is Q (where () is the charge on the eomelenser. It is evielent that Q and I are related by the equation $I=d Q$ dt or $Q=\dot{f} I d t$. Now upply Kirchboff's law relating to the drop around the circuit : it gives the equation

$$
R I+L d l d l+C C=E .
$$

Mahiply both sides by I : we get

$$
R I^{2}+\frac{d}{d!} \frac{1}{d} L I+\frac{d}{d l 2 C}=I I .
$$

The right hand side is clearly the rate at which the impressed foree is telivering energy to the circuit, while the left hand side is the rate at which energy is leeing absorbed by the circtut. The first term $K I^{2}$ is the rate at which electrical energy is being converted into heat. Hence the resistance element may be defined as a device for converting electrical energy into heat. The second term $\frac{d}{d!} \frac{1}{d} L I^{2}$ is the rate of increase of the magnetic energy. Hence the induetance element is a device for storing encrgy in the magnetic field. The third term $\frac{d}{d l} Q^{2}=2 C$ is the rate of increase of the electric energy: Hence the condenser is a device for storing energy in the eleetric fied.

In the foregoing we have isolated and idealized the circuit elements. Actually, of course, every circuit element dissipates some energy in the form of heat and stores some energy in the magnetic field and some in the electric field. The analysis of the atual circuit element, howeser, into three ideal components is quite comenient amd useful, and should lead to no misconception if properly interpreted.

Now consider the general form of network pos-cs-ing n imependent meshes or circuits. Let us number these from 1 to n, and let the corresponding mesh currents be denoted by $I_{1}, I_{2} \ldots I_{n}$. I.et electromotive forces $E_{1}, E_{2} \ldots E_{n}$ be applied to the n meshes or circuits respectively: Let $L_{j j}, R_{y,}, C_{j j}$ denote the total inductance,
resistance and capacity in series in mesh j and let $L_{j k}, R_{j k}, C_{j k}$ denote the corresponding mutual elements between circuit j and k. Now write down Kirchhoff's equation for any circuit or mesh, say mesh 1 ; $i t$ is

$$
\begin{aligned}
\left(L_{11} \frac{d}{d t}+R_{11}+\frac{1}{C_{11}} \int d t\right) I_{1}+(& \left.L_{12} \frac{d}{d t}+R_{12}+\frac{1}{C_{12}} \int d t\right) I_{2}+ \\
& \ldots+\left(L_{1 n} \frac{d}{d t}+R_{1 n}+\frac{1}{C_{1 n}} \int d t\right) I_{n}=E_{1}
\end{aligned}
$$

Corresponding equations hold for each and every one of the n meshes of the network. Writing them all down, we have the system of equations
$\left(L_{11} \frac{d}{d t}+R_{11}+\frac{1}{C_{11}} \int d t\right) I_{1}+\ldots+\left(L_{1 n} \frac{d}{d t}+R_{1 n}+\frac{1}{C_{1 n}} \int d t\right) I_{n}=E_{1}$
$\left(L_{n 1} \frac{d}{d t}+R_{n 1}+\frac{1}{C_{n 1}} \int d t\right) I_{1}+\ldots+\left(L_{n n} \frac{d}{d t}+R_{n n}+\frac{1}{C_{n n}} \int d t\right) I_{n}=E_{n}$
The system of simultaneous differential equations (1) constitute the canonical equations of electric circuit theory. The interpretation and solution of these equations constitute the subject of Electric Circuit Theory, and it is in connection with their solution that we find the most direct and logical introduction to the Operational Calculus.

As an example of the appropriate mode of setting up the circuit equations, consider the two mesh network shown in sketch 1 . Writing down Kirschhoff's Law for meshes 1 and 2, respectively, we have

$$
\begin{aligned}
& \left(L_{1} \frac{d}{d t}+R_{1}+\frac{1}{C_{1}} \int d t\right) I_{1}+M \frac{d}{d t} I_{2}=E_{1} \\
& +H_{d t}^{d} I_{1}+\left(L_{-2}^{d} \frac{d}{d t}+R_{2}+\frac{1}{C_{2}} \int d t\right) I_{2}=E_{2}
\end{aligned}
$$

In this case the self and mutual coefficients are given by

$$
\begin{array}{lll}
L_{11}=L_{1} & L_{22}=L_{2} & L_{12}=L_{21}=+. M \\
C_{11}=C_{1} & C_{22}=C_{2} & C_{12}=C_{21}=0 \\
R_{11}=R_{1} & R_{22}=R_{2} & R_{12}=R_{21}=0
\end{array}
$$

The conventions adopted for the positive directions of currents and voltages are indicated by the arrows. The sign of the mutual inductance $I I$ will depend on the relative mode of winding of the two coils.

Now write down Kirchhoff's Law, or the circuital equation for the network of sketeh 2. They are

$$
\begin{aligned}
& \left\{\left(L_{1}+L_{23}\right) \frac{d}{d l}+\left(R_{1}+R_{3}\right)+\left(\frac{1}{C_{1}}+\frac{1}{C_{3}}\right) \int d l\right\} I_{1} \\
- & \left(L_{23} \frac{d}{d l}+R_{3}+\frac{1}{C_{3}} \int d l\right) I_{2}=E_{1} \\
- & \left(L_{3} \frac{d}{d l}+R_{3}+\frac{1}{C_{3}} \int d l\right) I_{1} \\
+ & \left\{\left(L_{2}+L_{3}\right) \frac{d}{d l}+\left(R_{2}+R_{3}\right)+\left(\frac{1}{C_{3}}+\frac{1}{C_{3}}\right) \int d t^{\prime}\right\} I_{2}=E_{2} .
\end{aligned}
$$

Comparison with equations (1) shows that

$$
\begin{array}{ccc}
L_{11}=I_{1}+L_{3} & L_{22}=L_{22}+L_{3} & L_{12}=L_{21}=-L_{3} \\
R_{11}=R_{1}+R_{3} & R_{22}=R_{2}+R_{3} & R_{12}=R_{21}=-R_{3} \\
\frac{1}{C_{11}}=\frac{1}{C_{1}}+\frac{1}{C_{3}} & \frac{1}{C_{22}}=\frac{1}{C_{2}}+\frac{1}{C_{3}} & \frac{1}{C_{12}}=\frac{1}{C_{21}}=-\frac{1}{C_{3}} .
\end{array}
$$

It should be obseried that the signs of the mutual coefficients R_{12}, L_{12}, C_{12} are a matter of convention. For example if the conventional directions of I_{3} and E_{2} are reversed, the signs of the mutual coefficients are reversed.

sketch 1

sketch 2

The system of equations (1) possesses two important properties which are largely responsible for the relative simplicity of classical electric circuit theory: First, the equations are linear in both currents and applied electromotive forces. Secondly, the coefficients $L_{j k}$, $R_{j k}, C_{j k}$ are constants. Important electrotechnical problems exist,
in which these properties no longer obtain. The solution, howerer. for the restricted system of linear equations with constant coefficients is fundamental ame its solution can be extended to important problems involving nom-linear relations and variable coefficients. These extensions will be taken up brielly in a later chapter.

Another important property is the reciprocal relation among the coefficients; that is $L_{j j k}=L_{k j}: R_{j k}=R_{k j}$, and $C_{j k}=C_{k j}$. It is casily shown that these reciprocal relations mean that there are no conceated sourees or sinks of energy. Again important cases exist where the reciprocal relations do not hold. Such exceptions, however, white of physical interest do not affect the mathematical methods of solution, to which the reciprocal relation is not essential.

Returning to equation (1) we shall now derive the equation of activity. Multiply the lirst equation by I_{1}, the second by I_{2}, etc. and atd: we get

$$
\frac{d}{d l}\left\lfloor\simeq \frac{1}{2} L_{j k} I_{j} I_{k}+\frac{d}{d t}\left\lfloor\simeq \frac{1}{2} \frac{1}{C_{j k}} Q_{j} Q_{k}+\right.\right.
$$

The right hand side is the rate at which the applied forces are supplying energy to the network. The first term on the left is the rate of increase of the magnetic energy

$$
\frac{1}{2} \simeq \sum L_{j k} I_{j} I_{k}
$$

While the second term is the rate of increase of the electric energy

$$
1 \geq \sum_{j k}^{1} Q_{j} Q_{k}
$$

The last tem, $\sum \sum K_{j k} I_{j} I_{k}$, is the rate at whicle dectromagnetir energy is leing converted into heat in the network. Conseguently in the electrical network, the magnetic energy is a homogeneous quadratic function of the currents, the electric energy is a homogeneous quadratic function of the charges, and the rate of dissipation is a homogeneous quadratic function of the currents. In Maxwell's dynamial theory of electrical networks, these relations were written down at the start and the circuit equations then derived by an ap)plication of Lagrange's dynamic equations to the homogeneous quadratic funcions.

Returning to equations (1), we observe that, due to the presence of the integral sign, they are integro-differential equations. They are,
however, at once reducible to differential equations by the substitution $l=d() d l$, whence they become
$\left(l_{11} \frac{d^{2}}{d l^{2}}+R_{11} \frac{d}{d l}+S_{11}\right) \varrho_{1}+\ldots+\left(L_{1 n} \frac{d^{2}}{d l^{2}}+R_{1 n}{ }^{d} d{ }^{d}+S_{1 n}\right) U_{n}=I_{11}$
$\left(L_{n \infty 1} \frac{d t^{2}}{d t^{2}}+R_{n 1} \frac{d}{d t}+S_{n 1}\right) \rho_{1}+\ldots+\left(L_{n n n} \frac{d t^{2}}{} t^{2}+R_{n n} \frac{d}{d t}+S_{n n}\right) \varphi_{n}=\ell_{n}$.
Here, is a matter of consenience, we have written $1 C_{f k}=S_{j k}$. It is ofen more convenient, at least at the outset, to deal with equations (3) rather than (1).

The Exponential Solution

In taking up the mathematical solution of equations (1), we shall start with the exponential solution. This is of fundamental importance, both theoretically and practically: It serves as the most direct introduction to the Heaviside Operational Calculus, and in addition furnishes the basis of the stead y-state solution, or the theory of alternating currents.

To derive this solution we set $E_{1}=F_{1} e^{\lambda l}$ and put all the other forces $E_{2}, \ldots E_{n}$ equal to zero. This latter restriction is a mere matter of convenience, and, in virtue of the linear character of the equations, involves no loss of generality:

Now, corresponding to $E_{1}=F_{1} e^{\lambda t}$, let us assume a solution of the form

$$
I_{j}=J_{j} e^{\lambda t} \quad(j=1,2 \ldots n)
$$

where J_{J} is a constant. So far this is a pure assumption, and its correctness must be verified by substitution in the clifferential equations.

Now if $I_{j}=J_{j} e^{\lambda t}$, it follows at once that
and

$$
\frac{d}{d l} I_{j}=\lambda I_{j}=\lambda J_{j} e^{\lambda t}
$$

$$
\int I_{j} d t=\frac{1}{\lambda} I_{j}=\frac{1}{\lambda} J_{j} e^{\lambda t} .
$$

Now substitute these relations in equations (1) and cancel the common factor $e^{\lambda t}$. We then get the system of simultaneous equations

$$
\begin{align*}
& \left(\lambda L_{11}+R_{11}+1, \lambda\left(C_{11}\right) J_{1}+\ldots+\left(\lambda L_{1 n}+R_{1 n}+1 \lambda C_{1 n}\right) J_{n}=F_{1},\right. \\
& \left(\lambda L_{21}+R_{21}+1 \lambda C_{21}\right) J_{1}+\ldots+\left(\lambda L_{2 n}+R_{2 n}+1 \lambda C_{2 n}\right) J_{n}=0, \\
& \hdashline\left(\lambda L_{2 n}+R_{n 1}+1 \lambda C_{n 1}\right) J_{1}+\ldots+\left(\lambda L_{n n}+R_{n n}+1 \lambda C_{n n}\right) J_{n}=0 . \tag{4}
\end{align*}
$$

We note that this is a system of simultaneous algebraic equations from which the time factor has disappeared. It is this that makes
the exponential solution so simple, since we can immediately pass from differential equations to algebraic equations. In these algebraic quations, n in number, there are n unknown quantities $J_{1}, \ldots J_{n}$. These can therefore all be uniquely determined. We thus see that the assumed form of solution is possible.

The notation of equations (t) may be profitably simplified as fotlows: write

$$
\lambda L_{j k}+R_{j k}+1 \lambda C_{j k}=z_{j k}(\lambda)=\varepsilon_{j k}
$$

and we have

$$
\begin{align*}
& z_{11} J_{1}+z_{12} J_{2}+\ldots+z_{1 n} J_{n}=F_{1}, \\
& z_{21} J_{1}+z_{22} J_{2}+\ldots+z_{2 n} J_{n}=0, \tag{5}\\
& \hdashline z_{n 1} J_{1}+z_{n 2} J_{2}+\ldots+z_{n n} J_{n}=0 .
\end{align*}
$$

The solution of this system of equations is
and

$$
J_{j}=\frac{M I_{j 1}(\lambda)}{D(\lambda)} F_{1}=\frac{M_{j 1}}{D} F_{1}
$$

$$
\begin{equation*}
I_{j}=\frac{M_{j 1}}{D} F_{1} e^{\lambda t}=\frac{F_{1}}{Z_{j 1}} e^{\lambda t} \tag{6}
\end{equation*}
$$

where D is the determinant of the coeflicients,

$$
\begin{array}{lllll}
z_{11} & z_{12} & z_{13} \ldots \ldots & \ldots & z_{1 n} \\
z_{21} & z_{22} & z_{23} \ldots \ldots & \ldots & z_{2 n} \\
z_{31} & z_{32} & \ldots \ldots . \ldots & \ldots & z_{3 n} \tag{7}\\
\hdashline & \ldots & \ldots & \ldots & \ldots \\
z_{n 1} & z_{n 2} & \ldots & \ldots & z_{n n}
\end{array}
$$

and $M_{j_{1}}$ is the cofactor, or minor with proper sign, of the j th column and first row.

I shall not attempt to discuss the theory of determinants on which this solution is based. ${ }^{1}$ We may note, however, one important property: Since $z_{j k}=z_{k j}, \quad M_{j k}=M_{k j}$. From this the Reciprocal Theorem follows immediately. This may be stated as follows:

If a force $I e^{\lambda l}$ is applied in the $j t h$ mesh, or branch, of the network, the current in the k th mesh, or branch, is by the foregoing

$$
\frac{M_{k j}}{D} F e^{\lambda t}
$$

Now apply the same force in the k th mesh, or branch, then the current in the j th mesh is

$$
\frac{1 I_{j k}}{1)} F e^{\lambda l}
$$

[^132]Comparing these eypresiont and remembering that $. I_{k_{k}}=1 / h_{\text {m }}$, it follon- that the current in the kih bemeh correspomting to , the expo nemtial impreseel e.m. in the fith bramb, is egpall to the curent in the ith hronch enreopmoling to the satme e.m.f. in the kih branch. This relation is of the greste- terhmical importance.

In many important terlmical problems we ate interested only in two decosible brameles, steh as the sembling and recoving. In such cases, where we are not concerned with the currents in the wher meshes or bramehes it is often convenient to climinate them from the equation. Thus suppose that we have electromotive forees E_{1} and E_{2} in me-hes 1 and $\underline{2}$ and are concerned only with the currents in there meshes. If we solve equations $3,1, \ldots n, n-2$ in number, for $I_{3} \ldots I_{n}$ in terms of I_{1} and I_{2} and then stbbstitute in (1) and (2) we get

$$
\begin{align*}
& Z_{11} I_{1}+Z_{12} I_{2}=E_{11} \\
& Z_{21} I_{1}+Z_{22} I_{2}=E_{2} . \tag{s}
\end{align*}
$$

The Steady State Solutions

The steady state solution, on which the whole theory of alternating currents depends, is immediately derivable from the exponential solution. I.et us suppese that $E_{2}=E_{3}=\ldots=E_{n}=o$ and that $E_{1}=$ F cos $(\omega t-\theta)$. Now by virtue of the well known formula in the theory of the complex varialle, ars $x=\frac{1}{2} e^{i x}+\frac{1}{2} e^{-i x}$, we can write

$$
\begin{align*}
E_{1} & \left.=\frac{1}{2} F_{c}^{i(\omega!\theta)}+\frac{1}{2} F_{e} \quad i \omega!\theta\right), \\
& =\frac{1}{2}\left(\cos \theta-i \sin \theta_{i} F_{c}^{i \omega t}+\frac{1}{2}(\cos \theta+i \sin \theta) F e^{-i \omega t},\right. \tag{9}\\
& =\frac{1}{2} F^{\prime} c^{i \omega t}+\frac{1}{2} F^{\prime \prime} e^{-i \omega!} .
\end{align*}
$$

Now, by virtue of this formula, the applied electromotive force E_{1} consists of two exponential forces, one varying as $e^{i \omega t}$ and the other as e tw!. Hence it is easy th see that the currents are made up of two components, thus

$$
\begin{equation*}
I_{j}=J_{j}^{\prime} e^{j \omega^{\prime}}+J_{j}^{\prime \prime} e^{-i \omega l} \quad(j=1,2 \ldots n) \tag{10}
\end{equation*}
$$

and we have merely to use the exponential solution given above, substituting for $\lambda, i \omega$ and $-i \omega$ respectively. That is,

$$
J_{j}^{\prime}=\frac{1}{2} Z_{j_{1}}(i \omega) \text { and } J_{j}^{\prime \prime}=\frac{1}{2} \frac{F^{\prime \prime}}{Z_{11}(-i \omega)}
$$

or

$$
I_{J}=\frac{1}{2} \frac{F e^{-i \theta}}{Z_{j 1}(i \omega)^{i \omega t}}+\stackrel{1}{2} \frac{F e^{i \theta}}{Z_{\mu_{1}}(-i \omega)^{e}} e^{-i \omega l}
$$

The second term is the conjugate imaginary of the first, so that

$$
\begin{aligned}
I_{j} & =R \frac{F e^{-i \theta}}{Z_{j_{1}}(i \omega)} e^{-i \omega t} \\
& =R \frac{F}{Z_{j_{1}}(i \omega)} e^{i(\omega t-\theta)} \\
& =R \frac{F}{\mid Z_{j_{1}}(i \omega)} e^{i(\omega!-\theta-\phi)} \\
& =\frac{F}{Z(i \omega) \mid} \cos (\omega t-\theta-\phi) .
\end{aligned}
$$

We thus arrive at the rule for the steady state solution:
If the applied e.m.f. is $F \cos (\omega t-\theta)$, substitute $i \omega$ for $d / d t$ in the differential equations, determine the impedance function

$$
\begin{equation*}
Z(i \omega)=D(i \omega) / M(i \omega) \tag{11}
\end{equation*}
$$

by the solution of the algebraic equations, and write it in the form

$$
\begin{equation*}
Z(i \omega)=|Z(i \omega)| e^{i \phi} \tag{12}
\end{equation*}
$$

Then the required solution is

$$
\begin{equation*}
I=\frac{F}{Z(i \omega) \mid} \cos (\omega t-\theta-\phi) \tag{13}
\end{equation*}
$$

This in compact form contains the whole theory of the symbolic solution of alternating current problems.

The Complementary Solution

So far in the solutions which we have discussed the currents are of the same type as the impressed forces: that is to say in physical language, the currents are "forced" currents and vary with time in precisely the same manner as do the electromotive forces. Such currents are, however, in general only part of the total currents. In addition to the forced currents we have also the characteristic oscillations; or, in mathematical language, the complete solution must include both particular and complementary solutions. This may be shown ats follows: Let I_{1}^{\prime}, . . . $I_{n}{ }^{\prime}$ be solutions of the complementary equations,

$$
\begin{align*}
& \left(L_{11}{ }_{d!}^{d}+R_{11}+\sum_{C_{11}}^{1} \int d t\right) I_{1}^{\prime}+\ldots+\left(L_{1 n} \frac{d}{d!}+R_{1 n}+\int_{C_{1 n}}^{1} \int d t\right) I_{n}{ }^{\prime}=0, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\left(L_{n n n} \frac{d}{d!}+R_{n n}+\frac{1}{C_{n n}} \int d t\right) I_{n}{ }^{\prime}=0 . \tag{11}
\end{align*}
$$

Then if $I_{1} \ldots I_{n}$ is a solution of (1), $I_{1}+I_{1}{ }^{\prime}, \ldots I_{n}+I_{n}{ }^{\prime}$, is also a solution.

To derive the solution of the complementary system of equations (11), assumbe that a solution exists of the form

$$
I_{j}^{\prime}=J_{j}{ }^{\prime} e^{\mathrm{Nt}} \quad(,=1,2 \ldots n)
$$

so that $d^{\prime} d t=\lambda$ and $\dot{f} d l=1 / \lambda$. Substitute in equations (14) and cancel out the common factor $e^{\lambda t}$. Then we have

$$
\begin{align*}
& Z_{11}(\lambda) J_{j}^{\prime}+\ldots .+Z_{1 n}(\lambda) J_{n}^{\prime}=0, \\
& Z_{n 1}(\lambda) J_{1}^{\prime}+\ldots .+Z_{n n}(\lambda) J_{n}^{\prime}=0 . \tag{15}
\end{align*}
$$

This is a system of n homogencous equations in the unknown quantities $J_{1}{ }^{\prime} \ldots J_{n}{ }^{\prime}$. The condition that a finite solution shall exist is that, in aceordance with a well known principle of the theory of equations, the determinant of the coefficients shall vanish. That is,

Consequently the possible values of λ must be such that this equation is satisfied. In other words, λ must be a ront of the equation $D(\lambda)=0$. Let these roots be denoted by $\lambda_{1}, \lambda_{2} \ldots \lambda_{m}$. Then, assigning to λ any one of these values, we can determine the ratio $J_{j} / J_{k}{ }^{\prime}$ from any $(n-1)$ of the equations. That is to say, if we take

$$
\begin{equation*}
I_{1}^{\prime}=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2}!}+\ldots+C_{m} e^{\lambda_{m} t} \tag{17}
\end{equation*}
$$

substitution in any $(n-1)$ of the equations determines $I_{2}{ }^{\prime}, \ldots I_{n}{ }^{\prime}$. The m constants $C_{1}, \ldots C_{m}$ are so far, however, entirely arbitrary, and are at our disposal to satisfy imposed boundary condilions.

This introduces us to the idea of boundary conditions which is of the greatest importance in circuit theory. In physical language the boundary conditions denote the state of the system when the electromotive force is applied or when any change in the circuit constants occurs. The number of independent boundary conditions which can, in general, be satisfied is equal to the number of roots of the equation $D(\lambda)=o$. Evidently, therefore, it is physically impossible to impose more boundary conditions than this. On the other hand, if this number of boundary conditions is not specified, the complete solution is indeterminate: That is to say, the problem is not correctly set. As an example of boundary conditions, we may specify that the
electromotive force is applied at time $t=0$, and that at this time all the currents in the inductances and all the charges on the conderinsers are zero.

So far we have been following the classical theory of linear differential equations. We hase seen that the forced exponential solution and the derived steady state solution are extremely simple and are mere matters of elementary algebra. The practical difficulties in the classical method of solutions begin with the determination of the constants $C_{1}, \ldots C_{m}$ of the complementary solution as well as the roots $\lambda_{1}, \ldots \lambda_{m}$ of the equation $D(\lambda)=0$. It is at this point that Heaviside broke with classical methods, and by considering special boundary conditions of great physical importance, and particular types of impressed forces, laid the foundations of original and powerful methods of solution. We shall therefore at this point follow Heaviside's example and attack the problem from a different standpoint. In doing this we shall not at once take up an exposition of Heaviside's own method of attack. We shall first establish some fundamental theorems which are extremely powerful and will serve us as a guide in interpreting and rationalizing the Heaviside Operational Calculus.

CHAPTER II

The Solution when as Arbitriry Force is Applied to the Network iN a State of Equilibriem

In engineering applications of electric circuit theory there are three outstanding problems:
(1) The steady state distribution of currents and potentials when the network is energized byy a sinusoidal electromotive force. This problem is the subject of the theory of alternating currents which forms the basis of our calculations of power lines and the more elaborate networks of communication systems.
(2) The distribution of currents and potentials in the network in response to an arbitrary electromotive force applied to the network in a state of equilibrium, i.e., applied when the currents and charges in the network are identically zero.
(3) The effect on the distribution of currents and potentials of suddenly changing a circuit constant or connection, such as opening or closing a switch, while the system is energized.

We shall base our further analysis of circuit theory on the solutions of problem (2), for the following reasons:
(A) It is essentially a generalization of the Heaviside problem and its solution will furnish us a key to the correct understanding and
interpretation of operational methos and leal to at anxiliary formula from which the rules of the therational Calculus are direaly deducible.
(B) The solution of problem (2) carries with it the solution of problem (3) and alon serves as a hensis for the theory of alternating currents.
(C) The solution of problem (2) leads direetly to an extension of circuit theory to the case where the network contains variable elements: i.e., circuit elements which sary with time and in which nonlineser relations obtain.

Problem (2) is therefore the fundamental problem of circuit theory and the formula whieh we shall now derive mesy lee tormed the fund amental formula of circuit theory:

Consider a network in any braneh of which, say branch I, a unit e.m.f. is inserted at lime $t=0$, the network hasing been previously in equilibrium. By unit e.m.f. is meant an electromotive force which hats the value unity for all positive values of time ($1 \geqq 0$). Let the resulant current in any branch, sty branch n, he denoted by $A_{n_{1}}(t)$. $A_{n 1}(t)$ will be termed the indicial admiltance of branch n with respect to branch 1 -or, more fully; the transfer indicial admittance.

The indicial admittance, aside from its direct physical significance, plays a fundamental role in the mathematical theory of electric circuits. In words, it may bedefined as follows: The indicial admittance, Ant(t), is egual to the ratio of the current in branch n, expressed as a time function, to the magnitude of the steally e.m.f. suddenly inserted at time $t=0$ in branch 1. It is evielently a function which is zero for negative values of time and approaches either zero or a steady value (the d.c. almittance) for all actual disopative systems, ats t approaches infinity: It may be noted that, aside from its mathematical determination, which will engage our attention later, it is an experimentally determinable function.

We note, in passing, an important property of the indicial arlmittance $A_{k k}(1)$, which is deducible from the reeiprocal theorem: ${ }^{2}$ this is that $I_{k}(t)=I_{k,(t)}$. That is to say, the value of the transfer indicial admittance is undranged by an interdhange of the driving point and receiving point. It is therefore immaterial in the expression . $I_{k}(t)$ whether the e.m.f. is inserted in branch j and the eurrent measured in branch $k_{\text {, or verever. In general, unless we are con- }}$ cerned with particular branches, the subscripts will be omitted and we shall simply write $A(1)$, it being understood that any two branches

[^133]or a single branch (for the ease of equal subscripts) may be under consideration.

From the lincar character of the network, it is evident that if a steady e.m.f. $E=E_{\tau}$ is inserted at time $t=\tau$, the network being in equilibrinm, the resultant current is

$$
E_{\tau} \cdot f(t-\tau)
$$

Gencralizing stil\} further, suppose that steady e.m.fs. $E_{o}, E_{1}, E_{2}, \ldots E_{n}$ are impressed in the same branch at the respective times $\tau_{0}, \tau_{1}, \tau_{2}$ $\ldots \tau_{n}$; the resultant current is evidently

$$
\begin{equation*}
E_{o} A(t)+E_{1 A} A\left(t-\tau_{1}\right)+\ldots+E_{n} A\left(t-\tau_{n}\right)=\sum_{j=0}^{n} E_{j A} A\left(t-\tau_{j}\right) \tag{18}
\end{equation*}
$$

To apply the foregoing to our problem we suppose that there is applied to the network, initially in a state of equilibrium, an e.m.f. $E($ () which has the following properties.

1. It is identically zero for $t<0$.
2. It has the value $E(o)$ for $0 \leq t \leq \Delta t$.
3. It has the value $E(0)+\Delta_{1} E$ for $\Delta t \leq t<2 \Delta t$.
4. It has the value $E(o)+د_{1} E+\Delta_{2} E$ for $2 \Delta t \leq t<3 \Delta t$.

In other words it has the increment $\perp_{j} E$ at time $t=j \Delta t$.
Evidently then the resultant current $I(t)$ is

$$
E_{0} A(t)+د_{1} E A(t-د l)+\ldots+د_{n} E . A(t-n د l)
$$

Now evidently if the interval Δt is made shorter and shorter, then in the limit $\Delta t \rightarrow d t$ and $j \Delta t=\tau$ and

$$
\Delta_{J} E=\frac{d}{d \tau} E(\tau) d \tau
$$

Passing to the limit in the usual manner this summation becomes a delinite integral and we get

$$
\begin{equation*}
I(t)=E(o) I(t)+\int_{0}^{t} A(t-\tau) \frac{d}{d \tau} E(\tau) d \tau . \tag{19}
\end{equation*}
$$

Finally by obvious transformations of the expression we arrive at the fundamental formula of circuit theory

$$
\begin{align*}
I(t) & =\frac{d}{d l} \int_{0}^{t} A(l-\tau) E(\tau) d \tau, \tag{20}\\
& =\frac{d}{d t} \int_{0}^{l} E(t-\tau) A(\tau) d \tau . \tag{20-a}
\end{align*}
$$

For completeness we write down the following equisalents of (20) alid (20-a)

$$
\begin{align*}
I(t) & =A(0) E(l)+\int_{0}^{t} I^{\prime}(l-r) E(r) d \tau \tag{20-b}\\
& =I(0) E(t)+\int_{0}^{t} I^{\prime}(\tau) E(l-r) d \tau \tag{21}\\
& =E(0) A(l)+\int_{0}^{t} E^{\prime}(l-\tau) A(\tau) d \tau \tag{20-c}\\
& =E(0) A(t)+\int_{0}^{t} E^{\prime}(\tau) A(l-\tau) d \tau
\end{align*}
$$

Where the primes denote differentiation with respect to the argument. Thus $A^{\prime}(t)=d \quad d t A(t)$.

These equations are the fundamental formulas which mathematically relate the current to the type of applied electromotive force and the constants and eonnections of the sy:tem, and constitute the first part of the solution of our problem. The most important immediate deductions from these formulas are expressed in the following theorems.

1. The indicial admittance of an electrical network completely determines, within a single integration, the behavior of the network to all types of applied electromotive forces. As a corollary, a knowledge of the indicial admittance is the sole information necessary to completely predict the performance and characteristics of the system, including the steady state.
2. The applied e.m.f. and the inidical admittance are similarly and coequally related to the resultant current in the network. As a corollary the form of the current may be modified either by changing the constants and connections of the network or by modifying the form of the applied e.m.f.
3. Since the applied e.m.f. may be discontinuous these formulas determine not only the buidding up of the current in response to an applied e.m.f. but also its subsidence to equilibrium when the e.m.f. is removed and the network left to itself. In brief, formulas (20) reduce the whole problem to a determination of the indicial admittance of the network. In addition, as we shall sce, they lead directly to an integral equation which determines this function.

It is of interest to show the relation between formulas (20) and the usual steady state equations. To do this let the e.m.f., applied at
time $t=0$, be $E \sin (\omega t+\theta)$. Substitution in formula (20-b) and rearrangement gives

$$
\begin{align*}
I(t)= & A(o) E \sin (\omega t+\theta) \\
& +E \sin (\omega t+\theta) \int_{0}^{t} \cos \omega \tau A^{\prime}(\tau) d \tau \\
& -E \cos (\omega t+\theta) \int_{0}^{t} \sin \omega \tau A^{\prime}(\tau) d \tau \tag{21}
\end{align*}
$$

where $\quad A^{\prime}(t)=\frac{d}{d t} A(t)$.
Now this can be resolved into two parts

$$
\begin{gather*}
E \sin (\omega t+\theta)\left\{A(0)+\int_{0}^{\infty} \cos \omega \tau A^{\prime}(\tau) d \tau\right\} \\
-E \cos (\omega t+\theta)\left\{\int_{0}^{\infty} \sin \omega \tau A^{\prime}(\tau) d \tau\right\} \tag{22}
\end{gather*}
$$

which is the final steady state, and

$$
\begin{align*}
& -E \sin (\omega t+\theta) \int_{t}^{\infty} \cos \omega \tau A^{\prime}(\tau) d \tau \\
& +E \cos (\omega t+\theta) \int_{t}^{\infty} \sin \omega \tau A^{\prime}(\tau) d \tau \tag{23}
\end{align*}
$$

which is the transient distortion, which ultmately dies away for sufficiently large values of time.

To correlate the foregoing expressions for the steady state with the usual formukas we observe that if the symbolic impedance of the network at frequency $\omega / 2 \pi$ be denoted by $Z(i \omega)$, and if we write

$$
\frac{1}{Z(i \omega)}=\alpha(\omega)+i \beta(\omega)
$$

then the steady state current is

$$
E[\alpha(\omega) \cdot \sin (\omega t+\theta)+\beta(\omega) \cdot \cos (\omega t+\theta)]
$$

Comparison with (22) gives at once

$$
\begin{gather*}
\alpha(\omega)=A(o)+\int_{0}^{\infty} \cos \omega \tau A^{\prime}(\tau) d \tau \tag{2.4}\\
\beta(\omega)=-\int_{0}^{\infty} \sin \omega \tau A^{\prime}(\tau) d \tau \tag{25}
\end{gather*}
$$

The Integral liquation for the Indicial . Itmithture

 knomn. T- a matler of fut its determination constitutes the essential part of our problem. It is, in faet, the Heas iside problem, and its insentigation, to which we mow proced, will lead as directly to the Werational C'alenhas.

Ileovisele's methorl in investigating this problem was intuitive and "experimental". We, howerer, shall e-bablish a very general integral equation from which we shall dieerdy deduee his methods and extensions therent.
lee us suppese that an e.m.f. $e^{p t}$, wheme p is cither positive real 'fuathey or complex with real part positise, is suddenly impresed on the metwork at time $t=0$. It follows from the foregoing theory that the resultabt current $I(1)$ will be mate up of two parts, (1) a forece exponemtial part which varies with time as $e^{p t}$, and (2) at compementary part which we shall demote hy $y(t)$. The exponential or "forcel" component is simply $e^{n h} Z(p)$, where $Z(p)$ is functionally of the same form ats the usual symbolic or complex imperlance $Z(i \omega)$. It is getten from the differential equations of the problem, as explained in a preceding section, by replacing $d^{n} d t^{n}$ by p^{n}, cancelling out the common factor $e^{p l}$, and solving the resulting algebraic cequation. The complementary or characteristic component, denoted by $y(I)$, depends on the constants and connections of the network, and on the value of p. It dees nose, however, contain the factor $e^{p t}$ and it dies away for -uficiently large value of t, in all artual dissipative systems. Thus

$$
\begin{equation*}
I(t)=\frac{e^{p t}}{Z(p)}+y(t) \tag{20}
\end{equation*}
$$

Now return to formula (20-a) and replace $E(t)$ by $e^{p t}$. We get

$$
I(t)=\frac{d}{d l^{e^{n t}}} \int_{0}^{d t} A(\tau) e^{-l \tau} d \tau
$$

which can be written as

$$
\left.\begin{array}{c|c}
d & e^{n} \\
d l & \int_{0}^{\infty} A(\tau) e^{-I \tau} d \tau-e^{n} \int_{1}^{\infty} A(\tau) e e^{m} h t
\end{array}\right\} .
$$

Carrying out the indicated differentiation this becomes

$$
\begin{equation*}
I(t)=p e^{p t} \int_{0}^{\infty} A(\tau) e^{D r} d \tau-p e^{p t} \int_{t}^{\infty} A(\tau) e^{D r} d \tau+1(l) . \tag{27}
\end{equation*}
$$

Equating the two expressions (26) and (27) for $I(t)$ and dividing through by $e^{p t}$ we get

$$
\begin{equation*}
\frac{1}{Z(p)}+y(t) e^{n}=p \int_{0}^{\infty} A(\tau) e^{p \tau} d \tau-p \int_{1}^{\infty} A(\tau) e^{-D \tau} d \tau+A(t) e^{-p t} \tag{28}
\end{equation*}
$$

This equation is valid for all values of l. Consequently if we set $t=\infty$, and if the real part of p is positive, only the first term on the right and the left hand side of the equation remain, the rest vanishes, and we get

$$
\begin{equation*}
\frac{1}{p Z(p)}=\int_{0}^{\infty} A(t) e^{-\phi t} d t . \tag{29}
\end{equation*}
$$

This is an integral equation ${ }^{3}$ ralid for all positive real values of p, which completely determines the indicial admittance $A(t)$. It is on this equation that we shall hase our discussion of operational methods and from which we shall derive the rules of the Operational Calculus. Equations (20) and (29) constitute a complete mathematical formulation of our problem, and from them the complete solution is obtainable without further recourse to the differential equations, or further consideration of boundary conditions.

To summarize the preceding: we have reduced the determination of the current in a network in response to an electromotive force $E(t)$, impressed on the network at reference time $t=0$, to the mathematical solution of two equations: first the integral equation

$$
\begin{equation*}
\frac{1}{p Z(p)}=\int_{0}^{\infty} A(t) e^{-p^{t} t} d t \tag{29}
\end{equation*}
$$

and second, the delinite integral

$$
\begin{equation*}
I(t)=\frac{d}{d t} \int_{0}^{t} A(t-\tau) E(\tau) d \tau \tag{20}
\end{equation*}
$$

It will he observed that in deducing these equations we have merely pestulated (1) the linear and insariable character of the network and (2) the existence of an exponential solution of the type $e^{p r} ; Z(p)$ fot positive values of p. Consequently, while we have so far discussed these formulas in terms of the determination of the current in a finite network, they are not limited in their application to this specific problem. In this connection it may be well to call attention explicitly to the following points.

[^134]The furmulas dul methorls eleduced above apply mot only to linite networks, invohing a linite system of linear equations, hut te infinite networks and to transmission lines, involving infinite sy stems of eymations, and partial differential cquations: in fact the all electrical ame dyamical systems in which the commeetions and constants ate linear and invariable.

Scondly the variable determined lyy formula (20) and (29) meed not, of course, be the current. It may erfally well be the charge, potential drop, or any of the variblese with which we moty happen to be concerned. This fact moy be explicitly recognized by witing the formulas as:

$$
\begin{align*}
\frac{1}{p I I(p)} & =\int_{0}^{\infty} h(l l e-n d t \tag{30}\\
x(t) & =\frac{d}{d t} \int_{0}^{t} h(t-\tau) E(\tau) d \tau . \tag{31}
\end{align*}
$$

Here $E(t)$ is the applied e.m.f., $x(t)$ is the variable which we desire to determine (charge, current, potential (rop, ete.), and

$$
\begin{equation*}
x=E \quad I I(p) \tag{32}
\end{equation*}
$$

is the operational equation. $H(p)$ therefore corresponds to and is determined in precisely the sime way as the impedance $Z(p)$, but it may not have the physical significance or the dimensions of an impedance. Similarly in character and function, $h(1)$ corresponds to the indicial admittance, though it may not have the same physical significance. It is a generalization of the indicial admittance and may be appropriately termed the Heaviside Funclion. Similarly $I I(p)$ may he termed the generalized impedance funclion.

CHAPTER 111

Tile Healiside Problem and the Operitional Eutathon

The physical problem which Heaviside attacked and which led to his Operational Calculus was the determination of the response of a network or electrical system to a "unit e.m.f." (zero before, unity after time $l=o$) with, of course, the understanding that the system is in equilibrium when the electromotive force is applied. His problem is therefore, essentially that of the determination of the indicial admittance. In our exposition and eritigue of Ileaviside's method of dealing with this problem we shall accompany an account of his own method of solution with a parallel solution from the corresponding integral equation of the problem.

Heaviside's first step in attacking this problem was to start with the differential equations, and replace the differential operator d dt by the symbol p, and the operation $\dot{f} d t$ by $1 p$, thus reducing the equations to an algebraic form. He then wrote the impressed e.m.f. as 1 (unity), thus limiting the validity of the equations to values of $t \geqq 0$. The formal solution of the algebraic equations is straightforward and will be written as

$$
\begin{equation*}
h=1 \quad I I(p) \tag{33}
\end{equation*}
$$

where h is the "generalized indicial admittance," or Heaviside function (denoting current, charge, potential or any variable with which we are concerned) and $I I(p)$ is the corresponding generalized impedance. Thus, if we are concerned with the current in any part of the network, we write

$$
\begin{equation*}
A=1^{\prime} Z(p) \tag{34}
\end{equation*}
$$

The more general notation is desirable, however, as indicating the wider applicability of the equation.

The equations

$$
\begin{gathered}
h=1 \quad I I(p) \\
A=1 \quad Z(p)
\end{gathered}
$$

are the Ileatiside Operational Equations. They are, as yet, purely symbolic and we have still the problem of determining their explicit meaning and in particular the significance of the operator p.
(omparison of the Heaviside Operational Equations with the integral equations (29) and (30) of the preceding chapter leads to the following fundamental theorem.

The Ilcaviside Operational Equations

$$
\begin{aligned}
& A=1 \quad Z(p) \\
& h=1 \quad I M(p)
\end{aligned}
$$

are merely the symbolic or short-hand equizalents of the corresponding integral equations

$$
\begin{aligned}
\frac{1}{p Z(p)} & =\int_{0}^{\infty} A(t) e^{-p t} d t \\
\frac{1}{p H(p)} & =\int_{0}^{\infty} h(t) e^{-p t} d t .
\end{aligned}
$$

The integral equations, therefore, supply us with the meaning and significance of the operational equations, and from them the rules of the Operational Calculus are deducible.

By virtue of this theorem, we have the whantage, at the outset, of a key to the meaning of theaviside's operational equations, and a means of checking and deducing his rules of solution. This will serse us ds a guide shroughout our further stuty.

Recurning now to lleavisite's own point of viow and method of attack, his reasoning may be described somewhat as follows: The operational equation

$$
h=1 \quad I I(p)
$$

is the full equivalent of the differential equations of the problem and must therefore contain the information necessary to the solution provided we can determine the significance of the symbolic operator p. The only way of doing this, when starting with the operational equation, is one of induction: that is, we must compare the operational equation with kinown solutions of specific problems and thus attempt to infer by induction general rules for interpreting the operational equation and converting it into the reguired explicit solution.

The Power Series Solution

Let us start with the simplest possible problem: the current in response to a "unit e.m.f." in a circuit consisting of an inductance L in series with a resistance R.

The differential equation of the problem is

$$
L \frac{d}{d t} A+R \cdot 1=1, \quad t \geqq 0 .
$$

where A is the indicial admittance. Consequently replacing d ' $d t$ by p, the operational equation is

$$
A=\frac{1}{p L+R}
$$

The explicit solution is easily derived: it is

$$
A=\frac{1}{R}\left(1-e^{-\alpha t}\right)
$$

where $\alpha=R L$. Note that this makes the current initially zero, so that the equilibrium boundary condition at $t=0$ is satisfied.

Now suppose that we expand the operational equation in inverse powers of p : we get, formally,

$$
\left.A=\frac{1}{p \bar{I}, 1+\alpha p}=\frac{1}{R} \frac{\alpha}{p} \frac{1}{1+\alpha p}=\frac{1}{R} \hat{p}_{p}^{\alpha}-\left(\frac{\alpha}{p}\right)^{2}+\left(\frac{\alpha}{p}\right)^{3}-\left(\frac{\alpha}{p}\right)^{4}+\ldots\right\}^{1}
$$

by the Binomial Theorem.

Now expand the explicit solution as a power series in t : it is

$$
\left.A=\frac{1}{R} \div \frac{\alpha t}{1!}-\frac{(\alpha t)^{2}}{2!}+\frac{(\alpha t)^{3}}{3!}-\ldots\right\}
$$

Comparing the two expansions we see at once that the operational expansion is converted into the explicit solution by assigning to the symbol $1 / p^{n}$ the value $t^{n} / n!$. It was from this kind of inductive inference that Heaviside arrived at his power series solution.

Now there are several important features in the foregoing which require comment. In the first place the operational equation is converted into the explicit solution only by a particular kind of expansion, namely an expansion in inverse powers of the operator p. For example, if in the operational equation

$$
A=\frac{1}{R} \frac{\alpha p}{1+\alpha_{,} p}
$$

we replace $1^{\prime} p$ by $t / 1$! we get

$$
A=\frac{1}{R} \frac{\alpha t}{1+\alpha t}
$$

which is incorrect. Furthermore, if we expand in ascending instead of descending powers of p, namely

$$
\left.A=\frac{1}{R} ; 1-(p ; \alpha)+(p, \alpha)^{2}-\ldots .\right\}^{\prime}
$$

no correlation with the explicit solution is possible and no significance can be attached to the expansion. We thus infer the general principle, and we shall find this inference to be correct, that the operational equation is convertible into the explicit solution only by the proper chosice of expansion of the impedance function, or rather its reciprocal.

In the second place we notice that in writing down the operational equation and then converting it into the explicit solution no consideration has been given to the question of boundary conditions. This is one of the great advantages of the operational method: the boundary conditions, prowided they are those of equilibrium, are automatically taken care of. This will be illustrated in the next example:
L.et a "unit e.m.f." he impressed on a circuit consisting of resistance R, inductance L, and capacity C : required the resultant charge on the condenser.

The differential equation for the charge Q is

$$
\left(L \frac{d^{2}}{d t^{2}}+R_{d t}^{d}+1 C\right)(Q=1, \quad t \geqq 0 .
$$

Consequenty the operational formula is

$$
\begin{aligned}
& Q=\frac{1}{L p^{2}+R p+1 C} \\
&=\frac{1}{L \cdot p^{2} 1+a p+b p^{2}} \text { where } a-\frac{R}{L} \cdot \mathbf{1}+1 \\
& L \cdot C^{\prime}
\end{aligned}
$$

This call he expanded by the Binomi.al Theorem as

$$
()=\frac{1}{L p^{2}} 11-\left(\begin{array}{l}
a \\
p
\end{array}+\frac{b}{p^{2}}\right)+\left(\frac{a}{p}+\frac{b}{p^{2}}\right)^{2}-\left(\frac{a}{p}+\frac{b}{p^{2}}\right)^{3}+\ldots 1 .
$$

Performing the indicated operations and collecting in inverse powers of p, the first few terms of the expansion are:-

$$
\frac{1}{I . p^{2}} \vdots 1-\frac{c_{1}}{p}-\frac{c_{2}}{p^{2}}+\frac{c_{3}}{p^{3}}+\frac{c_{3}}{p^{4}}-\frac{c_{5}}{p^{3}}-\frac{c_{6}}{p^{6}}+\ldots!
$$

where

$$
\begin{aligned}
& c_{1}=a \\
& c_{2}=b-a^{2} \\
& c_{3}=2 a b-a^{3} \\
& c_{4}=b^{2}-3 a^{2} b+a^{4} \\
& c_{5}=3 a b^{2}-4 a^{3} b+a^{3} \\
& c_{8}=b^{3}-6 a^{2} b^{2}+5 a^{4} b-a^{6}
\end{aligned}
$$

We infer therefore that in accordance with the rule of replacing 1. p^{n} by t^{n} / n ! the solution is:-

$$
Q=\frac{1}{L} \frac{t^{2}}{2!}-c_{1} \frac{t^{3}}{3!}-c_{2} \frac{t^{4}}{t!}+c_{3} \frac{t^{5}}{5!}+c_{4} \frac{t^{6}}{6!}-\ldots r^{\prime} .
$$

Owing to the complicated character of the coefficients in the expansion, the series cannot be recognized and summed by inspection. If, however, we put $R=0$) then $a=0$, and the series becomes

$$
C!\frac{1}{2!}\left(\frac{t}{\sqrt{L C}}\right)^{2}-\frac{1}{+!}\left(\frac{1}{\sqrt{\overline{L C}}}\right)+\frac{1}{6!}\left(\frac{t}{\sqrt{L C}}\right)^{6}-\ldots!
$$

whence

$$
Q=C\{1-\cos (1, L C)\} .
$$

We have still to verify this solution by comparison with the explicit solution of the differential equation. This is of the form

$$
Q=C+k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t}
$$

where k_{1} and k_{2} are constants which must be chosen to satisfy the boundary conditions and λ_{1}, λ_{2} are the roots of the equation

$$
L \lambda^{2}+R \lambda+1 \quad C=0 .
$$

Now since we have two arbitrary constants we satisfy the equilibrium condition by making Q and $d Q / d t$ zero at $t=0$, whence

$$
\begin{aligned}
& C+k_{1}+k_{2}=0, \\
& \lambda_{1} k_{1}+\lambda_{2} k_{2}=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& k_{1}=\lambda_{2} C /\left(\lambda_{1}-\lambda_{2}\right), \\
& k_{2}=\lambda_{1} C /\left(\lambda_{2}-\lambda_{1}\right) .
\end{aligned}
$$

We have also

$$
\begin{aligned}
& \lambda_{1}=-\frac{a}{2}+\sqrt{\left(\frac{a}{2}\right)^{2}-b}, \\
& \lambda_{2}=-\frac{a}{2}-\sqrt{\binom{a}{2}^{2}-b}
\end{aligned}
$$

Writing down the power series expansion of

$$
Q=C+k_{1} e^{\lambda_{1} t}+k_{2} e^{\lambda_{2} t},
$$

then

$$
\begin{aligned}
Q & =\left(C+k_{1}+k_{2}\right)+\left(k_{1} \lambda_{1}+k_{2} \lambda_{2}\right) \frac{t}{1!} \\
& +\left(k_{1} \lambda_{1}^{2}+k_{2} \lambda_{2}{ }^{2}\right) \frac{t^{2}}{2!}+\ldots
\end{aligned}
$$

Introducing the values of $k_{1}, k_{2}, \lambda_{1}, \lambda_{2}$ given above and comparing with the power series derived from the operational solution we see that they are identical term by term.

This example illustrates two facts. First the power series expansions may be complicated, laborious to derive and of such form that they cannot be recognized and summed by inspection. In fact in arbitrary networks of a large number of meshes or degrees of freedom the evaluation of the coefficients of the power series expansion is extremely laborious.

On the other hand, in such cases, the solution by the classical method presents difficulties far more formidable - in fact insuperable difficulties from a practical standpoint. First there is the location of the roots of the function $I I(\lambda)$, which in arbitrary networks is a practical impossibility withont a prohibitive amount of libor. Secondly there is the determination of the integration constants to satisfy the imposed loundary conditions: a process, which, while theoretically
straightforward, is actually in practice extremely lahorious and complicated. We note these points in passing; a more complete entimate of the salue of the power series solntion will be made later.

To summarize the preceding: Heaviside, generalizing from specific examples otherwise solvable, arrived at the following rule:-

Expand the right hand side of the operational equation

$$
h=1 \quad I I(p)
$$

in inverse powers of p : thus

$$
1 \sim a_{0}+a_{1} p+a_{2}^{\prime} p^{2}+\ldots+u_{n} p^{n}+\ldots .
$$

and then replace $\frac{1}{p^{n}}$ by $t^{n} / n!$. The operational equation is thereby converted into the explicit power series solution:-

$$
\begin{equation*}
h=a_{0}+a_{1} t / 1!+a_{2} t^{2} / 2!+\ldots+a_{n} t^{\prime \prime} n!+\ldots \tag{35}
\end{equation*}
$$

As stated above, this rule was arrived at by pure induction and generalization from the known solution of specific problems. It canmut, therefore, theoretlcally be regarded as satisfactorily established. The rule can, however, be directly deduced from the integral equation

$$
\frac{1}{p H(p)}=\int_{0}^{\infty} h(l) c^{-\infty} d t .
$$

To its derivation from this equation we shall now proceed.
First suppose we assume that $h(t)$ admits of the power series expansion

$$
h_{0}+h_{1} t 1!+h_{2} l^{2} 2!+\ldots .
$$

Substitute this assumed expansion in the integral, and integrate term by term. The right hand side of the integral equation becomes formally

$$
h_{0,} p+h_{1} p^{2}+h_{2}^{\prime} p^{3}+\ldots .
$$

by virtue of the formula

$$
\int_{0}^{\infty} \frac{l^{n}}{n!}!^{-p t}=\frac{1}{p^{n+1}} \text { for } p>0 \text {. }
$$

Now expand the left hand side of the integral equation asymptotically: in inverse process of p : it becomes

$$
a_{0} p+a_{1} / p^{2}+a_{2}^{\prime} p^{3}+\ldots .
$$

where

$$
a_{0}+a_{1} / p+a_{2} / p^{2}+\ldots .
$$

is the asymptotic expansion of $1 / I(p)$. Comparing the two expansions and making a term by term identification, we see that $h_{n}=a_{n}$ and

$$
h(t)=a_{0}+a_{1} t \quad 1!+a_{2} t^{2} \cdot 2!+\ldots
$$

which agrees with the Heaviside formula.
This procedure, however, while giving the correct result has serious defects from a mathematical point of view. For example, the asymtotic expansion of $1 / H(p)$ has usually only a limited region of convergence, and it is only in this region that term by term integration is legitimate. Furthermore we have assumed the possibility of expanding $h(t)$ in a power series: an assumption to which there are serious theoretical oljections, and which, furthermore, is not always justified. A more satisfactory derivation, and one which establishes the condition for the existence of a power series expansion, proceeds as follows:-

Let $1 / I I(p)$ lee a function which admits of the formal asymptotic expansion

$$
\stackrel{i}{0}_{a_{n}} p^{n}
$$

and let it include no component which is asymptotically representable by a series all of whose terms are zero, that is a function $\phi(p)$ suct that the limit, as $p \rightarrow \infty$, of $p^{n} \phi(p)$ is zero for every value of n. Such a function is e^{-D}. With this restriction understood, start with the integral equation, and integrate by parts: we get

$$
I^{1}(p)=h(o)+\int_{0}^{\infty} e^{-p t h^{(1)}}(t) d t
$$

where $h^{m)}(t)$ denotes $d^{n} / d t^{\prime \prime} h(t)$. Now let p approach infinity : in the limit the integral vanishes and by virtue of the asymptotic expansion

$$
\begin{equation*}
1 / H(p) \sim \sum_{0}^{\infty} a_{n} / p^{n} \text {, } \tag{36}
\end{equation*}
$$

1, $H(p)$ approaches the limit a_{0}. Consequently

$$
h(o)=u_{o} .
$$

Now integrate again ly parts: we get

$$
p\left(1 \quad I(p)-a_{0}\right)=h^{(1)}(o)+\int_{0}^{\infty} e^{-p l} h^{(2)}(t) d l .
$$

- Isain let p approath intinity: in the limit the lefe hatad side of the "quation becomes a_{1} and we have

$$
h^{(1)}(0)=u_{1} .
$$

Proceding by successive partial integrations we thus establish the general relation

$$
h^{(n)}(o)=a_{n} .
$$

Bun loy Tiyfor's heorem, the power series expmaion of $h(t)$ is simply

$$
h(f)=h(0)+h^{(1)}(o) t 1!+h^{(2)}(o) f^{2} \cdot 2!+\ldots \ldots
$$

whence, assuming the consergence of this cxpansion, we get

$$
\begin{equation*}
h(1)=a_{0}+a_{1} 11!+a_{2} t^{2} 2!+\ldots=\frac{\bigsqcup}{0}_{\infty}^{a_{n} t^{n}} n! \tag{35}
\end{equation*}
$$

Which establishes the power series solution. It should be carefully moned, however, that it does not establish the convergence of the power series solution. Is a matter of fact, however, 1 know of no plysical problem in which $I I(p)$ satislies the conditions for an asymptotic expansion, where the power series solution is not convergent. On the other hatud many physieal problems exist, ineluding those relating to transmission lines, where a power series solution is not derivable and does not exist.

The process of expanding the operational equation in such a form as to permit of its being converted into the explicit solution is what Heaviside calls "algebrizing" the equation. In the case of the power series solution the process of algebrizing consists in expanding the reciprocal of the impedance function in an asymptotic series, thus

$$
1 I I(p) \sim a_{0}+a_{1} p+a_{2} p^{2}+\ldots \ldots
$$

Regarded as an expansion in the variable p, instead of as a purcly symbelic expansion, this series has usually only a limited region of convergence. This fact need not bother us, however, as the series we are really concerned with is

$$
a_{0}+a_{1}!1!+a_{2} l^{2}-2!+\ldots
$$

It is interesting to note in passing that the latter series is what Borel, the Firench mathematician, calls the associated function of the former, and is extensively employed by him in his researches on the summability of divergent series.

The process of "algebrizing," as in the examples discussed above, may often be effected by a straight forward binonsial expansion.

In other cases the form of the generalized impedance function $I I(p)$ will indicate by inspection the appropriate procedure. A general process, applicable in all cases where a power series exists, is as follows. Write

$$
\begin{equation*}
1, I I(p)=1, I\left(\frac{1}{x}\right)=G(x) . \tag{316}
\end{equation*}
$$

Now expand $G(x)$ as a Taylor's series: thus formally

$$
G(x)=G(o)+G^{(1)}(o) \frac{x}{1!}+G^{(2)}(o) \frac{x^{2}}{2!}+\ldots
$$

where

$$
\begin{equation*}
G^{(n)}(o)=\left[\frac{d^{n}}{d x^{n}} G(x)\right]_{x=0} . \tag{37}
\end{equation*}
$$

benote $\frac{G^{(n)}(o)}{n!}$ by a_{n}, replace x^{n} by $1 / p^{n}$, and we have

$$
G(x)=1 / I I(p)=a_{0}+a_{1} / p+a_{2} / p^{2}+\ldots
$$

This process of "algebrizing" is formally straightforwatd and always possible. As implied above, however, in many problems much shorter morles of expansion suggest themselves from the form of the function $I I(p)$.

We note bere, in passing, that the necessary and sufficient conditions for the existence of a power series solution is the possibility of the formal expansion of $G(x)$ as a power series in x.

At this point a brief critical estimate of the scope and value of the power series solution may be in order. As stated above, in a certain important class of problems relating to transmission lines, a power series does not exist, though a closely related series in fractional powers of t may often be derived. Consequently the power series solution is of restricterl applicability. Where, however, a power series does exist, in directness and simplicity of derivation it is superior to athy other form of solution. Its chief defect, and a very serious defect incleed, is that except where the power series can be recognized and summed, it is usually practically useless for computation and interpretation except for relatively small values of the time t. This disadsantage is inherent and attaches to all power series solutions. For this reason I think Heaviside overestimated the value of power series as practical or working solutions, and that some of his strictures against orthorlox mathematicians and their solutions may be justly urged against the power series solution. Ile was quite right in insisting that it solution must be capable of either interpretation or computation and quite right in ridiculing those formal
solutions which actully conceal rather than reveal the significonce of the original differential expations of the problem. On the other hand, the following remark of his indicates to me that Heaviside has a cmite exaggerated ielea of the value and fomelamental character of power series in general: "I regret that the result shombt the so complicited. But the only alternatives are other expmatent intinte ereres, or else a elefinite integral which is of mon une until it is evalu"ted, when the result must be the series (135), or an expisalent one." Is a matter of fact the properties of most of the important functious of mathematical physics have been investigated and their values computed hy metherds other than series expansions. I may add that in technieal work the power series solution hats prosed to be of re--tricted utility, while definite integrals, which Heaviside ${ }^{4}$ particularly despised, have proved quite useful.

The Ixpansion Theorem Solution ${ }^{5}$

Wie phts now to the consideration of another extremely important form of stlution. Heavisile gives this solution without proof: we shall therefore merely state the solution and then derive it from the integral equation.
(iven the operational equation

$$
h=1 \quad I I(p)
$$

which has the significance discussed above: i.e., the response of the network to a "unit e.m.f.". The explicit solution may be written as

$$
\begin{equation*}
h=\frac{1}{I I(0)}+\sum_{1}^{n} \frac{e^{p_{k} t}}{p_{k} I^{\prime}\left(p_{k}\right)} \tag{3৬}
\end{equation*}
$$

where $p_{1}, p_{2} \ldots p_{n}$ are the n roots of the equation

$$
I I(p)=0
$$

and

$$
\begin{equation*}
I I^{\prime}\left(p_{k}\right)=\left[\frac{d}{d p} I I(p)\right]_{p=p_{k}} \tag{39}
\end{equation*}
$$

As remarked above, this solution, referred to by him as The Expansion Theorem, was stated by Heaviside withont proof; how he arrived at it will probably always remain a matter of conjecture. Its derivation from the integral equation is, however, a relatively simple matter, though in special cases troublesome questions arise.

[^135]The derivation of the expansion solution from the integral equation

$$
\frac{1}{p H(p)}=\int^{\infty} h(t) e^{-p t} d t
$$

follows immediately from the partial fraction expansion

$$
\begin{equation*}
\bar{p} I \overline{(p)}=\frac{1}{p I I(o)}+\sum_{j=1}^{n} \frac{1}{\left(p-p_{j}\right) p_{j} I^{\prime}\left(p_{j}\right)} \tag{40}
\end{equation*}
$$

where $p_{1}, p_{2} \ldots p_{n}$ are the roots of the equation $I I(p)=0$, and

$$
\begin{equation*}
I^{\prime}\left(p_{j}\right)=\left\{\frac{d}{d p} I I(p)\right\}_{p=p}^{1} \tag{41}
\end{equation*}
$$

Partial fraction expansions of this type are fully discussed in treatises on algebra and the calculus and the conditions for their existence established. Before discussing the restrictions imposed on $\mu(p)$ by this expansion, we shall first, assuming its existence, derive the expansion theorem solution.

By virtue of (40) the integral equation is

$$
\begin{equation*}
\frac{1}{p I I(o)}+\frac{\^{n}}{1}\left(p-p_{j}\right) p_{j} I I^{\prime}\left(p_{j}\right)=\int_{0}^{\infty} h_{(l) e} n^{\prime} d l . \tag{42}
\end{equation*}
$$

The expansion on the left hand side suggests a corresponding expansion on the right hand side: that is, we suppose that

$$
\begin{equation*}
h(t)=h_{o}(t)+h_{1}(t)+h_{2}(t)+\ldots+h_{n}(t) \tag{43}
\end{equation*}
$$

and specify that these component functions shall satisfy the equations

$$
\begin{align*}
\frac{1}{p H(o)} & =\int_{0}^{\infty} h_{o}(t) e^{p t} d t \tag{44}\\
\frac{1}{\left(p-p_{j}\right) p_{j} I^{\prime}\left(p_{j}\right)} & =\int_{0}^{\infty} h_{j}(l) e^{-p t} d t \quad j=1,2 \ldots n . \tag{45}
\end{align*}
$$

It follows at once from (43) and direct addition of equations (44) and (45) that (42) is satisfied and hence is solved provided $h_{o_{0}}, \ldots h_{n}$ can le evaluated from (44) and (45).

Nuw since

$$
\begin{equation*}
\int_{0}^{\infty} e^{\lambda^{\prime} c} c^{p^{\prime}} d t=\frac{1}{p-\lambda} \tag{16}
\end{equation*}
$$

prosided the real part of λ is not prositise (a condition satistied in all network problems), we see at once that equations (12) and (43) are s.tisfied by laking

$$
\begin{align*}
& h_{o}(t)=h_{o}=\frac{1}{H(o)}, \tag{17}\\
& h_{j}(t)=\frac{e^{p_{,}, t}}{p_{j} I I^{\prime}\left(p_{j}\right)}, \quad j=1,2 \ldots n .
\end{align*}
$$

Conserguently from ($1: 3$) and (47) it follows that

$$
\begin{equation*}
h(t)=\frac{1}{J I(0)}+\grave{L}_{1}^{n} \frac{e^{p_{j} t}}{p_{j} I I^{\prime}\left(p_{s}\right)} \tag{15}
\end{equation*}
$$

which establishes the Expansion Theorem Solution.
As implied alnowe, the partial fraction expansion (10), on which the expansion theorem solution depends, imposes certain restrictions on the impedance function $I I(p)$. Among these are that $I I(p)$ must have no zero ront, no repeated roots, and $1 / I I(p)$ must he a proper fraction. In all finite networks these conditions are satistied, or by a slight modification. the operational equation can be reduced to the required form. The case of repeated roots, which may occur where the network involves a unilateral source of energy such as an amplifier, can be dealt with by assuming unequal roots and then letting the roots approach equality as a limit. Without entering upon these questions in detail, however, we can very simply and directly establish the proposition that the expansion theorem gives the solution whenever a solution in terms of normal or characteristic vilrations exists. The proof of this proposition proceeds as follows.

It is known from the elementary theory of linear differential equations that the general solution of the set of differential equations, of which the operational equation is $h=1 / H(p)$, is of the form

$$
h(t)=C_{0}+\sum_{i}^{n} C_{j} e^{p_{j} t}
$$

where p, is the j th root of $I I(p)=o$, and $C_{0}, C_{1} \ldots C_{n}$ are constants of integration which must be so chosen as to satisfy the system of differential equations and the imposerl boundary conditions. The summation is extended over all the roots of $I(p)$ which is supposed not to have a zero root or repeated roots.

Now substitute this known form of solution in the integral equation of the problem and carry out the integration term by term. We get

$$
\begin{equation*}
\frac{1}{\Pi(p)}=C_{o}+p \simeq \frac{C_{j}}{p-p_{j}} . \tag{49}
\end{equation*}
$$

Setting $p=0$, we have at once

$$
\begin{equation*}
C_{0}=1 H(o) . \tag{50}
\end{equation*}
$$

To determine C_{j} let $p=p_{j}+q$ where q is a small quantity uhtimately to be set equal to zero, and write the equation as

$$
\begin{equation*}
C_{0} I I(p)+\searrow \frac{p I I(p)}{p-p_{j}} C_{j}=1 \tag{51}
\end{equation*}
$$

If now $p=p_{j}+q$ and q approaches zero, this becomes in the limit

$$
\begin{equation*}
p_{j} I^{\prime}\left(p_{j}\right) C_{j}=1 \tag{52}
\end{equation*}
$$

or
whence

$$
\begin{align*}
& C_{j}=\frac{1}{p_{j} \Pi \Pi^{\prime}\left(p_{j}\right)}, \tag{53}\\
& h(t)=\frac{1}{\Pi I(o)}+\left\lfloor\frac{e^{p_{j}, t}}{p_{j} I^{\prime}\left(p_{j}\right)}\right. \tag{54}
\end{align*}
$$

which is the Expansion Theorem Solution.
We shall not attempt to discuss here cases where the expansion solution breaks down though such cases exist. In every such case, however, the breaklown is due to the failure of the impedance function $H(p)$ to satisfy the conditions necessary for the partial fraction expansion (40), and correlatively the non-existence of a solution in normal vilrations. Furthermore, it is usually possible by simple modification to deduce a modified expansion solution. It may be added here, that while the proof given above is also limited implicitly to finite networks, the expansion solution is valid in most transmission line problems.

Let us now illustrate how the expansion solution works by applying it to a few simple examples. Take first the case considered in the preceding chapter in connection with the power series solution. Required the charge Q on a condenser C in series with an inductance L and resistance R in response to a "unit e.m.f." The operational equation is
or

$$
\begin{aligned}
& Q=\frac{1}{L p^{2}+R p+1, C} \\
& Q=\frac{1}{L} \cdot \frac{1}{p^{2}+2 \alpha p+\omega^{2}}
\end{aligned}
$$

where is $R 2 L$, and $\omega^{2}=1$ L.C.
The roots of the equation $H(p)-0$ are the rexots of the erpustion

$$
p^{2}+2 x+p+\omega^{2} \quad 0
$$

whence

$$
\begin{aligned}
& p_{1}=-\alpha+1 \alpha^{2}-\omega^{2}=-\alpha+\beta \\
& p_{2}=-\alpha-1 \alpha^{\prime \prime}-\omega^{2}=-\alpha x-\beta .
\end{aligned}
$$

Alon $I^{\prime}(p)=2 L(p+\alpha)$, so that

$$
\begin{aligned}
& I I^{\prime}\left(p_{1}\right)=23 L \\
& I I^{\prime}\left(p_{2}\right)=-23 L
\end{aligned}
$$

and

$$
1 H(o)=1 \quad L \omega^{2}=C .
$$

Inserting these expressions in the Expansion Theorem Solution (B母), we set

$$
Q=C-\frac{e^{-a t}}{2 \beta L}\left(\frac{e^{\beta t}}{\alpha-\beta}-\frac{e^{-\beta t}}{\alpha+\beta}\right)
$$

It is now easy to verify the fact that this solution satisfies the differcontial equations and the boundary condition $Q=0$ and $d Q Q^{\prime} d t=0$ at time $\ell=0$.

If $\omega>\alpha, \beta$ is a pure imaginary

$$
\beta=i \omega \^{\prime} 1-\left(\alpha^{\prime} \omega\right)^{2}=i \omega^{\prime}
$$

and

$$
Q=C-\frac{e^{-\alpha t} \omega^{\prime} \cos \omega^{\prime} t+\alpha \sin \omega^{\prime} t}{\omega^{\prime} L} \frac{\alpha^{2}+\omega^{\prime 2}}{}
$$

In connection with this prohlem we note two advantages of the expansion solution, as compared with the power series solution: (1) it is much simpler to derise from the operational equation, and (2) its numerical computation is enormously easier. A table of exponential and trigometric functions enables us to evaluate Q for any value of l almost at once whereas in the case of the power series solution the labor of computation for large values of t is very great. A third and very important advantage of the expansion solution in this particular problem is that without detailed computation we can deduce by mere inspection the general character of the function and the effect of the circuit parameters on its form: an adrantage which never attaches to the power series solution.

This last property of the particular solution above is extremely important. The ideal form of solution, particularly in technical
problems, is one which permits us to infer the general character and properties of the function and the effect of the circuit constants on its form, without detailed solutions. A solution which possesses these properties, even if its exact computation is not possible without prohibitive labor, is far superior to a solution which, while completely computable, tells us nothing without detailed computation. It is for this reason that some of the derived forms of solution, discussel later, are of such importance. In fact a solution which requires detailed computation before it yields the information implied in it is merely equivalent to an experimentally determined solution.

Unfortunately the adrantages attaching to the expansion solution of the specific problem just discussed, do not, in general, characterize the expansion solution. The following disadvantages should be noted. First, the location of the roots of the impedance function $H(p)$ is practically impossible in the case of arbitrary networks of more than a few degrees of freedom. In the second place, when the mumber of degrees of freedom is large it is not only impossible to deduce the significance of the solution by inspection, but the computation becomes extremely laborious. In such cases, the practical value of the expansion solution depends, just as in the power series solution, on the possibility of recognizing and summing the expansion. This will be clear in the case of transmission lines, where the roots of $I(p)$ are infinite is number and the direct computation of the expansion solution (except in the case of the non-inductive cable) is suite imposisible.

CHAPTER IV

Some General Formlias and Tieorems for ties Solltion of Operational. Equations

We have seen that the operational equation

$$
h=1 / I I(p)
$$

is the symbolic or short-hand equivalent of the integral equation

$$
\frac{1}{p I I(p)}=\int_{0}^{\infty} h(t) e^{-p t} d t
$$

and from the later we have deduced two very important forms of the Heavisife solution. la recognizing the expivalence of these wo equations we have a very great advantage and are able in fact, to hase the Operational Calculus on derluctive instead of inductive
reasoning. In this chapter we shall employ this expuivalence to establish certain gemeral formulas and theorems for the solution of operational equations. That is to sty, we shall make use of the principles that (1) amy methor applicable to the solution of the integral erfuation supplies us with a corresponding methos for the solution of the operational equation, and (2) a solution of any specilic integral equ.ttion gives at once the solution of the corresponding operational equation. Wie turn therefore to at brief discussion of the appropritte methexls for solving the integral equation.

It may be setid at the outset, that the solution of the integral expastion, like the evaluation of integrals, is a matter of considerable art and experience; in other worls there is not, in general, a straightforward procelure eorresponding to the process of differentiation.

Win the other hamel, is a purely mathematical question, it is always possible to invert the integral equation and write down $h(t)$ as an explicit function in the form of an infinte integral. For example it m,y le shown from the Fourier Integral that

$$
\left.h(t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha(\omega)}{\omega} \sin \right\rvert\, \omega \cdot d \omega
$$

where $a(\omega)$ is clelined by

$$
\frac{1}{H(i \omega)}=\alpha(\omega)+i \beta(\omega) .
$$

Later on we shall briefly consider the Fourier Integral; for the present the preceling formula will not be considered further. In certain problems it is of value: for the explicit derivation of $h(t)$, however, it is usually too complicated to be of any use except in the hands of professiomal mathematicians. As a matter of fact, a direct attack oll this formula would be equivalent to abandoning the unique simplicity and advantages of the whole Operational Calculus.

It has been noted abose that any solution of the integral efuation supplies a solution of the corresponding operational equation. This principle enables us to take advantage of the fact that a very large number of infinite integrals of the type

$$
\int_{0}^{\infty} f(t) e^{-\phi t} d t
$$

have been evaluaterl. The evaluation of every infinite integral of this type supplies us, therefore, with the solution of an operutional cquation.

Of course, not all the operational equations so solvable have physical significance. Many, however, do. Below is a list of infinite integrals
with their known solutions, accompanied by the corresponding operational equation and its explicit solution. All of these solutions are directly applicable to important technical problems. It may be remarked in passing that the infinite integrals have for the most part been evaluated by advanced mathematical methods which need not concern us here.

Table of Infinite Integrals, the Corresponding Operational Equations, and Their Explicit Solutions
(a) $\int_{0}^{\infty} e^{-\Delta t} e^{-\lambda t} d t=\frac{1}{p+\lambda}$,

$$
h=\frac{p}{p+\lambda}=e^{-\lambda t} .
$$

(1)) $\int_{0}^{\infty} e^{-p t} \frac{t^{n}}{n!} d t=1 / p^{n+1}$,
$h=\frac{1}{p^{n}}=l^{n} / n!$.
(c) $\int_{0}^{\infty} e^{-p t} \frac{1}{\sqrt{\pi t}} d t=\frac{1}{\sqrt{p}}$,
$h=\sqrt{p}=1 / \sqrt{\pi}$.
(d) $\int_{0}^{\infty} e^{n t} \frac{(2 t)^{n}}{1.3 .5 \ldots(2 n-1)} \frac{d t}{V^{\prime} \pi t}=\frac{1}{p^{n} \sqrt{p}}$,
$h=\frac{\sqrt{p}}{p^{n}}=\frac{(2 t)^{n}}{1.3 .5 \ldots(2 n-1)} \frac{1}{\sqrt{ } \pi i}$.
(e) $\int_{0}^{\infty} e^{-p t^{t}} n!^{-\lambda t} d t=\frac{1}{(p+\lambda)^{n+1}}$,
$h=\begin{gathered}p \\ (p+\lambda)^{n+1}\end{gathered}=\frac{l^{n}}{n!} e^{-\lambda t}$.

$h=p e^{-2 \sqrt{\lambda \rho}}=\sqrt{\frac{\lambda}{\pi}} \frac{-\lambda / t}{t \sqrt{l}}$.
(s) $\int_{0}^{\infty} e^{-p t} e^{-\lambda / t} \sqrt{ } \pi t l l=\frac{e^{-2 i \lambda_{p}}}{\sqrt{ } p}$,
$h=\sqrt{p} e^{2 \sqrt{\lambda p}}=e^{e^{-\lambda / t}} \sqrt{\prime \pi i}$.
(h) $\int_{0}^{\infty} e^{p t} \sin \lambda t d t=\frac{\lambda}{p^{2}+\lambda^{2}}$,

$$
h=\frac{p \lambda}{p^{2}+\lambda^{2}}=\sin \lambda t .
$$

(i) $\int_{0}^{\infty} e^{-p t} \cos \lambda t d t=\frac{p}{p^{2}+\lambda^{2}}$
$h=\frac{p^{2}}{p^{2}+\lambda^{2}}=\cos \lambda t$.
(j) $\int_{0}^{\infty} e^{-\phi t} e^{-\mu t} \cos \lambda t d t=\frac{p+\mu}{(p+\mu)^{2}+\lambda^{2}}$,
$h=\frac{p^{2}+\mu p}{(p+\mu)^{2}+\lambda^{2}}=e^{-\mu t} \cos \lambda l$.
(k) $\int_{0}^{\infty} e^{-\phi t} e^{-\mu t} \sin \lambda t d t=\frac{\lambda}{(\rho+\mu)^{2}+\lambda^{2}}$,
$h=\frac{p \lambda}{(p+\mu)^{2}+\lambda^{2}}=e^{-\mu t} \sin \lambda t$.
(1) $\int_{0}^{\infty} e^{-p t} J_{o}(\lambda t) d t=\frac{1}{\sqrt{\prime} p^{2}+\lambda^{2}}$,

$$
h=\frac{p}{\sqrt{p^{2}+\lambda^{2}}}=J_{o}(\lambda t) .
$$

(m) $\int_{\lambda}^{\infty} e^{-p t} J_{0}\left(\sqrt{t^{2}-\lambda^{2}}\right) d t=\frac{e^{-\lambda} \sqrt{\prime}^{\prime} p^{2}+1}{\sqrt{p^{2}+1}}$,

$$
\begin{aligned}
h=\frac{p}{\sqrt{p^{2}+1}} e^{-\lambda \sqrt{p^{2}+1}} & =0 \text { for } t<\lambda \\
& =J_{0}\left(\sqrt{\left.l^{2}-\lambda^{2}\right)} \text { for } t \geq \lambda\right.
\end{aligned}
$$

(n) $\int_{0}^{\infty} e^{-p t} J_{n}(\lambda t) d t=\frac{1}{r}\left(\frac{r-p}{\lambda}\right)^{n}, r^{2}=p^{2}+\lambda^{2}$,
$h=\frac{p}{r}\left(\frac{r-p}{\lambda}\right)^{n}=J_{n}(\lambda t)$.
(p) $\int_{0}^{\infty} e^{-p t} e^{\lambda t} I_{0}(\lambda t) d t=\frac{1}{\sqrt{p^{2}+2 \lambda p}}$,

$$
h=\frac{1}{\sqrt{1+2 \lambda / p}}=e^{-\lambda t} I_{o}(\lambda b) .
$$

In formulas (1), (m), (n), $J_{n}(x)$ denotes the Bessel function of order n and argument x. In formula (p), $I_{o}(x)$ denotes the Bessel function $J_{0}(i x)$ where $i=\sqrt{-1}$.

This list might be greatly extended. As it is, we are in possession of a set of solutions of operational equations which occur in important technical problems and which will be employed later.
The foregoing emphasize the practical and theoretical importance of recognizing the cquivalence of the integral and operational equations. With this equivalence in mind, the solution of an operational equation is often reduced to a mere reference to a table of infinite integrals. Heaviside did not recognize this equivalence. As a consequence many of his solutions of transmission line problems are extremely laborious and involved and in the end unsatisfactory becallse expressed in involvel power series.

Not all the infinite integrals corresponding to the operational equations of physical problems have been evaluated or can be recognized without transformation. This statement corresponds exactly with the fact that a table of integrals is not always sufficient but must be supplemented by general methods of integration. We turn, therefore, to stating and discussing some general Theorems applicable (o) the solution of Operational Equations.

In the derivation of the operational theorems, which constitute the general rukes of the Operational Calculus, the following proposition, due to Borel and known as Borel's theorem, will be frequently employed.*

If the functions $f(t), f_{1}(t)$, and $f_{2}(t)$ are defined by the integral equations

$$
\begin{aligned}
& F(p)=\int_{0} f(t) e^{-\Delta t} d t \\
& F_{1}(p)=\int_{0}^{\infty} f_{1}(t) e^{-p t} d t \\
& F_{2}(p)=\int_{0}^{\infty} f_{2}(t) e^{-p t} d t
\end{aligned}
$$

and if the functions F, F_{1} and F_{2} satisfy the relation

$$
F(p)=F_{1}(p) \cdot F_{2}(p)
$$

[^136]then
\[

$$
\begin{aligned}
f(t) & =\int_{0}^{t} f_{1}(\tau) f_{3}(t-\tau) d \tau \\
& =\int_{0}^{t} f_{2}(\tau) f_{1}(t-r) d r .
\end{aligned}
$$
\]

The operational the rems will now be statel and briefly proved from the integral equation identits:

Theorem I

If in the Operational Equation

$$
h=1 \quad / /(p)
$$

the generalized imperlance function $H(p)$ can be expanded in a sum of terms, thus

$$
{ }_{H(p)}^{1}=\frac{1}{H_{1}(p)}+\frac{1}{I_{2}(p)}+\cdots+\frac{1}{I_{n}(p)},
$$

and if the auxiliary operational equations

$$
\begin{aligned}
& h_{1}=\frac{1}{\Pi_{1}(p)} \\
& h_{2}=\frac{1}{H_{2}(p)}
\end{aligned}
$$

can be solved, then

$$
h=h_{1}+h_{2}+\ldots+h_{n} .
$$

This thenrem is 100 olnvious in reguire detailed proof: in fact it is self evident. The power series and expansion theorem solutions are examples of its application. In general, however, the appropriate form of expansion of $1 I I(p)$ will depend on the particular problem in hand. The theorem, as it stands is a formal statement of the fact that solutions can often be obtained by an appropriate expansion whereas the equation cannot be solved as it stands.

Theorem II
If $h=h(t)$ and $g=g(t)$ are defined by the operational equalions

$$
\begin{aligned}
& h=1: I /(p) \\
& g=1 / p I I(p)
\end{aligned}
$$

then

$$
g(t)=\int_{0} h(\tau) d \tau
$$

To prove this theorem we start with the integral equations

$$
\begin{aligned}
& \frac{1}{p I I(p)}=\int_{0}^{\infty} h(t) e^{-p t} d t \\
& \frac{1}{p^{2} I I(p)}=\int_{0}^{\infty} g(t) e^{-p t} d t .
\end{aligned}
$$

The second of these is in form for an immediate application of Borel's theorem since

$$
\frac{1}{p^{2} I J(p)}=\frac{1}{p} \cdot \frac{1}{p H(p)}
$$

The functions f_{1} and f_{2} of Borel's theorem then satisfy the equations

$$
\begin{aligned}
\frac{1}{p} & =\int_{0}^{\infty} f_{1}(t) e^{-p t} d t, \\
1 & =\int_{0}^{\infty} f_{2}(t) e^{-p t} d t .
\end{aligned}
$$

It follows at once that

$$
\begin{aligned}
& f_{1}(t)=1 \\
& f_{2}(t)=h(t)
\end{aligned}
$$

whence by Borel's theorem

$$
g(t)=\int_{0}^{t} h(\tau) d \tau
$$

Theorem III
If $h=h(t)$ and $g=g(t)$ are defined by the operational equations

$$
\begin{aligned}
& h=1^{\prime} I I(p) \\
& g=p^{\prime} I I(p)
\end{aligned}
$$

then

$$
g(t)=\frac{d}{d t} h(t)
$$

provided $h(o)=0$.
The integral equations of the problem are

$$
\begin{aligned}
\frac{1}{p H(p)} & =\int_{0}^{\infty} h(t) e^{-p t} d t \\
1 & =\int_{0}^{\infty} g(t) e^{-p t} d t
\end{aligned}
$$

Integrating the first of these hy parts we hate,

$$
\frac{1}{p / I(p)}=\frac{1}{p} h(0)+\int_{p} \int_{0}^{\infty} h^{\prime}(t) e e^{\prime} d t
$$

Where $h^{\prime}(t)-d$ ' $d t h(t)$.
If $h(0)=o$, we have at once

$$
\frac{1}{H(p)}=\int_{0}^{\infty} h^{\prime}(t) e^{p t} d t .
$$

Comparison with the integral equation for $g(t)$ shows at once that $g(t)=h^{\prime}(t)$, since the integral equation determines the function uniquely.

Theorem- 11 and 111 establish the characteristic Heaviside Operations of replacing $I^{\prime} p$ by $\int_{0}^{t} d t$ and p by $d^{\prime} d t$.

Theorem 11°
If in the operational equation

$$
h=1 \cdot I I(p)
$$

the generalized impedance function can be factored in the form

$$
I I(p)=H_{1}(p) \cdot I_{2}(p)
$$

and if the auxiliary operational equations

$$
\begin{aligned}
& h_{1}=1^{\prime} I I_{1}(p) \\
& h_{2}=1^{\prime} I I_{2}(p)
\end{aligned}
$$

define the auxiliary zariables h_{1} and h_{2}, then

$$
\begin{aligned}
h_{1}(t) & =\frac{d}{d t_{0}} \int_{0}^{t} h_{1}(\tau) h_{2}(t-\tau) d \tau \\
& =\frac{d}{d t_{0}} \int_{0}^{l} h_{2}(\tau) h_{1}(t-\tau) d \tau
\end{aligned}
$$

This theorem is immediately deducible from Borel's theorem and theorems II and III, as follows.

The integral equations are

$$
\begin{gathered}
\frac{1}{p I I(p)}=p \frac{1}{p I I_{2}(p)} \cdot \frac{I}{p I I_{2}(p)}=\int_{0}^{\infty} h(t) e e^{N t} d t \\
\frac{1}{p I_{1}(p)}=\int_{0}^{\infty} h_{1}(t) e^{-p t} d t \\
\frac{1}{p I I_{2}(p)}=\int_{0}^{\infty} h_{2}(t) e^{-p t} d t .
\end{gathered}
$$

Now define an auxiliary function $g(t)$ by the operational equation

$$
g=\frac{1}{p I I(p)}
$$

Then

$$
\frac{1}{p I_{1}(p)} \cdot \frac{1}{p I_{2}(p)}=\int_{0}^{\infty} g(t) e^{-p t} d t
$$

and by Borel's theorem

$$
\begin{aligned}
g(t) & =\int_{0}^{t} h_{1}(\tau) h_{2}(t-\tau) d \tau \\
& =\int_{0}^{t} h_{2}(\tau) h_{1}(t-\tau) d \tau
\end{aligned}
$$

From this equation it follows that $g(o)=0$, and hence comparing the operational equations for h and g, we have by aid of Theorem III

$$
h(t)=\frac{d}{d t} g(t)
$$

and hence

$$
\begin{aligned}
h(t) & =\frac{d}{d t} \int_{0}^{t} h_{1}(\tau) h_{2}(t-\tau) d \tau \\
& =\frac{d}{d t} \int_{0}^{t} h_{2}(\tau) h_{1}(t-\tau) d \tau
\end{aligned}
$$

This theorem is extremely important, although not stated or employed by Heaviside himself. We shall make use of it in establishing two important general theorems and shall have frequent occasion to employ it in specific problems occurring in connection with the subsequent discussion of transmission theory.

Theorem I

If $h=h(t)$ and $g=g(t)$ are defined by the operational cquations

$$
\begin{aligned}
& h=\frac{1}{\mu(p)} \\
& g=\frac{1}{\Pi(p+\lambda)}
\end{aligned}
$$

where λ is a positive real parameter, then

$$
g(t)=\left(1+\lambda \int_{0}^{t} d t\right) e^{-\lambda t h(t)}
$$

Io prose this theorem we -tart with the integral eqtations

$$
\begin{gathered}
\frac{1}{p I(p)}-\int_{0}^{\infty} h(t) e D^{N} d t \\
\frac{1}{p \|(p+\lambda)}-\int_{0}^{\infty} g(t) e^{D} d t .
\end{gathered}
$$

In the first of there equations replate the symbol p by $q+\lambda$: we set

$$
\frac{1}{y+\lambda \cdot \|(y+\lambda)}=\int_{0}^{\infty} h_{(t) e^{-\lambda t_{c}}} \quad v_{t} d t
$$

and then to preserve our original motation replace the symbol q by p. whence

$$
\begin{gather*}
1 \tag{a}\\
(p+\lambda) / l(p+\lambda)
\end{gather*}=\int_{0}^{\infty} h_{1}(1) e^{-\lambda_{l}} e^{-p_{1} l!}
$$

The integral equation in $g(t)$ can be written as

$$
\begin{equation*}
\left(1+\frac{\lambda}{p}\right)_{(p+\lambda \cdot \lambda)}^{1} \frac{1}{(p+\lambda)}=\int_{0} g(t) c^{-p t} d t . \tag{b}
\end{equation*}
$$

Comparing equations (a) and (b) it follows at once from theorems 1 and II that

$$
g(l)=\left(1+\lambda \int_{0}^{t} d l\right) / s\left(l, e^{\lambda t} .\right.
$$

From the foregoing, the following auxiliary theorem is immediately deducible.

Theorem I'a

If $h=h(t)$ and $g=g(t)$ are defined by the operational equations

$$
\begin{aligned}
& h=\begin{array}{c}
1 \\
H(p)
\end{array} \\
& g=\begin{array}{c}
p \\
(p+\lambda) / I(p+\lambda)
\end{array}
\end{aligned}
$$

then

$$
\xi(t)=h(t) e^{-\lambda t} .
$$

The proof of this theorem will be left as an exercise to the reader.

Theorem V'l
If $h=h(t)$ and $g=g(l)$ are defined by the operational equations

$$
\begin{aligned}
& h=1 ; M(p) \\
& g=1 M(\lambda p)
\end{aligned}
$$

where λ is a positive real parameter, then

$$
g(t)=h(t, \lambda) .
$$

IVe start with the integral equations

$$
\begin{aligned}
\frac{1}{p \|(p)} & =\int_{0}^{\infty} h(l) e^{-p l} d l \\
\frac{1}{p} I(\lambda p) & =\int_{0}^{\infty} g(l) e^{-p t} d l
\end{aligned}
$$

and in the first of these equations we replace p by λq and t by τ / λ, whence it becomes

$$
\frac{1}{q H(\lambda q)}=\int_{0}^{\infty} h\left(\frac{\tau}{\lambda}\right) e^{-q \tau} d \tau
$$

Now replacing the symbols q and τ by p and t respectively, we have

$$
\frac{1}{p M(\lambda p)}=\int_{0}^{\infty} h(t \lambda) e^{-p t} / l t
$$

whence by comparison with the integral equation in $g(l)$ it follows at once that

$$
g(t)=h\left(t^{\prime} \lambda\right) .
$$

This theorem is often useful in making a convenient change in the time scale and eliminating superfluous constants.

Theorem VII

If $h=h(t)$ and $g=g(l)$ are defined by the operational equations

$$
\begin{aligned}
& h=\frac{1}{\Pi(p)} \\
& g=e^{\lambda p} \\
& \Pi(p)
\end{aligned}
$$

where λ is a positive real quantity, then

$$
\begin{aligned}
g(t) & =o \text { for } t<\lambda \\
& =h(l-\lambda) \text { for } t \geq \lambda .
\end{aligned}
$$

This is a very important theorem in eonnection with transmisaion line problems where retardation, the to finite velocity of propogation, excurs. Its proof proceeds ds follows:

If the auxitiary function $k=k(t)$ is defined by the operational equ.tion

$$
k=10
$$

then hy Theorem IV,

$$
\begin{equation*}
g(t)=\frac{d}{d l l_{0}} \int_{0}^{t} k(\tau) h(t-\tau d \tau . \tag{.1}
\end{equation*}
$$

Now, corresponding to the uperational equation $k=e^{-\lambda \rho}$ we have the integral equation

$$
e_{p}^{\lambda p}=\int_{0}^{\infty} k(t) e^{x} d t .
$$

The solution of this integral equation, which is easily veritied by direct substitution in the infinite integral, is

$$
\begin{aligned}
k(t) & =0 \text { for } t<\lambda \\
& =1 \text { for } t \geq \lambda .
\end{aligned}
$$

Hence equation (a) becomes

$$
\begin{aligned}
g(t) & =o \text { for } t<\lambda \\
& =\frac{d}{d t \cdot} \int_{\lambda}^{t} h(t-\tau) d \tau \text { for } t \geq \lambda \\
& =h(t-\lambda) \text { for } t \geq \lambda .
\end{aligned}
$$

Theorem IV, employed in the preceding pronf, as stated above, is extremely important and we shall have frequent occasion to employ it in specilic problems. We shall now apply it to deduce an important theorem which extends the operational calculus to arbitrary impressed forces, whereas heretofore the operational equation $h=1 \quad I I(p)$ applied only to the case of a "unit e.m.f." impressed on the system.

It will be recalled from a previous chapter that if $x(t)$ denotes the response of a network to an arbitrary force $f(t)$, impressed at time $t=0$, and if $h(t)$ denotes the corresponding response to a "unit e.m.f.," then

$$
\begin{equation*}
x(t)=\frac{d}{d t} \int_{0}^{t} h(\tau) f(t-\tau) d \tau \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p I I(p)}=\int_{0}^{\infty} h(t) e^{-\phi} d t . \tag{30}
\end{equation*}
$$

Now $f(t)$ may be of such form that the infinite integral

$$
\int_{u}^{\infty} f(t) e^{-p t} d t
$$

can be evaluated and has the value $F(p)^{\prime} p$: thus

$$
\begin{equation*}
\int_{0}^{\infty} f(t) e^{-p t} d t=\frac{1}{p} F(p) . \tag{5}
\end{equation*}
$$

This is possible, of course, for many important types of applied forces, including the sinusoidal.

It follows at once from Theorem IV that $x(t)$ satisfies and is determined by the integral equation

$$
\begin{equation*}
\frac{1}{p} \frac{F(p)}{\bar{H}(p)}=\int_{0}^{\infty} x(t) e^{-p t} d t . \tag{5ib}
\end{equation*}
$$

We have thus succeeded, by virtue of Theorem IV in expressing the response of a network to an arbitrary e.m.f. impressed at time $t=0$, by an integral equation of the same form as that expressing the response to a "unit e.m.f." That is to say we have, at least formally, extended the operational calculus explicitly to the case of arbitrary impressed forces.

We now translate the foregoing into the corresponding Operational Theorem.

Theorem VIII

If the operational equation

$$
h=1, I I(p)
$$

expresses the response of a netzork to a "unit e.m.f." and if an arbitrary e.m.f. E impressed at time $t=0$, is expressible by the operational equation

$$
E=\mathfrak{V}^{\prime}(p)
$$

or the infinite integral.

$$
\int_{0}^{\infty} E(t) e^{-p t} d t=\frac{I^{\prime}(p)}{p}
$$

then the response x of the network to the arbitrary force is given by the operational equation

$$
x=\frac{I^{\prime}(p)}{I I(p)}
$$

and $x(t)$ is determined by the integral equation

$$
\frac{1}{p} \frac{V^{r}(p)}{I I(p)}=\int_{0}^{\infty} x(l) e^{-p t} d t
$$

Iheorem 1.

If the operational squation

$$
h=1 \quad l /(p)
$$

is reducible to the form

$$
h=\frac{F(p)}{1+\lambda K(p)}
$$

where λ is a real parameter, and if the auxiliary functions $f=f(t)$ and $k=k(t)$ are defined by the anxiliary opcrational equations

$$
\begin{aligned}
& f=F(p) \\
& k=K(p)
\end{aligned}
$$

then $h(t)$ is determined by the Poissan Integral equation

$$
h(t)=f(t)-\lambda \int_{0}^{t} h(\tau) k(l-\tau) d \tau .
$$

This theorem is of considerable practical importance in connection with the approximate and numerical solution of operational equations when the operational equation and the equivalent Laplace integral equation prove refractory. In such cases, as will he shown later, the numerical solution of the Poissan integral equations can often be rapidly and accurately effected, and in many cases the qualitative properties of $h(t)$ can be deduced from it without detailed numerical solution.

The proof of this theorem proceeds as follow: :
By virtue of the relation $h=1 \quad J(p)$ the operational equation

$$
h=\frac{F(p)}{1+\lambda K(p)}
$$

can be written as

$$
\begin{aligned}
& h+\lambda \frac{K(p)}{I}(p)=F(p) \\
& h=F(p)-\lambda \frac{K(p)}{H}(p)
\end{aligned}
$$

A direct application of Borel's theorem or Theorem IV gives at once the explicit equivalent

$$
h(t)=f(t)-\lambda \int_{0}^{t} h(\tau) k(t-\tau) d \tau
$$

The preceding theorems, together with the power series and expansion theorem solutions formulate the most important rules of the operational calculus, and are constantly employed in the solution of the electrotechnical problems. On the other hand, the table of infinite integrals furnishes the solution of a set of operational equalions, which are of the greatest usefulness in the systematic study of propagation phenomena in transmission systems which will engage our attention. Before taking up this study, however, we shall first solve a few specific problems which will serse as an introduction to asymptotic and divergent solutions involving Heaviside's so-called "fractional differentiation."

Problem A: Current Entering the Non-Inductive Cable

The non-inductive cable is a smooth line with distributed resistance R and capacity C per unit length; for the present we neglect inductance and leakage. A consideration of cable problems leads to some of the most interesting questions relating to operational methods, particularly to questions regarding divergent expansions. It would seem best to allow specific problems to serve as an introduction to thesc general questions.

The differential equations of the cable are

$$
\begin{align*}
R I & =-\frac{\partial}{\partial x} V \\
C_{d t}^{d} V & =-\frac{\partial}{\partial x} I \tag{57}
\end{align*}
$$

where x is the distance, measured along the cable from any fixed point, I is the current at point x, and V the corresponding potential.

Replacing $d d t$ ly the operator p, we have

$$
\begin{align*}
R I & =-\frac{\partial}{\partial x} I \\
p C I & =-\frac{\partial}{\partial x} I \tag{5~S}
\end{align*}
$$

I:liminating, successively, I and I from these equations, we get

$$
p R C I=\frac{\partial^{2}}{\partial x^{2}} I
$$

and

$$
p R C V=\frac{\partial^{2}}{\partial x^{2}} V
$$

These equations hase the general solations

$$
\begin{align*}
& I=V_{1} e^{-\gamma x}+V_{3} e^{\gamma x} \tag{59}\\
& I=\left.\right|_{K} ^{\mid p C^{\prime}}\left|I_{1 e^{-\gamma x}}-V_{3} e^{\gamma x}\right| \tag{array}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=I^{\prime} p \overline{R C} . \tag{i1l}
\end{equation*}
$$

The term in $e^{-\gamma x}$ represents the direct wave and the term in $e^{\gamma x}$ the reflected wase. V_{1} and V_{2} are comstanss which mat be so chanen as to stitisfy the impoed boumbary conditions at the terminals of the cable.

For the present we shall dasume that the line is infinitely fong so that the reflected wate is absent. We shatl also assume that a voltage E is impresser elirectly on the cable at $x=0$: we have then,

$$
\begin{align*}
& I=E e^{-x}, N C \hat{R}=E e^{-\backslash a \rho} \tag{1i2}\\
& I=\sqrt{\frac{D C}{R}} E e^{-x} \sqrt{\overline{F C} \bar{R}}=\sqrt{\frac{\overline{P C}}{R} E e^{-\sqrt{ } a \rho}} \tag{63}
\end{align*}
$$

where α denotes $x^{2} R C$.
To convert these to operational equations let us suppose that E is a "unit e.m.f." (zero before, unity after time $t=0$). We have then, in operational notation

$$
\begin{align*}
& V=e^{-\sqrt{a p}} \tag{64}\\
& I=\sqrt{\frac{\overline{p C}}{R} e^{-\sqrt{a D}} .} \tag{65}
\end{align*}
$$

Now suppose that $x=0$ so that $\alpha=0$, in other words consider a point at the cable terminals. Then

$$
\begin{align*}
& \Gamma=1 \\
& I=\sqrt{\frac{p C}{R}} . \tag{6ti}
\end{align*}
$$

The first of these equations meaths that V^{\prime} is simply the impressed voltage, zero before, unity after time $l=0$, as of course, it should be from physical considerations.

Corresponding to the operational equation

$$
\begin{equation*}
I=\sqrt{\frac{p C}{R}} . \tag{66}
\end{equation*}
$$

we have the integral equation

$$
\begin{equation*}
\sqrt{\bar{C}} \frac{1}{R} \frac{\sqrt{ } p}{}=\int_{u}^{\infty} I(t) e^{-p t} d t \tag{67}
\end{equation*}
$$

The solution of this is known (see formula (c) of the precerling table of integrals) : it is

$$
I=\sqrt{C} \begin{align*}
& C \tag{15S}\\
& R \sqrt{\pi t}
\end{align*}=\sqrt{\frac{C}{\pi R t}} .
$$

Heasiside arrised at this solution from considering the known solution of the same probleme in the theory of heat flow. He therefore inferred that the operational equation

$$
I=\sqrt{ } p
$$

has the explicit solution

$$
I=1 \quad \backslash / \pi t
$$

This is correct; we, however, have derived it directly from the integral equation of the problent and the known integral

$$
\begin{equation*}
\frac{1}{\sqrt{\prime} p}=\int_{0}^{\infty} c^{-n t} \frac{d t}{\sqrt{\pi t}} \tag{69}
\end{equation*}
$$

We then see from the foregoing that, if a "unit e.m.f." is impressed on the cable terminals, the current entering the cable is intially infinite and dies away in accordance with the formula $\sqrt{C / \pi R t}$. The case is, of course, idealized and the infinite initial value of the current results from our ignoring the distributed inductance of the cable, which, no matter how small, keeps the initial current finite, ats we shall see later.

Now let us go a step farther; suppose that in addition to distributed resistance R and capacity C, the cable also has distributed leakage G per unit lengeth. The differential equations are now

$$
\begin{align*}
& R I=-\frac{\partial}{\partial x} I \\
& (C P+G) I=-\frac{\partial}{\partial x} I . \tag{70}
\end{align*}
$$

Consequently it follows that in the operational equation for the current entering the cable we need only replace $C P$ by $C p+G$. Therefore, when leakage is included, equation (6it) is to be replaced by

$$
\begin{equation*}
I=\sqrt{\frac{p C+G}{R}}=\sqrt{\frac{C}{R}} \sqrt{ } \sqrt{p+\lambda} \tag{7}
\end{equation*}
$$

where $\lambda=G^{\prime} C$.

The comerepmoting integral "ynution is, of course.

$$
\sqrt{C} \quad \begin{array}{ll}
C_{R} & p+\lambda \tag{1}\\
R & p
\end{array}=\int_{0}^{r} I(t) e \text { ptute. }
$$

We shall give (wo solutions of this problem; lirst the solution of the integral egtution, and seomed the Upical Heaviside solution directly from the operational equation.

E:puation (た) mox be written as

$$
\int_{R}^{C}(1+\lambda p) .
$$

Now :uppose that $J(f)$ is the solution of the equation

$$
\begin{equation*}
\frac{1}{1 p+\lambda}=\int_{0}^{\infty} J(I) e e^{m} d l \tag{7}
\end{equation*}
$$

it follows at once from Theorems (1) and (II) of the preceding chapter that

$$
\begin{equation*}
I(t)=\sqrt{\frac{C}{R}}\left(1+\lambda \int_{0}^{t} d l\right) J(t) . \tag{75}
\end{equation*}
$$

Also from formula (c) of the table of integrals and Theorem (Va) the solution of (i.4) is

$$
\begin{equation*}
J(t)=\frac{e^{-\lambda t}}{\sqrt{\pi l}} \tag{76}
\end{equation*}
$$

whence

$$
\begin{equation*}
I(t)=\sqrt{\frac{C}{\pi R}}\left\{\frac{e^{-\lambda t}}{\sqrt{l}}+\lambda \int_{0}^{l} \frac{e^{-\lambda t}}{\sqrt{l} l} d t^{\prime}\right\} . \tag{77}
\end{equation*}
$$

The integral appearing in (7i) can mot be evaluated in fimite terms; it is easily expresoible as a series, howeser, by repeated integration be parts. Thus

$$
\int^{l} \frac{e^{-\lambda t}}{\sqrt{ } t} d l=2 \int_{0}^{t} e^{-\lambda t} d \sqrt{ } t=2 \sqrt{ } 1 e^{-\lambda t}+2 \lambda \int_{0}^{t} e e^{\lambda t} \sqrt{ } t d t .
$$

Proceeding in this way by repeited partial integration we get for the integral term of (ii)

$$
\begin{equation*}
2 \sqrt{1} e^{-\lambda s}\left\{1+\frac{2 \lambda t}{1.3}+\frac{(2 \lambda t)^{2}}{1.3 .5}+\ldots\right\} . \tag{is}
\end{equation*}
$$

The straightforward Heaviside solution is obtained by expanding the operational equation as follows:

$$
\begin{aligned}
I & =\sqrt{\bar{C}} \sqrt{R} \sqrt{p+\lambda} \\
& =\sqrt{\frac{C}{R}}\left(1+\frac{\lambda}{p}\right)^{1 / 2} \sqrt{p} \\
& =\sqrt{\frac{C}{R}}\left[1+\frac{1}{2} \frac{\lambda}{p}-\frac{1}{2.4}\left(\frac{\lambda}{p}\right)^{2}+\frac{1.3}{2.4 .6}\left(\frac{\lambda}{p}\right)^{3}-\cdots\right] \sqrt{p} .
\end{aligned}
$$

Identifying \sqrt{p} with $1 / \sqrt{\pi t}$ (from known solutions of allied problems) and substituting for $1 / p^{n}$ multiple integrations of the nth order we get

$$
\begin{equation*}
I=\sqrt{\frac{C}{\pi R}} ; 1+\frac{(2 \lambda t)}{2}-\frac{(2 \lambda t)^{2}}{2.3 .4}+\frac{1.3(2 \lambda t)^{3}}{2.3 .4 .5 .6}-\cdots \tag{7!}
\end{equation*}
$$

It can be verified that this solution is convergent and equivalent 10 (\%).

This problem, while simple and of minor technical interest, will serve to introduce us to the very important and interesting question of asymptotic series solutions.

An asymptotic series, for our purposes, may be defined as a series expansion of a function, which, while divergent, may be used for numerical computation, and which exhibits the behavior of the function for sufficiently large values of the argument.

Let us return to equation (57). We observe that the series solution (78) of the definite integral becomes increasingly laborious to compute as the value of l increases. This remark applies with even greater force to the Heaviside solution (79) on account of the alternating character of the series. Right here we have an excellent example of what I regard as Heaviside's exaggerated sense of the importance of scries solutions as compared with definite integrals. Consider the solution in the form of (77) as compared with Heaviside's series solution (79). The former is incomparably easier to interpert and to compute, either by numerical integration or by means of an integraph or planimeter. In fact the series (79) is practically ummanageable except for small values of t.

Returning to the question of an asymptotic expansion of the solution (75), we observe that the defmite integral appearing in that equation can be written as,

$$
\begin{equation*}
\int_{0}^{l} \frac{e^{-\lambda t}}{\sqrt{t}} d t=\int_{0}^{\infty} \frac{e^{-\lambda t}}{\sqrt{t}} d t-\int_{t}^{\infty} \frac{e^{-\lambda t}}{\sqrt{t}} d t \tag{S0}
\end{equation*}
$$

provided λ is pesitive, as it is in this case. Now the value of the intinite integral is known; it is $\sqrt{\pi} \lambda$. Comserpuently

$$
\begin{equation*}
\int_{0}^{i} e^{\lambda} l^{\lambda} d l=\sqrt{\lambda}_{\lambda}^{\pi}-\int_{t}^{\infty} \frac{e^{-\lambda t}}{\sqrt{1}} d l \tag{S1}
\end{equation*}
$$

furthermore.

$$
\int_{0}^{\infty} \frac{e^{-\lambda t}}{1} d t=-\frac{1}{\lambda_{0}} \int_{t}^{\infty} \frac{1}{1} d c^{-\lambda t}=\frac{1}{\lambda_{1}} \frac{c^{-\lambda}}{1}-\frac{1}{2 \lambda_{0}} \int_{0}^{\infty} c_{1}^{\infty} d t
$$

Integrating again by parts we get

$$
\frac{1 e^{\lambda t}}{\lambda} t_{2}^{1}-\frac{\lambda^{2}}{t} \frac{e^{-\lambda t}}{t}+\frac{1.3}{2^{2} \lambda^{2}} \int_{0}^{\infty} \frac{e^{-\lambda t}}{t^{2} \sqrt{1} t} d t
$$

Comtimulng this process, we get

$$
\begin{align*}
& \int_{t}^{\infty} \frac{e^{-\lambda t}}{\ t} d t=\frac{e^{-\lambda t}}{\lambda \backslash t}\left[1-\frac{1}{2 \lambda t}+\frac{1.3}{(2 \lambda t)^{2}}-\frac{1.3 .5}{(2 \lambda t)^{3}}\right. \\
& \left.\quad+\ldots+(-1)^{n} 1.3 . \frac{(2 n-1)}{(2 \lambda t)^{n}}\right] \tag{S2}\\
& \quad-\frac{(-1)^{n}}{\lambda} \frac{1.3 .5 \ldots(2 n+1)}{2(2 \lambda)^{n}} \int_{1}^{\infty} \frac{e^{-\lambda t}}{t^{n+1} \backslash t} d t .
\end{align*}
$$

Now this series is divergent, that is, if we continue out far enough in the series the terms begin to increase in value without limit. On the other hand, if we stop with the nth term the error is represented by the integral term in (82) and this is less than

$$
\begin{equation*}
\frac{(-1)^{n}}{\lambda v^{\prime} t} \frac{1.3 .5 \ldots(2 n-1)}{(2 \lambda t)^{n-1}} e^{-\lambda t} . \tag{83}
\end{equation*}
$$

Consequently the error committed in stopping with any term in the series is less than the value of that term. Therefore if we stop with the smallest term in the series, the error is less than the smallest term and decreases with increasing values of t.

We can therefore write the solution (77) as

$$
I \sim \sqrt{\frac{\lambda C}{R}}+\sqrt{C R l^{\rho-\lambda t}} \frac{1}{2 \lambda t}-\frac{1.3}{(2 \lambda t)^{2}}+\frac{1.3 . \overline{3}}{(2 \lambda t)^{3}}-\cdots!.
$$

The first term, since $\lambda=G C$, is simply $\backslash^{\prime} G, \vec{R}$, the d.c. almittance of the leaky cable. The divergent series shows how the current approaches this final steady value.

In this particular problem no asymptotic solution is derivable directly from the operational equation, at least by the straightforward Heaviside processes. Asymptotic solutions, however, constitute a large and important part of Heaviside's transmission line solutions. We shall therefore discuss next a problem for which Heaviside ohtained both convergent and divergent series expansions.

Problem B: Terminal I'oluge on Cable with "Linil E.M.F." Impressed on Cable Through Condenser

We now take up a problem for which I teaviside obtained a divergent solution, and which will introduce us to the theory of his divergent solutions and so-called "fractional differentiation." We suppose a "unit e.m.f." impressed on an infinitely long cable of distributed resistance R and capacity C per unit length through a condenser of capacity C_{o} : required the voltage \mathbb{I}^{\prime} at the cable terminals. The operational equation of the problem is derived as follows:-

We know from the problem just discussed that the current entering the cable whose terminal voltage is V, is, in operational notation

$$
\sqrt{\frac{C P}{R}} V .
$$

But the current flowing into the condenser is

$$
C_{o} p(1-V)
$$

since the voltage across the condenser is $1-V$. Equating these two expressions we get

$$
\begin{equation*}
V=\frac{p C_{0}}{p C_{0}+\sqrt{p C / R}} \tag{85}
\end{equation*}
$$

which is the operational equation of the problem.
This may be written as

$$
\begin{align*}
V^{\prime} & =\frac{1}{1+\frac{1}{C_{o}} \sqrt{\frac{C}{R} \sqrt{\sqrt{p}}}} \tag{2}\\
& =\frac{1}{1+\sqrt{a / p}}
\end{align*}
$$

where

$$
\sqrt{ } a=\frac{1}{C_{0}} \sqrt{C / R}
$$

Now exproding this by the binomial theorem

$$
\begin{align*}
1 & =1-V_{p}^{a}+{ }_{p}^{a}-\left.{ }_{p}^{a}\right|_{p} ^{a}+\binom{a}{p}^{2}-\cdots \\
& =1+\frac{a}{p}+\binom{a}{p}^{2}+\ldots \\
& -\left(1+\frac{a}{p}+\binom{a}{p}^{2}+\ldots\right) \sqrt[V_{p}^{a}]{a} \\
& =1+\frac{a l}{1!}+\frac{(a t)^{2}}{2!}+\ldots \\
& -\left(\frac{2 a l}{1}+\frac{(2 a t)^{2}}{1.3}+\frac{(2 a l)^{3}}{1.3 .5)}+\ldots\right) \frac{1}{\sqrt{2} a t}
\end{align*}
$$

by the usatal Heaviside rules of "algebrizing."
It is worth while verifying this from the integral equation of the problem. We have

$$
\begin{equation*}
\frac{1}{p} \frac{1}{1+\sqrt{a} p}=\int_{0}^{\infty} \Gamma(t) e^{-p^{t} d t .} \tag{87}
\end{equation*}
$$

The left hand side can be written as

$$
\frac{1}{p-a}-\frac{1}{p-a} \sqrt{\frac{a}{p}}
$$

and by the formulas and theorems given in a preceding section the solution can be recognized at once as:-

$$
\begin{equation*}
I^{\prime}(t)=e^{a t}-\int_{\pi}^{a} e^{a l} \int_{0}^{l} \frac{e^{-a \tau}}{V^{\prime} \tau} d \tau \tag{8S}
\end{equation*}
$$

This can also be written as

$$
\begin{equation*}
\Gamma^{\prime}(t)=V_{\pi}^{u} e^{m t t} \int^{\infty} \frac{e^{a r}}{V_{T}^{\prime}} d \tau . \tag{S?}
\end{equation*}
$$

If the definite integral of ($\mathrm{S} \boldsymbol{\mathrm { S }}$) is evaluated by successive partial integrations it will be found in agrement with the Heaviside solution (siti).

Now the solution (sti) is in powers of t and while absolutely convergent becomes progressively more difficult to interpret and compute as the value of t increases. lirom (s?), however, we can derive a divergent or asymptotic solution applicable both for interpretation and computation, when the value of t is sufficiently large. Is
in the example discussed before, the asymptotic expansion results from repeated partial integrations; thus

$$
\begin{aligned}
\int_{t}^{\infty} \frac{e^{-a \tau}}{\sqrt{\tau}} d \tau & =-\frac{1}{a} \int_{t}^{\infty} \frac{1}{\sqrt{\tau}} d e^{-a \tau} \\
& =\frac{e^{-a t}}{a \sqrt{t}}-\frac{1}{2 a} \int_{t}^{\infty} \frac{e^{-a \tau}}{\tau \sqrt{\tau}} d \tau \\
& =\frac{e^{-a t}}{a \sqrt{\tau}}+\frac{1}{2 a^{2}} \int_{t}^{\infty} \frac{1}{\tau \sqrt{\tau}} d e^{-a \tau} \\
& =\frac{e^{-a t}}{a \sqrt{t}}-\frac{e^{-a t}}{2 a^{2} t \sqrt{l}}+\frac{1.3}{2^{2} a^{2}} \int_{t} \frac{e^{-a \tau}}{\tau^{2} \sqrt{\tau}} d \tau
\end{aligned}
$$

and finally '..

$$
\begin{equation*}
\frac{e^{-a t}}{a \sqrt{ } t}\left\{1-\frac{1}{2 a l}+\frac{1.3}{(2 a t)^{2}}-\frac{1.3 .5}{(2 a t)^{3}}+\ldots\right\} \tag{90}
\end{equation*}
$$

The series (90) is divergent just as is ($\$ 2$) of a preceding problem and the error committed by stopping with the smatlest term, is of the same character and sulbject the same discussion. With this understanding we write the solution (S9) as

$$
\begin{equation*}
V^{\prime}(t) \sim \frac{1}{\sqrt{\pi a t}} ; 1-\frac{1}{2 a t}+\frac{1.3}{(2 a t)^{2}}-\frac{1.3 .5}{(2 a t)^{3}}+\ldots!. \tag{91}
\end{equation*}
$$

For large values of $t(a t>5)$ this series is accurately and rapidly computable. Furthermore it shows by mere inspection the behavior of $\mathrm{V}^{\prime}(t)$ for large values of t, and that it ultimately approaches: zero as $1 / \sqrt{\pi a l}$.

Let us now see how Heaviside attacked this problem and how he arrived at a divergent solution from the operational formula. Returning to the operational equation (8.5), it can be written as

$$
\begin{equation*}
V^{\prime}=\frac{\sqrt{p} a}{1+\sqrt{p / a}} \tag{92}
\end{equation*}
$$

Now expand the denominator by the binomial thenrem: we get formally

$$
\begin{align*}
I= & 1-\sqrt{\frac{p}{a}}+\frac{p}{a}-\frac{p}{a} \sqrt{\frac{p}{a}}+\left(\frac{p}{a}\right)^{2}-\cdots \sqrt{\frac{p}{a}} \\
= & \left(1+\frac{p}{a}+\binom{p}{a}^{2}+\ldots\right) \backslash \frac{p}{a} \tag{93}\\
& -\left(\begin{array}{l}
p \\
a
\end{array}+\binom{p}{a}^{2}+\binom{p}{a}^{3}+\ldots\right) .
\end{align*}
$$

Heariside's procedure at this pmint wits is remarkable as it was successful. He first discardey the second series in integral powers of p as meaningless. He then identified $1 p$ with $1 / \pi t$ and replaced p^{n} by $d^{n} d l^{n}$ in the first series, getting

$$
\begin{equation*}
\mathrm{V}=\left(1+\frac{1}{a d t}+\frac{1}{d d^{2} d l^{2}}+\ldots\right) \frac{1}{\sqrt{\pi a t}} \tag{9.1}
\end{equation*}
$$

or, carrying out the indicated differentiation,

$$
\mathrm{J}=\frac{1}{\sqrt{\pi a t}}\left(1-\frac{1}{2 a t}+\frac{1.3}{(2 a t)^{2}}-\frac{1.3 .5}{(2 a t)^{3}}+\ldots\right)
$$

which agrees with (91).
This is a typical example of a Heaviside divergent solution for which he offered no explanation and no proof other than its practical success. His procedure in this respect is quite unsatisfactory and in partieular his discarding an entire series without explanation is intellectually repugnant. We shall leave these questions for the present, however; later we shall make a systematic study of his divergent solutions and rationalize them in a satisfactory manner. Fïrst, however, we shall take up a specific problem for which Heaviside obtains a divergent solution without discarding any terms.

Problem C: Current Entering a Line of Distributed L, R and C
Consider a transmission line of distributed inductance L, re-istance R, and capacity C per unit length. The differential equations of current and woltage are

$$
\begin{align*}
\left(L_{d l}^{d}+R\right) I & =-\frac{\partial}{\partial x} V \\
C_{d l}^{l} V & =-\frac{\partial}{\partial x} I . \tag{95}
\end{align*}
$$

Replaring d 'd l ly p, we get

$$
\begin{align*}
(p L+R) I & =-\frac{\partial}{\partial x} \mathrm{~L} \\
C P V & =-\frac{\partial}{\partial x} I . \tag{96}
\end{align*}
$$

Fquations (96) correspond exactly with (is) for the non-inductive cable: except that we must replace R by $p L+R$. For the infinitely
long line, therefore, the operational formula for the current entering the line is

$$
\begin{equation*}
I=\sqrt{\frac{p C}{p L+R}} V_{0} \tag{97}
\end{equation*}
$$

where l_{0}° is the voltage at the line terminals. If this is a "unit e.m.f." we have, as our operational equation,

$$
\begin{equation*}
I=\sqrt{\frac{p C}{p L+R}} \tag{98}
\end{equation*}
$$

which can be written as

$$
I=\left\lvert\, \begin{align*}
& \vec{C} \tag{99}\\
& \sqrt[L]{1+2 \lambda p}
\end{align*}\right.
$$

where $\lambda=R$ ' $2 L$.
The corresponding integral equation is

$$
\begin{equation*}
\sqrt{\frac{C}{L}} \frac{1}{\sqrt{p^{2}+2 \lambda p}}=\int_{0}^{\infty} e^{-p t} I(t) d t . \tag{100}
\end{equation*}
$$

From either equation (99) or (100) and formula (p) of the table of integrals, we see at once that the solution is

$$
\begin{equation*}
I=\sqrt{C_{L}}{ }^{-\lambda t} I_{o}(\lambda t) \tag{101}
\end{equation*}
$$

where $I_{0}(\lambda t)$ is the Bessel function $J_{0}(i \lambda t)$, where $i=\sqrt{-1}$. (The function is, however, a pure real.)

Heaviside's procedure, in the absence of any correlation between the operational equation and the infinite integral, was quite different. Remarking, with reference to equation (99), that "the suggestion to employ the binomial theorem is obvious," he expands it in the form

$$
\begin{equation*}
I=1 \quad \bar{C}\left\{1-\frac{\lambda}{p}+\frac{1.3}{2!}\binom{\lambda}{p}^{2}-\frac{1.3 .5}{3!}\binom{\lambda}{p}^{3}+\ldots \hat{\}}\right. \tag{102}
\end{equation*}
$$

and replaces $1, p^{n}$ by t^{n} / n in accordance with the rule discussed in precerling sections. The explicit solution is then

$$
\begin{equation*}
I=\sqrt{C}\left\{1-\lambda t+\frac{1.3}{(2!)^{2}}(\lambda t)^{2}-\frac{1.3 .5}{(3!)^{2}}(\lambda t)^{3}+\ldots!\right. \tag{10;3}
\end{equation*}
$$

a convergent solution in rising powers of t. As yet, however, he does not recognize this series ats the power series expansion of (101), which it is. He doss, howeter, recognize the practical impossibitity of using it for computing for large salues of t, and remarks "But the hinomial theorem furnishes another way of expanding the operator
(operational equation), viz. in rising powers of p." Thus, returning to (99), it can be written is.

$$
I=\begin{align*}
& C \quad 1 p: 2 \lambda \tag{104}\\
& L \\
& 1+p \cdot \lambda
\end{align*}
$$

Nom exprond the demominator by the bimomial theorem: we set

$$
I=1 \begin{array}{c:c}
C & 1-\frac{P}{1 \lambda}+\frac{1.3}{2!}\binom{P}{1 \lambda}^{2}-1.3 . \overline{3} \tag{10.i}\\
3!
\end{array}\binom{P}{1 \lambda}^{3}+\ldots: 1_{2 \lambda} p
$$

He now identifies \p.2 with $1,2 \pi \lambda t$ and replaces $p^{\prime \prime}$ in the series by $d^{n} d t^{\prime \prime}$, thus getting finally

This serie-solution is divergent: Ileaviside recognizes it, lowewer. as the asymptotic expansion of the function $e^{-\lambda t} I_{o}(\lambda t)$, and thas arriver at the solution

$$
\begin{equation*}
I=\sqrt{C} L^{C} e^{-\lambda l} I_{o}(\lambda l) \tag{101}
\end{equation*}
$$

which we have obtained from our tables of integrals.
Now the divergent expansion (106) is the well known asymptotic expansion of the function $e^{-\lambda t} I_{o}(\lambda t)$, which is usualty derived by difficult and intricate processes. The directness and simplicity with which Heaviside derises it is extraordinary:

We note in this example that no integral powers of p appear in the divergent expansion: consequently no terms are disarated. Otherwise Heaviside's process is as startling and remarkable as in the example discussed in the preceding section.

We shalt later encounter many problems in which asymptotic solutions are derivable as in the precerling example. We have sufficient data, however, in these two typical examples to take up a systematic discussion of the theory of Heaviside's divergent solution of the operational equation.

CHADTER V

The Theory of the dscherotic Sohetonio of Operdimosil. Equatos-

A study of Heaviside's methoxls, as exemplified in the preceding examples and in many problems dealt with in his lilectronagnetic

Theory, Vol. II, shows that they may be divided into two classes: (I) those of which the operational equation is of the form

$$
\begin{equation*}
h=F(p) \backslash p \tag{1}
\end{equation*}
$$

and (II) those of which the operational equation is of the form

$$
\begin{equation*}
h=\phi\left(p^{k} \backslash p\right) \tag{II}
\end{equation*}
$$

where k is an integer.
Heaviside himself does not distinguish between the two clases, but employs the following rule for obtaining asymptotic expansion solutions:

If the operational equation

$$
h=1 / H(p)
$$

can be expanded in the form

$$
\begin{align*}
h= & a_{o}+a_{1} p+a_{2} p^{2}+\ldots+a_{n} p^{n}+\ldots \\
& \left(b_{0}+b_{1} p+b_{2} p^{2}+\ldots+b_{n} p^{n}+\ldots\right) \backslash p \tag{107}
\end{align*}
$$

a solution, usually divergent, is obtained by discarding the first expansion entirely, except for the leading constant terms a_{0}, replacing $\backslash^{\prime} p$ by $1^{\prime} \^{\prime} \pi t$ and p^{n} by $d^{n} / d t^{n}$ in the second expansion, whence an explicit series solution results.

$$
\begin{align*}
h & =a_{0}+\left(b_{u}+b_{1} \frac{d}{d t}+b_{2} \frac{d^{2}}{d t^{2}}+\ldots\right) \frac{1}{\sqrt{\pi t}} \tag{108}\\
& =a_{0}+\frac{1}{\sqrt{\pi l}}\left(b_{0}-b_{1} \frac{1}{2 t}+b_{2} \frac{1.3}{(2 t)^{2}}-b_{3} \frac{1.3 . \overline{3}}{(2 t)^{3}}+\ldots\right) . \tag{109}
\end{align*}
$$

It should be expressly understond that Heaviside nowhere himself states this rule formally: He does not distinguish between the two cases where integral series in p do and do not appear, although very important mathematical distinctions are involved. Furthermore, in one case he modifies his usual procedure by adding an extra term (I / m. Th. Vol. II, pg. 42 4. $)$. It certainly represents, however, his ustal procedure in a very large number of problems.

I completely satisfactory theory of the Ileaviside Rule, just stated, has 1 yen yee been arrived at although we can always verify the divergent solutions in specific problems. Furthermore, it is not as yet known just how general it is, though it certainly works successfully in a large number of physical problems to which it has been applied. Finally we know mothing in general as to the asymptotic character of the resulting expansion. In some cases it leads to an expansion in which the error is less than the last term included, in others re-
markably enough the expansion is everywhere convergent, while in yet others its application leads to a series which is meaningless for a certain range of values of t.

Heaviside himself gives no information which would serve us as a guide in informing us when the rule is applicable and when it is not. consequently it becomes a matter of pratical importance, not only (0) investigate the underlying mathematieal philosophy of the rule and to establish it on the basis of orthodox mathematies, but also to develop if possible a criterion of its applicability. In this investigation we shall have recourse to the integral equation of the problem.

We shall take up first the type of problem (Class I) in which the operational equation is

$$
\begin{equation*}
h=\frac{1}{\Pi(p)}=F(p) \sqrt{p} \tag{110}
\end{equation*}
$$

and assume that $\mathcal{F}(p)$ admits of the formal power series expansion

$$
\begin{equation*}
F(p)=b_{0}+b_{1} p+b_{2} p^{2}+b_{3} p^{3}+\ldots \tag{111}
\end{equation*}
$$

The corresponding integral equation is

$$
\begin{equation*}
\frac{F(p)}{\sqrt{p}}=\int_{0}^{\infty} h(t) e^{-p t} d t \tag{112}
\end{equation*}
$$

We now assume the existence of an anxiliary function $k(t)$, defined and determined by the auxiliary integral equation

$$
\begin{equation*}
F(p)=\int_{0}^{\infty} k(t) e^{-p t} d t . \tag{113}
\end{equation*}
$$

Now since

$$
\begin{equation*}
\frac{1}{\sqrt{p}}=\int_{0}^{\infty} e^{-p t} \frac{d t}{l^{\prime} \pi t} \tag{114}
\end{equation*}
$$

it follows from (112), (113), and (114) and Borel's Theorem, or Theorem IV, that

$$
\begin{equation*}
h(t)=\frac{1}{\sqrt{\pi}} \int_{0}^{t} \frac{k(\tau)}{\sqrt{t-\tau}} d \tau \tag{115}
\end{equation*}
$$

Now if we differentiate (113) repeatedly with respect to p and put $p=0$, it follows from the expansion (111) that

$$
\begin{equation*}
b_{n}=(-1)^{n} \int_{0}^{\infty} \frac{t^{n}}{n!} k(t) d t . \tag{116}
\end{equation*}
$$

This equation presupposes, it should be noted, the convergence of the infinite integrals for all values of n, and therefore imposes severe
restrictions on $k(t)$ and hence on $F(p)$. We shall suppose that these restrictions are satisfied, and discuss them later.

Now (115) can be written as:-

$$
\begin{equation*}
h(t)=\frac{1}{\sqrt{\pi} t} \int_{0}^{t} d \tau \cdot k(\tau)(1-\tau, l)^{-1 / 2} \tag{117}
\end{equation*}
$$

It can be shown that, if $k(t)$ satisfies the restrictions underlying (116), the integral (117) has an asymptotic solution obtained as follows:- Expand the factor $(1-\tau / i)^{-1.2}$ by the binomial theorem, replace the upper limit of integration by x, and integrate term by term: thus

$$
\begin{align*}
& h(t) \sim \frac{1}{\sqrt{\pi t}} \vdots \int_{0}^{\infty} k(t) d t+\frac{1}{2 t} \int_{0}^{\infty} \frac{t}{1!} k(t) d t \\
&+\frac{1.3}{(2 t)^{2}} \int_{0}^{\infty} t^{2} 2!^{2} k(t) d t+\ldots \tag{118}
\end{align*}
$$

Finally from (116) we get

$$
\begin{equation*}
h(l) \sim \frac{1}{\sqrt{\pi t}} ; b_{0}-b_{12} \frac{1}{2 l}+b_{23} \frac{1.3}{(2 l)^{2}}-b_{3} \frac{1.3 .5}{(2 t)^{3}}+\ldots \tag{119}
\end{equation*}
$$

Which agrees exactly with the lleaviside rule for this case.
The foregoing says nothing regarding the asymptotic claracter of the solution. It is easy to see qualitatively, however, that (118) and therefore (119) does represent the behavior of the defmite integral (117) for large values of t, provided $k(t)$ converges with sufficient rapidity.

The foregoing analysis may now be summarized in the following proposition:

If the operational equation $h=1 H(p)$ is reducible to the form

$$
h=F(p) \sqrt{p}
$$

and if $F(p)$ admits of power series expansion in p : thus

$$
F(p)=b_{0}+b_{1} p+b_{2} p^{2}+\ldots+b_{u} p^{n}+\ldots
$$

so that, formally,

$$
h=\left(b_{o}+b_{1} p+b_{2} p^{2}+\ldots+b_{n} p^{n}+\ldots\right) \sqrt{p}
$$

an explicit series solution, uswally asymptotic, is obtained by replacing $\^{\prime} p b y 1 / \sqrt{\pi t}$ and p^{n} (n integral) by $d^{n} / d t^{\prime \prime}$, whence

$$
\begin{aligned}
h_{h}(t) \sim & \left(b_{0}+b_{1}{ }^{d} d t+b_{2}{ }^{d d^{2}} d t^{2}+\ldots\right) \frac{1}{\sqrt{\pi t}} \\
& \frac{1}{\sqrt{ } \pi t}\left(b_{0}-b_{1}{ }_{2 t}^{1}+b_{2} \frac{1.3}{(2 t)^{2}}-b_{3} \frac{1.3 .5}{(2 t)^{3}}+\ldots\right)
\end{aligned}
$$

provided the function $k=k(t)$, defined by the operational cquation $k-F(p)$. and the infinite integrals

$$
\int_{0}^{\infty} l n k(t) d t \quad(n \quad 1,2, \ldots)
$$

ixist.
We shall now apply the foregoing thenty to a physical problem
 long line of indutance L, resistance R and capacity $($ per unit longth. It will $1 x$ recalled (see equation (100)) that the integral equation of this problem is

$$
\backslash_{L}^{C} \frac{1}{p^{n}+2 \lambda p}=\int_{0}^{\infty} c^{-p t} I(t) d l
$$

where $\lambda=R 2 L$, and that the solution is

$$
I=\sqrt{c} e^{e \lambda} /(\lambda t) .
$$

We. can derise the solution in another form appropriate for our purprom lo writing

$$
\backslash \begin{gathered}
c_{1} \frac{1}{L} \backslash p \backslash p+2 \lambda
\end{gathered}=\int_{11}^{\infty} e^{-p} I(t) d t
$$

Now since

$$
\frac{1}{\sqrt{p}}=\int_{0}^{\infty} e^{e^{-p t}} d t
$$

and

$$
\frac{1}{\sqrt{p+2 \lambda}}=\int_{0}^{\infty} e^{p t} e^{2 \lambda t} d t
$$

it followis from Borel's theorem that

$$
I=\ \frac{i}{L} \frac{1}{\pi} \int_{10}^{i} \frac{e^{2 \lambda \tau} _{t-\tau}^{\prime} d \tau . .}{l} d \tau
$$

Now subject this definite integral (omitting the factor $V(C)$) to the same process applied to (117) : we get

$$
\begin{aligned}
\frac{1}{\pi \sqrt{\prime}}= & \int_{0}^{\infty} \frac{e^{2 \lambda t}}{1 t} d t+\frac{1}{2 t} \int_{0}^{\infty} \frac{1}{1!} e^{2 \lambda t} d t \\
& +\frac{1.3}{(2 t)^{2}} \int_{0}^{\infty} \frac{1}{2!} t e^{2 M} d t+\ldots
\end{aligned}
$$

The infinite integrals are known and have been evaluated. Substituting their values this series becomes:-

$$
\frac{1}{\sqrt{2 \pi \lambda l}}\left\{1+\frac{1}{\mathrm{~s} \lambda t}+\frac{1^{2} \cdot 3^{2}}{2!(\Delta \lambda t)^{2}}+\frac{1^{2} \cdot 3^{2} \cdot \overline{5}^{2}}{3!(\mathrm{S} \lambda t)^{3}}+\ldots\right\}
$$

which is in fact the well known asymptotic expansion of the function $e^{-\lambda t} I_{0}(\lambda t)$.
A second example may be worth while. Consider the case of an e.m.f. $e^{-\lambda t}$ impressed at time $t=0$ on a cable of distributed resistance R and capacity C : required the current emtering the cable. The required formula is ${ }^{6}$

$$
\begin{align*}
I & =\sqrt{\frac{C}{\pi R}} \frac{d}{d t} \int_{0}^{t} \frac{e^{-\lambda(1-\tau)}}{\sqrt{ } \tau} d \tau \\
& =\sqrt{\frac{C}{\pi R}}\left\{\frac{1}{\sqrt{ } t}-\lambda \int_{0}^{t} \frac{e^{\lambda \tau}}{\sqrt{ } t-\tau} d \tau\right. \tag{120}
\end{align*}
$$

ly ubvious transformations.
Asymptotic expansion of the definite integral as in the preceding example gives the asymptotic formula

$$
I=-\sqrt{\frac{C^{-}}{\pi R t}} \frac{1}{2 \lambda t}+\frac{1.3}{(2 \lambda t)^{2}}+\frac{1.3 .5}{(2 \lambda t)^{3}}+\ldots!.
$$

The operational formula of the problem is

$$
\begin{aligned}
l & =\sqrt{\frac{C}{C}} \frac{p}{R} \frac{p+\lambda}{p} \\
& =\sqrt{C} \frac{p / \lambda}{R} \sqrt{p} \begin{array}{l}
p / \lambda / \lambda \\
1+p
\end{array} \\
& =\sqrt{C} \begin{array}{l}
C \\
R
\end{array} \frac{p}{\lambda}-\binom{p}{\lambda}^{2}+\binom{p}{\lambda}^{3}-\ldots: \sqrt{p} .
\end{aligned}
$$

Applying the Heaviside Rule, we get the asymptotic expansion

$$
I=-\sqrt{\frac{C}{\pi R l}}\left\{\frac{1}{2 \lambda l}+\frac{1.3}{(2 \lambda)^{2}}+\frac{1.3 .5}{(2 \lambda t)^{3}}+\ldots\right\}
$$

which agrees with the preceding formula, derived from the definite integral.

We shall now discuss a specific problem in which the Heaviside Rule lreaks down. For example let us take the preceding problem, and

[^137] reader.
replace the applied e.m.f. e ${ }^{\text {Nt }}$ by sin ωt. The formula correnponding to (120) is now
\[

$$
\begin{equation*}
I=\left.\omega\right|_{\pi R \cdot} ^{\stackrel{\rightharpoonup}{C}} \int_{0}^{l} \frac{\cos \omega T}{\backslash l-\tau} d \tau . \tag{121}
\end{equation*}
$$

\]

If we now attempt to expand the detinite integral of (121) in the same way as that of (120), we find that the process breaks clown lecatase each component of the infinite integral is now itself infinite. In fart no asymptetic solution of this problem exists.
I.et us, however, start with the operational formula : since

$$
\int_{0}^{\infty} e^{-p^{t}} \sin \omega t \cdot d t=\frac{\omega}{p^{2}+\omega^{2}}
$$

it is

$$
I=l_{\bar{C}} \quad \omega p
$$

Now expand this in aceordance with the Heaviside Rule: we get. operationally,
and explicitly

$$
I=-\sqrt{C} \hat{\pi}_{\pi R}: \frac{1}{2 \omega t}-\frac{1.3 .5}{(2 \omega t)^{3}}+\ldots t
$$

which is quite incorrect. ${ }^{7}$ The incorrectness of the result will be evielent when we remember that the final value of the current is the stead y-state current in response to $\sin \omega l$, or

$$
\begin{equation*}
\sqrt{\frac{\omega C}{2 R}}(\cos \omega t+\sin \omega t) \tag{122}
\end{equation*}
$$

This result can be derived directly from (121) by writing it as

$$
\begin{equation*}
\left.I=\omega \sqrt{\frac{\bar{C}}{\pi R}} ; \cos \omega t \int_{0}^{t} \frac{\cos \omega t}{\sqrt{l}} d t+\sin \omega t \int_{0}^{t} \frac{\sin \omega l}{\sqrt{l}} d t\right\}_{0}^{1} \tag{1:2}
\end{equation*}
$$

If the time is made indefinitely great the upper limits of the integrals may be replaced by infinity. The infinite integrals are known: substitution of their known values gives (122).

This example illustrates the care which must be used in applying Heaviside's rules for obtaining divergent solutions and the importanee

[^138]of having a method of checking the correctness of his processes and results.

We now take up the discussion of the asymptotic expansion solutions of operational equations of the type

$$
\begin{equation*}
h=\phi\left(p^{k} \sqrt{p}\right) \quad(k \text { integral }) \tag{123}
\end{equation*}
$$

In this discussion we shall, as a matter of convenience, assume that $k=0$, so that the equation reduces to the form

$$
\begin{equation*}
h=\phi(\sqrt{p}) \tag{123a}
\end{equation*}
$$

This will involve no loss of essential generality, since the analytical theory of the two equations is precisely the same.

The Heaviside Rule for this type of operational equation may be formulated as follows:

If the operational equation $h=1, M(p)$ is reducible to the form

$$
h=\phi\left(p^{k} \sqrt{p}\right)
$$

and if ϕ admits of power series expansion in the argument, thus

$$
h=a_{0}+a_{1} p^{k} \sqrt{p}+a_{2} p^{2 k+1}+a_{3} p^{3 k+1} \sqrt{p}+\ldots
$$

a series solution, usually divergent and asymptotic, is obtained by discarding integral powers of p, and writing

$$
h=a_{0}+\left(a_{1} p^{k}+a_{3} p^{3 k+1}+a_{5} p^{5 k+2}+\ldots\right) \sqrt{p}
$$

The explicit series solution then results from replacing $\backslash p b y \left\lvert\, \backslash \frac{1}{\pi l}\right.$, and p^{n} by $d^{n} / d t^{n}$, whence

$$
\begin{aligned}
& h \sim a_{u}+\left(a_{1} \frac{d^{k}}{d t^{k}}+a_{3} \frac{d^{3 k+1}}{d t^{3 k+1}}+a_{5} \frac{d^{5 k+2}}{d t^{5 k+2}}+\ldots\right) \frac{1}{\sqrt{\pi t}} \\
& \approx a_{0}+\frac{(-1)^{k}}{\sqrt{\pi t}}\left(a_{1} \frac{1.3 \ldots(2 k-1)}{(2 t)^{k}}-a_{3} \frac{1.3 \ldots(6 k+1)}{(2 t)^{3 k+1}}+\ldots\right) .
\end{aligned}
$$

The thenry of this series solution will be based on the following propesition, deducible from the identity $\int_{0}^{\infty \infty} \frac{e^{-p t}}{\sqrt{ } \pi t} d t=1 / \sqrt{ } p$.

If the function $F(p)$ of the integral equation

$$
F(p)=\int_{0}^{+\infty} f(t) e^{-p t} d t
$$

approaches $1 \sqrt{p}$ as p approaches zero, then $f(t)$ ultimately behaves as $1{ }^{\prime} \pi t$: that is, if $F(p) \rightarrow 1^{\prime} \sqrt{p}$ as $p \rightarrow 0$, then $f(t) \sim 1 / \sqrt{\pi t}$ as $t \rightarrow \infty$, provided that $f(t)$ coneerges to zero, and contains no term or factor which is ultimately oscillatory.

To illustrate what this condition means suppose that

$$
f(t)=\frac{a}{1 \pi t}+\frac{b \cos \omega t}{1 \pi t}
$$

thent

$$
\left.\int_{0}^{\infty} f(t) e e^{\prime} d t \rightarrow d^{\prime} \backslash p \text { ats } p \rightarrow 1\right)
$$

and the useillatory term in $f(t)$ converges to a higher order. The presence of such oseillatory terms vitiate, therefore, the Ileaviside Kule: in the following disctssion we shall assime that they are absent.

We are now prepared to discuss the operational equation

$$
h=\phi\left(p^{k}, p\right)
$$

and for convenience shall assume that $k=0$ so that the operational expuation becomes

$$
h=\phi\left(\backslash^{\prime} p\right)
$$

of which the corresporsting or expivalent integral equation is

$$
\begin{equation*}
{ }_{p}^{1} \phi(\sqrt{p})=\int_{0}^{\infty} h(t) c{ }^{m} d t \tag{123b}
\end{equation*}
$$

We assume that $\phi(, ~ p)$ almits of formal power series expansion in the argument: thus

$$
\phi(\backslash p)=a_{0}+a_{1} \backslash p+a_{2} p+a_{3} p \backslash p+a_{1} p^{2}+\ldots
$$

without, however, implying anything regarding the convergence of this expansion.

We now introxluce the series of auviliary functions, $g_{1}, g_{1}, g_{2}, g_{3}, \ldots$. defined by the following scheme

$$
\begin{align*}
& g(t)=h(t)-a_{0} \\
& g_{1}(t)=g(t)-\frac{a_{1}}{\sqrt{\prime} \pi l} \\
& g_{2}(t)=\lg _{1}(t)+\frac{1}{2} \sqrt{a_{3} \pi t} \tag{123c}\\
& g_{3}(t)=l \cdot g_{2}(t)-\frac{1.3}{2^{2}} a_{5} \sqrt{\prime} \pi l \\
& g_{1}(t)=l \cdot g_{3}(t)+\frac{1.3 .5}{2^{3}} \frac{1}{2} \pi l
\end{align*}
$$

Successive substitutions in the integral equation (123b) and repeated differentiations with respect to p, lead to the set of formulas,

$$
\begin{align*}
& \int_{0}^{\infty} g(t) e^{-p} d t \sim \frac{a_{1}}{\sqrt{p}} \text { as } p \rightarrow 0 \\
& \int_{0}^{\infty} t . g_{1}(t) e^{-p t} d t \sim \frac{a_{3}}{2 \sqrt{p}} \text { as } p \rightarrow 0 \\
& \int_{0}^{\infty} t . g_{2}(t) e^{-p t} d t \sim \frac{1.3}{2^{2}} \frac{a_{5}}{\sqrt{p}} \text { as } p \rightarrow 0 \tag{123d}\\
& \int_{0}^{\infty} t . g_{3}(t) e^{-p t} d t \sim-\frac{1.3 .5}{2^{3}} \frac{a_{7}}{\sqrt{p}} \text { as } p \rightarrow 0
\end{align*}
$$

Now assuming that $h(t)$ satisfies the restrictions stated in the preceding proposition, it follows from that proposition, that

$$
\begin{align*}
& g(t) \sim a_{1} / \sqrt{\pi t} \text { as } t \rightarrow \infty \\
& g_{1}(t) \sim-\frac{a_{3}}{2 t \sqrt{\pi t}} \text { as } t \rightarrow \infty \\
& g_{2}(t) \sim \frac{1.3}{2^{2} t} \frac{a_{5}}{\sqrt{\pi t}} \text { as } t \rightarrow \infty \tag{123e}\\
& g_{3}(t) \sim-\frac{1.3 .5}{2^{3} t} \frac{a_{7}}{\sqrt{\pi t}} \text { as } t \rightarrow \infty
\end{align*}
$$

From the set equations (123d) and (123e) it follows by successive sulstitutions that

$$
h(l) \sim a_{0}+\frac{1}{\sqrt{\pi l}}\left(a_{1}-a_{3} \frac{1}{2 t}+a_{5} \frac{1.3}{2 t^{2}}-a_{7} \frac{1.3 .5}{(2 t)^{3}}+\ldots\right)
$$

which agrees with the series gotten by applying the Heaviside Rule.
The defect of this derivation, which, however, appears to be inherent, is that it requires us to know or assume at the outset that $h(t)$ satisfies the required restrictions. Consequently an automatic application of the Heaviside Rule may or may not give correct results. On the other hand if we know that an expansion solution in inverse fractional powers of t exists, the Heaviside Rule gives the series with extranorlinary directness and simplicity.

The type of expansion solntion just discussed will now be illustrated hy some specific problems. The first problem is that of the propagated
voltage in the non-inductive cable in response to a "unit e.m.f". It will be recalled that in a preceding chapter we derived the operational formula

$$
\begin{equation*}
V^{\circ}=e^{-v^{\prime} \alpha} \tag{121}
\end{equation*}
$$

where $\alpha=x^{2} R C$, for the voltage at distance x from the terminal of a noninductive cable of distributed resistance R and capacity C, in response to a "unit c.m.f." impressed at point $x=0$. Heaviside's solution of this operational equation procceds as follows:

Expansion of the exponential function in the usual power series gives

$$
V=1-\frac{\sqrt{\alpha p}}{1!}+\frac{\alpha p}{2!}-\frac{\alpha p \sqrt{\alpha p}}{3!}+\frac{(\alpha p)^{2}}{4!}-\ldots
$$

which may be rearranged as

$$
\begin{equation*}
1=1-\left(1+\frac{\alpha p}{3!}+\frac{(\alpha p)^{2}}{5!}+\ldots\right) \sqrt{\alpha p}+\left(\frac{\alpha p}{2!}+\frac{(\alpha p)^{2}}{4!}+\frac{(\alpha p)^{3}}{6!}+\ldots\right) \tag{125}
\end{equation*}
$$

Heaviside then discards the series in integral powers of p entirely, replaces $\mid p$ by 1 , πt and p^{n} by $d^{n} / d t^{n}$ in the first scries, and then gets

$$
\begin{align*}
V=1 & \left(1+\frac{\alpha}{3!d t}+\frac{\alpha^{2}}{5!} \frac{d^{2}}{d t^{2}}+\ldots\right) \sqrt{\pi t} \\
& =1-_{\pi t}^{\alpha}\left(1-\frac{1}{3!}\left(\frac{\alpha}{2 t}\right)+\frac{1.3}{5!}\left(\frac{\alpha}{2 t}\right)^{2}-\frac{1.3 \cdot 5}{7!}\left(\frac{\alpha}{2 t}\right)^{3}+\ldots!\right. \tag{126}
\end{align*}
$$

or

$$
\begin{equation*}
\Gamma=1-\sum_{\pi t}^{\alpha}\left(1-\frac{1}{3}\binom{\alpha}{4!}+\frac{1}{5 \cdot 2!}\binom{\alpha}{4!}^{2}-\frac{1}{7 \cdot 3!}\binom{\alpha}{4!}^{3}+\ldots\right) . \tag{127}
\end{equation*}
$$

This solution is correct, as will be shown subsequently.
A rather remarkable feature of this solution-a point on which Heaviside makes no comment-is that it is absolutely convergent. In other words, a process of expansion which in other problems leads to a divergent or asymptotic solution, here results in a convergent series expansion.

To verify this solution we start with the corresponding integral equation of the problens

$$
\begin{equation*}
\frac{1}{p} e^{-\sqrt{a p}}=\int_{0}^{\infty} V(t) e^{-\phi t} d t . \tag{128}
\end{equation*}
$$

It follows from this formula and theorem (i) that

$$
V(t)=\int_{0}^{t} \phi(t) d t
$$

where $\phi(t)$ is determined by the integral equation

$$
e^{v^{\prime} \alpha_{p}}=\int_{0}^{\infty} \phi(t) e^{-p t} d t
$$

Now from formula (f) of the table of integrals

$$
c^{-\sqrt{ } \alpha_{\bar{p}}}=\frac{1}{2} \sqrt{\alpha} \int_{\pi}^{\infty} e_{0}^{-\phi t} \frac{e^{-\alpha t}}{t \sqrt{t} t} d t
$$

whence

$$
\phi(t)=\frac{1}{2} \sqrt{\alpha e^{\alpha, l t}} \frac{1 \sqrt{1}}{l}
$$

and finally

$$
\begin{equation*}
I^{\prime}(t)=\frac{1}{\sqrt{\pi}} \int_{0}^{\bullet b^{\prime}} \frac{e^{-1 / \tau}}{\tau \sqrt{\tau}} d \tau \text {, where } t^{\prime}=4 t / \alpha \text {. } \tag{129}
\end{equation*}
$$

To convert this to the form of (127) we write

$$
\begin{equation*}
V^{Y}(t)=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{e^{-1 / \tau}}{\tau \sqrt{\prime}^{/} \tau} d \tau-\frac{1}{\sqrt{\pi}} \int_{t^{\prime}}^{\infty} \frac{e^{1 / \tau}}{\tau \sqrt{ } \tau} d \tau . \tag{130}
\end{equation*}
$$

The value of the infinite integral is known to be unity so that

$$
\begin{equation*}
V=1-\frac{1}{\sqrt{\pi}} \int_{L^{\prime}}^{\infty} e_{\tau \sqrt{t}}^{1 / \tau} d \tau . \tag{131}
\end{equation*}
$$

Now in the integral term of (131) expand $e^{-1, \tau}$ in the usual exponential power series and then integrate term by term: the series solution (127) results. This series, while absolutely convergent, is difficult to compute for small values of t; an asymptotic expansion, which can be employed for computation for small values of t is gotten as follows:-

Write (129) as

$$
\begin{aligned}
V & =\frac{1}{\sqrt{\pi}} \int_{0}^{i^{\prime}} \sqrt{\tau} d c^{-1 / \tau} \\
& =\sqrt{\frac{t^{\prime}}{\pi} e^{-1 / t^{\prime}}-2 \sqrt{\pi} \int_{0}^{t^{\prime} e^{-1 / \tau}} \frac{\sqrt{ } \tau}{} d \tau} .
\end{aligned}
$$

Repeated partial integrations of this type lead to the series

$$
\begin{equation*}
\left.\left.V=\sqrt{\frac{t^{\prime}}{\pi}} e^{-1 / t^{\prime}}\right\} 1-\left(\frac{t^{\prime}}{2}\right)+1.3\left(\frac{t^{\prime}}{2}\right)^{2}-\ldots\right\} \tag{132}
\end{equation*}
$$

It is interesting to mote, in passing, that an asymptotic solution of this type does not appear to be directly deducible from the operational equation. We observe also that, in this problem, the series in inverse
powers of b is consergent while the series in asenting powers of l is divergent : the conserse is the case in the problems discussed previously.

I second specitio problem may be stated as follows:
Let a "unit com.f." lee impressed on an infinitely long mon-inductive cable of distributed resistance R and eapacity ("per unit length throunh a terminal resistance R_{0} : recpuited the woltage V on the cable terminals. The formulation of the operational exuation of this problem is very simple. It will be recalled that the operational formula for the current entering the cable with terminal voltage $1^{\prime \prime}$ is $V^{\prime} V^{\prime} C^{\circ} p R$. But the current is clearly also equal to ($\left[-l^{\circ}\right.$) R_{0} : equating these expressions we get

$$
\frac{1-V}{R_{0}}=V P C R
$$

whence

$$
\begin{equation*}
I=\frac{1}{\sqrt{ } / p / \lambda+1} \tag{133}
\end{equation*}
$$

where 1 \ $\bar{\lambda}=R_{0} \backslash \bar{C} R$. This is the required operational formula.
To derive the Heaviside divergent expansion, expand (133) by the binomial theorem: thus

$$
\begin{align*}
V & =1-V^{\prime} p / \lambda+(p ; \lambda)-(p / \lambda)^{3,2}+\ldots \\
& =1-\left(1+p ; \lambda+(p, \lambda)^{2}+\ldots\right) \sqrt{p / \lambda} \tag{134}\\
& +\left(p / \lambda+(p, \lambda)^{2}+(p ; \lambda)^{3}+\ldots\right) .
\end{align*}
$$

Discard the second series in integral powers of p; replace $\^{\prime} p$ by $1 / \sqrt{\pi t}$ and p^{n} by $d^{n} / d t^{n}$ in the first series, thus getting

$$
\begin{align*}
V^{\prime} & =1-\left(1+\frac{1}{\lambda} \frac{d}{d t}+\frac{1}{\lambda^{2}} \frac{d^{2}}{d l^{2}}+\ldots\right) \frac{1}{\sqrt{\pi \lambda t}} \tag{135}\\
& =1-\frac{1}{1 \pi \pi \lambda t}\left(1-\frac{1}{2 \lambda t}+\frac{1.3}{(2 \lambda)^{2}}-\ldots\right) \tag{136}
\end{align*}
$$

which is the asymptotic solution of the problem.
To verify this solution we shall consider the more general operational equation

$$
\begin{equation*}
h=\frac{1}{p^{n} \backslash p+1} \quad \text { (} n \text { integral) } \tag{137}
\end{equation*}
$$

a form of equation to which a number of fairly important problems is reducible. (The parameter λ of equation (133) can be eliminated from explicit consideration by means of theorem VI.)

Multiplying numerator and denominator of equation (137) by $p^{n} \sqrt{p}-1$, it leecomes

$$
\begin{equation*}
h=\frac{p^{n} \sqrt{p}-1}{p^{2 n+1}-1}=\frac{p^{n}}{p^{2 n+1}-1} \sqrt{p}-\frac{1}{p^{2 n+1}-1} \tag{138}
\end{equation*}
$$

and by direct partial fraction expansion, this is equivalent to

$$
\begin{equation*}
h=\frac{\sqrt{p}}{2 n+1} \sum_{m=0}^{2 n} \frac{p_{m}^{n+1}}{p-p_{m}}-\frac{1}{2 n+1} \sum_{m=0}^{2 n} \frac{p_{m}}{p-p_{m}} \tag{139}
\end{equation*}
$$

where

$$
p_{m}=e^{i \frac{2 m \pi}{2 n+1}} \quad(m=0,1,2 \ldots 2 n) .
$$

Write, for convenience,

$$
h=\sum_{m=0}^{2 n} h_{m}
$$

and consider the operational equation

$$
\begin{equation*}
h_{m}=\frac{1}{2 n+1}\left(\frac{p_{m}^{n+1}}{p-p_{m}} \sqrt{p}-\frac{p_{m}}{p-p_{m}}\right) . \tag{1+0}
\end{equation*}
$$

By the rules of the operational calculus, fully discussed in preceding chapters, the solution of this is

$$
\begin{equation*}
h_{m}(t)=\frac{1}{2 n+1}\left(\frac{p_{m}^{n+1}}{\sqrt{\pi} \cdot} \int_{0}^{t} \frac{e^{\rho_{m}(1-\tau)}}{\sqrt{\tau}} d r+1-e^{\rho_{m^{2}}}\right) \tag{141}
\end{equation*}
$$

We have now to distinguish two cases: (1) when the real part of p_{m} is positive, and (2) when the real part is negative.

Taking up case (1) first, the preceding can be written

$$
\left.\begin{array}{rl}
h_{m}(t) & =\frac{1}{2 n+1}\left(1+e^{\rho_{m} t}\left\{\frac{p_{m}^{n+1}}{\sqrt{\pi} \cdot} \int_{0}^{\theta^{t}} \frac{e^{p_{m} \tau}}{\sqrt{\tau}} d \tau-1\right.\right.
\end{array}\right\}
$$

Repeated integration by parts of the definite integral leads to an asymptotic series, identical with that obtained by applying the Heaviside Rule to the operational equation (137).

If, on the other hand, the real part of p_{m} is negative, we write 1/f) an

$$
\begin{equation*}
h_{m}(t)=\sum_{2 n} 1\binom{1-t^{t-m t}}{+\frac{P_{m}^{n+1}}{\sqrt{n}} \int_{0}^{t} \frac{r^{r m r}}{1} t-r} \tag{11.j}
\end{equation*}
$$

The term $c^{p^{6}}$ uhtmately dies away, and the detmite integral cam be expanded asymptotically in accortance with the theory dirnosex under Rule 1, again leading to an asymptotic series ifentical with that given by direct appliation of the Ileaviside Rule to the aperational equation.

Consequenty since the operational equation in hn can le asy mptotically expanded by means of the Heaviste Rule, the operational equation in $h=\sum_{h m}$ is similarly asymptotically expandible, and the Heaviside Rule is reritied for equation (Ia, 3).

We hase now cosered, more or lesis completely, the theroretical rules and principles of the operational calculas in sn far as they can be formulated in general terms. We shall now apply these principles and rules to the solution of important technical problems relating to the propagation of current and voltage along lines. In doing, so, while we shall take advantage of our table of integrals with the corresponding solutions of the operatimal equation, we shall also sketeh Heaviside's nwn methods of solution.

We shall close this discussion of divergent and asymptotic evpansions with a general expansion solution of considerable theoretical and practical importance in the problem of the building-up of alternating currents. It will be recalled from Theorem Ill that the response of a network of generalized operational impedance $I I(p)$ to an e.m.f. $E(t)$ impressed at time $t=0$ is given by the operational formula

$$
x=\frac{V^{\prime}(p)}{H(p)}
$$

where $E=I^{\prime}(p)$ is the operational equation of the applied e.m.f.: that is, analytically

$$
{ }_{p}^{1} I^{\prime}(p)=\int_{0}^{\infty} E\left(t \cdot e^{-\infty t} d t\right.
$$

Now suppose that the impressed e.m.f. is sin ωt : then by formula (h) of the table of integrals

$$
V(p)=\frac{\omega p}{p^{2}+\omega^{2}}
$$

and denoting x by x_{s}

$$
\begin{equation*}
x_{s}=\frac{\omega p}{p^{2}+\omega^{2}} \frac{1}{I I(p)} . \tag{147}
\end{equation*}
$$

If, on the other hand, the impressed e.m.f. is cos ωt, then by formula (i)

$$
\begin{equation*}
V^{\prime}(p)=\frac{p^{2}}{p^{2}+\omega^{2}} \tag{148}
\end{equation*}
$$

and

$$
\begin{equation*}
x=x_{c}=\frac{p^{2}}{p^{2}+\omega^{2}} \frac{1}{I(p)} . \tag{149}
\end{equation*}
$$

Now let us consider the operational expansion suggested by the Heaviside processes:

$$
\begin{align*}
x_{s} & =\frac{p}{\omega}\left(1+\frac{p^{2}}{\omega^{2}}\right)^{1} \frac{1}{I I(p)} \\
& =\left\{\frac{p}{\omega}-\left(\frac{p}{\omega}\right)^{3}+\left(\frac{p}{\omega}\right)^{5}-\left(\frac{p}{\omega}\right)^{7}+\cdots\right\} \frac{1}{(H(p)} \tag{150}
\end{align*}
$$

and

$$
\begin{align*}
x_{c} & =\binom{p}{\omega}^{2}\left(1+\frac{p^{2}}{\omega^{2}}\right)^{-1} \frac{1}{\Pi(p)} \\
& =\frac{1}{i}\binom{p}{\omega}^{2}-\left(\frac{p}{\omega}\right)^{4}+\left(\frac{p}{\omega}\right)^{6}-\left(\frac{p}{\omega}\right)^{8}+\cdots \frac{1}{I(p)} . \tag{151}
\end{align*}
$$

Now let us identify $1 H(p)$ with $h(l)$ and replace p^{n} by $d^{n} / d t^{n}$: we get

$$
\begin{equation*}
\left.x_{s}=\left\{\frac{1}{\omega} \frac{d}{d t}-\frac{1}{\omega^{3}} \frac{d^{3}}{d t^{3}}+\frac{1}{\omega^{5}} \frac{d^{5}}{d t^{5}}-\ldots\right\}\right\}^{1} h(t) \tag{152}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{c}=\left\{\frac{1}{\omega^{2}} \frac{d^{2}}{d t^{2}}-\frac{1}{\omega^{4}} \frac{d^{4}}{d t^{4}}+\frac{1}{\omega^{6}} d d^{6} d t^{6}-\ldots h^{6}(t)\right. \tag{153}
\end{equation*}
$$

We have now to inquire into the significance of equations (152) and (15:3), derived from the operational equations of the response of the system of an e.m.f. $\sin \omega t$ and $\cos \omega t$ respectively, impressed at time $t=1)$. From the moxle of derivation of these expansions from the (p)erational equations it might be inferred that they are the divergent of asymptotic expansions of the operational equations (147) and (149). This would certainly not be an unreasonable inference in the light of the lleaviside expansions we have just been considering. This inference is however, not correct: on the other hand, the series (152) and (153) have a definite physical significance, as we shall now show from the expticit equations of the problem.

By equation (31), the explicit equation for x, gisen aperationally hy (117), is

$$
\begin{equation*}
x_{s}=\frac{d}{d l t_{0}^{t}} \sin \omega \tau \cdot h(l-r) d r=\int_{0}^{t} \sin \omega(t-r) h^{\prime}(r) d r+h(0) \sin \omega l \tag{1.54}
\end{equation*}
$$

where $h^{\prime}(t)=d$ dt $h(t)$. By a well known trigonometric formula, this is

$$
x_{\mathrm{s}}=\sin \omega t \int_{0}^{t} \cos \omega t \cdot h^{\prime}(t) d t-\cos \omega t \int_{0}^{t} \sin \omega t h^{\prime}(t) d t+h(0) \sin \omega t .
$$

Writing

$$
\int_{0}^{t} d t=\int_{0}^{\infty} d t-\int_{t}^{\infty} d t
$$

this becomes

$$
\begin{align*}
& x_{\mathrm{s}}=\sin \omega t \int_{0}^{\infty} \cos \omega t \cdot h^{\prime}(t) d t-\cos \omega t \int_{0}^{\infty} \sin \omega t \cdot h^{\prime}(t) d t \\
& \tag{1.5.5}\\
& \quad+h(0) \sin \omega t-\int_{t}^{\infty} \sin \omega(t-\tau) h^{\prime}(\tau) d \tau .
\end{align*}
$$

The first three terms are simply the steady-state response to the impressed e.m.f. sin ωt : that is, they represent the ultimate steady state value of x_{s} when the transient oscillations have died away. The last term, which we shall denote by T_{s}. represents the transient oscillations which are set up when the e.m.f. is applied. Thus

$$
\begin{equation*}
T_{s}=-\int_{1}^{\infty} \sin \omega(t-\tau) h^{\prime}(\tau) d \tau \tag{156}
\end{equation*}
$$

Now from (1.3i)

$$
T_{s}=-\frac{1}{\omega_{0}} \int_{t}^{\infty} h^{\prime}(\tau) \cdot d \cdot \cos _{-}^{\infty} \omega(\tau-t)
$$

and integrating by parts

$$
\begin{equation*}
T_{s}=\frac{1}{\omega} \frac{d}{d t} h_{1}(t)+\frac{1}{\omega} \int_{t}^{\infty} \cos \omega(\tau-l) \frac{d^{2}}{d l^{2}} h_{t(\tau) d \tau .} \tag{157}
\end{equation*}
$$

Repeating the process of partial integration, we get:

$$
\begin{equation*}
T_{s}=\frac{1 d}{\omega d t} h(t)-\frac{1}{\omega^{2}} \int_{t}^{\infty} \sin \omega(\tau-l) \frac{d^{3}}{d \tau^{3}} h(\tau) d \tau \tag{15n}
\end{equation*}
$$

Refreating the process again

$$
T_{s}=\frac{1}{\omega} \frac{d}{d t} h(t)-\frac{1}{\omega^{3}} \frac{d^{3}}{d d^{3}} h(t)+\frac{1}{\omega^{5}} \int_{t}^{\infty} \sin \omega(\tau-t) \frac{d^{5}}{d \tau^{3}} h(\tau) d \tau .
$$

This process can be repeated indefinitely, and we get

$$
\left.\begin{array}{r}
T_{s}=\left(\frac{1}{\omega} \frac{d}{d t}-\frac{1}{\omega^{3}} \frac{d^{3}}{d t^{3}}\right.
\end{array}+\frac{1}{\omega^{5}} \frac{d^{5}}{d t^{5}}-\ldots+\frac{(-1)^{n-1}}{\omega^{2 n-1}} \frac{d^{2 n-1}}{d t^{2 n-1}}\right) h(t) .
$$

The series expansion (159), except for the remainder term, is identical with the series expansion (152) derived directly from the operational equation. This series may be either convergent or divergent, depending on the frequency $\omega / 2 \pi$ and the character of the indicial admitance function $h(t)$. In the important problems of the building-up of alternating currents in cables and lines we shall see that, even when divergent, the series is of an asymptotic character and can be employed for computation.

We thus arrive at the following theorem:
If an e.m.f. sin ωt is impressed at time $t=0$ on a network or system of generalized indicial admittance $h(l)$, and if the transiemt distortion, T_{s}, is defmed as the instantaneous difference between the actual response of the system and the steady-state response, then T_{s} can be expresed as the series

$$
\left(\begin{array}{cc}
1 & d \tag{160}\\
\omega & d t
\end{array}-\frac{1 d^{3}}{\omega^{3} d t^{3}}+\frac{1 d^{5}}{\omega^{5} d l^{3}}-\ldots+\frac{(-1)^{n-1}}{\omega^{2 n-1}} d d^{2 n-1}\right) h(t)
$$

with a remainder term

$$
\frac{(-1)^{n}}{\omega^{2}} \int_{i}^{\infty} \sin \omega(\tau-t) \frac{d^{2 n+1}}{d t^{2 n+1}} h(\tau) d \tau
$$

If the impressed e.m.f. is cos ωt, the corresponding series for the transient distortion, T_{i}, is

$$
\begin{equation*}
\left(\frac{1}{\omega^{n}} \frac{d^{2}}{d l^{2}}-\frac{1}{\omega_{4} d d_{4}}+\frac{1 d^{6}}{\omega^{6} d t^{6}}-\ldots-\frac{(-1)^{n} d d^{2 n}}{\omega^{2 n}} d t^{2 n}\right) h(t) \tag{16i}
\end{equation*}
$$

with a remainder term

$$
\frac{(-1)^{n}}{\omega^{2 n}} \int_{0}^{\infty} \cos \omega(\tau-l) \frac{d^{2 n+1}}{d t^{2 n+1}} h(\tau) d \tau .
$$

The second part of this theorem, relating to the transient distortion, T_{i}, in response to ath e.m.f. $\cos \omega t$, is derived from formula (31) by procises precisely analagous to those employed above in deriving the series expamsion for $\%_{s}$. The derivation will be left to the reader.

Tos summarize the preceding discussion of the divergent solution of operational equations, it may be said that the theory is as yet rather
unatisfactory: To the phasicist it is unsatisfotory beratuse he retpuires an atomatie rule siving a corrent asmptotic exponsion hy purely algelosic operations without insestigations of rematinder terms or atsiliary functions. Fiurthermene, the precise semse in which the expansion asympeotically represents the sulation canmet lee state 1 in seneral, but requires ath imelepenelent insestigation in the case of each indivielual problem.

On the other hand when an asympotic expansion is known to exist, the Heaviside Rule timets this expansion with incomparable directness and simplicity, the problem of justifying the expansion being a purely mathematical one, which usually need not trouble the physieist. Furthermore, on the purely mathematical sile, the Hewisile Rule is of large interest amd should lead to interesting developments in the theory of asymptotic exponsions.
(To be continued)

Abstracts of Bell System Technical Papers Not Appearing in this Journal

Commercial Loading of Telephone Cables. W. Fonduler. ${ }^{1}$ The application of loading coils to exchange area cable and to toll cable is discussed and data given on the loading coils and the transmission characteristics of loaded cable circuits.

An important section of the paper deals with the requirements for loading phantom circuits. In particular, the crosstalk and noise requirements for phantom loading are analyzed.

The paper concludes with a comparative study of three systems of phantom loading which are in commercial use, viz., the CampbellShaw, the Ebling and the Olsen-Pleijel system. It is concluded that the Campbell-Shaw phantom loading system, which has been adopted as standard by the Bell System, as well as by many European Administrations (notably the British l'ost Office), has marked advantages over the other two systems which have been used to a minor extent in continental Europe.

The Schottky Effect in Low Frequency Circuits, ${ }^{2}$ by J. B. Johnson. This effect, discovered by Schottky, which depends on the probability of fluctuations of electron emission from a filament, has been measured over a considerable range of conditions in resonant circuits of which the natural frequency was varied from 8 to nearly 6000 p.p.s. The effeet is much larger in the lower range of frequencies than the theory predicts. With a tungsten filament, the ratio of observed to theoretical effect e^{\prime}, e is about .7 for frequencies above 200, but increases rapidly to 50 at 10 cycles per sec. With an oxide coated filament, the ratio increases from 1 at 5000 cycles to 100 at 100 cycles. This is interpreted to mean that the emission of electrons is not strictly chautic lut is influenced by irregular temporal changes in the cathode emissivity: In a high frequency circuit these changes become imperceptible and the emission is effectively random. When current is limited by space charge the Schottky effect decreases because of the interaction of the electrons, and other disturbances may act upon the space charge so as to completely mask the remanent Schottky effect. The magnitude of the disturbances in amplifying vacuum tubes can therefore not be predicted from measurements on the true Sehottky effect.

A Note on Schottky's Method of Determining the Distribution of V'elocities A mong Thermionic Electrons, ${ }^{3}$ C. Davisson. Limiting con-
${ }^{1}$ Illetrical Communication, July, 1925.
${ }^{2}$ 'Hysical Keview, Vol. 20, No. 1, page 7 t , July, 1925.
${ }^{2}$ Jhysical Review, Vol, 25, No. 6, page 8u8, June, 1925.
ditions for Schottky's formula for the thermionic current from a filament to a coavial cylinder. The formula must fail when, due to space charge, the protential at any distance $\mathbf{x}(r-x-R)$ from the axis is leos than $V^{2} r^{2}\left(\mathbb{R}^{2}-x^{2}\right) x^{2}\left(\mathbb{R}^{2}-r^{2}\right)$, Veing the potential of the filament with respect to the cytinder, and r and R the radii of filament and eylinder respectisely. This is more restrictise thath the condition for falure which hats been previously assumed.

Viariation of the Photo-electric Effect with Temperature in the Alkali Metals, Herbert E. Wes and . . I. Johnsrud. Special cells having a hollow central cathode were immersed in liguid air for an extended periesl to condense any gases present on the outer alkali metal coated walls. By a stream of evaporating liquid air, the temperature of the cathexle was bedd at temperatures between +20 and $-180^{\circ} \mathrm{C}$. In these cells the variation of photo-electric current with temperature in rextium, potassium and rubidium is continuous. The effect is relatively small for soxtium, showing hardly at all for blue light or white light, but elearly for yellow lighe. The behavior of rubidium is similar to that previously reported for potassium. In a second form of cell, potassium was collected in a deep pool. By slowly cooling the metal from the molten conditions, smooth crystalline surfaces were obtained. With these annealed potassium surfaces, the variation of photo-electric current with temperature is represented by curses varying systematically in shape with the color of the light, and the effeet is far greater than previously reported, amounting, for yellow light, to a variation of 10 to 15 times between room and liquid air temperature. When the surface is roughened curves of the previously reported type are obtained. Small pools give erratic effects, showing changes in opposite directions for different portions of the temperature range. It is concluded that the variation of photo-edectric effect is intimately. connected with the strains proflued in the surface by expansion and contraction with temperature.

Echo Suppressors for Long Telephone Circuits, ${ }^{5}$. . B. Clark and R. C. Mathes. A device has been developed by the Bell System for suppressing "echo" effects which may be encountered under certain conditions in telephone circuits which are dectrically very long. This device hats been given the name "echo suppressor" and consists of relays in combination with vacuum tubes, which are operated by the voice currents so as to block the echoes without disturbing the main transmission.

[^139]This paper gives a brief description of this device, together with a discussion of its possibilities and limitations. A number of echo suppressors have been operated on commercial telephone circuits for a considerable period so that their practicability has been demonstrated.

Recent Commercial Development in Short Ware Transmitters and Receivers. ${ }^{6}$ S. E. Anderson, I. M. Clement, and C. C. DeCoutolly. This paper describes the transmitter and receiver recently developed for use by the United States Coast Ciuard. This apparatus is for operation on wave lengths between 100 and 200 meters. In describing the development of the transmitter a short summary of the various circuit considerations is included. The actual transmitter finally developed is also described together with its operating characteristics.

In considering the radio receiver the various problems to be met in the design of a radio receiver of this character are dealt with at some length. The frequency characteristics of the radio receiver, as developed, are shown, and the method of determining them is described in detail.

The transmitter and receiver performed very satisfactorily under conditions more severe than will be met in actual service.

The Distribution of Initial Velocities Among Thermionic Electrons. ${ }^{7}$ 1. H. GERMER. The method used was to measure the number of electrons from a straight tungsten filament which were able to arrive at a co-axial cylindrical electrode against various retarding potentials. In order to eliminate certain disturbing factors, particularly photoelectric effeets, this electrexte was made in the form of a very fine grid and those electrons passing between the grid wires were collected upon an outside esectrode and there measured. A rather complicated intermittent heating current arrangement allowed emission from the filament only when its surface was at uniform potential, and insured that the retarding potential had exactly the desired value. A current regulator kept the heating current constant to 130 per cent.

Eilectrons from Tungsten. Measurements of the variation of electron current with voltage were made at eight different temperatures ranging from $[4 /)^{\circ} \mathrm{K}$ to $2475^{\circ} \mathrm{K}$. Correction was made for the contact potential difference between filament and grid. At each temperature it was fouml that, except in the range of voltage where the current wats limited loy the space charge phenomenon, the current varied with voltage in just the manner calculated upon the assumption that the dectrons leave the filament with velocity components distributed accorling to Maxwell's law for an electron atmosphere in temperature

[^140]"quilibrium with the hot tilament. W $2175^{\circ} \mathrm{K}$ the assumed Maxw dl distribution was veritied up to a relording potenti.al so great thot moly
 It is beliesed that the present reatts are mere retiahle and extensive that . Iny hitherto obtsised, athe that they are romehaise for weetron conission from tungtsen in a hegh witumul.

Electrons from (xide (iated Platinum. Subsequent measurements
 Wehnelt cathomes also hase velocity emmponents distributerl acoorling (1) Maxwell': law.
 noise, although nedfal as a detertor of merhanical imperfections of catr operation, is otherwise ane extremely undesirable that claburate methorls for allalysis with a view toward preventing or suppressing such moise are warramted. The atuthor presents an illustrated and detailed description of the meehamism of homan hearing, aceording to stmelies mate in the interests of telephonic transmission of maximum effective neso, emmerating and explaining the devices developed for evaluating the serurces of sound and its mones of propagation and amplitication.

An atutomobile can be considered to be composed of a mumber of acoustic resonators hating varied degrees of coupling between them, and comparisuns are made of the velecity of sound propagation through the different materials with that of its tratamission in air, the e elocity. being greater in the structural materiat. The apparatus used for the detection of moise and its messurement consists of saried types of equipment, divided into two dases; whe induckes the contact type and the other the air-impact type, both being demonstrated.

Following an enmmeration of the different detectors and amxilitry apparatus in use and comments upen the methods empleyed, it is stated among other conchusions that it seems atvisable to hase loudness measurements of automobile noise upon the difierence of energy between the measured sound and all arbitrary standard of soumd which is the threshold of normal hearing; that, to locate the origin of atumobre noise, it frequently is sufficient merely w detect the moise without measuring its loudness; and that, to identify the origin of amomolite noise, it often is of value to ascertain its component frequencics.

[^141]
Contributors to this Issue

H. P. Charleswortio, B.S., Massachusetts Institute of Technology, 1905; Engineering Department, American Telephone and Telegraph Company, 1905-19; Equipment and Transmission Enginecr, Department of Operation and Engineering, 1919; Plant Engineer, 1920-. Mr. Charlesworth has had broad experience in the development of telephone equipment and with traffic conditions and the standardization of operating methods and practices.
(i. A. Pixwock, B.S., Massachusetts 1nstitute of Technology; 1899; Secretary, Kansas City Bolt \& Nut Company, 1899-1901; Chief Drafteman, Weber Gas \& Gasoline Engineering Company, Kansas (ity, Missouri, 1901-1902; Mechanical Superintendent, Rock Island Plow Company, 1902-1906; with Western Electric Company from 1906, as Factory Engincer, European Plant Engineer and Technical Superintendent.

Georgie Crisson; M.E., Stevens lustitute of Technology, 1906; instructor in Electrical Enginecring, 1906-10. American Telephone and Telegraph Company, Enginecring Department, outside plant division, 1910-14; transmission and protection division, 191/ 19; Development and Research Department, transmission development division, 1919 -.

1. B. Crandall, A.B., Wisconsin, 1909; A. M., Princeton, 1910; Ph.1)., 1916; Professor of Physics and Chemistry; Chekiang Proxincial College, 1911-12; Engineering Department, Western Electric Company, 1913-24; Bell Telephone Laboratories, Inc., 1925 -. Dr. Cramdall has published papers on infra-red optical properties, condenser transmitter, thermophone, etc. More recently he has been associated with studics on the nature and analysis of speech which have been in progress in the Laboratory.
C. F. Sacia, B.E.E., University of Michigan, 1916; Engineering 1)epartment of the Western Electric Company, 1916-24; Bell Telephone Laburaturies, Inc., 1925-. Mr. Sacia has been engaged upon methoxds for recording and analysing speech.

Kırl К. 1)arrow, S.B., U'niversity of Chicago, 1911; University of P'aris, 1911 12; University of Berlin, 1912; Ph.D., in physics and
mathematies, Iniversity of Chicago, 1997; Fingineering Department Wistern Vilectric Company, 1917 21: Bell Telophone I...boratorica,
 studies and amalyses of publishal researel in varions tiedes of plysion.
 Research Department, Westinghotse Vilectric athl Mamfacturing Company, 1910 12; instructor of physies and electrical engineering, Princeton, 1912 11; American Telephone and Telegraph C'mupany: Engineering Department, 1!11 15; Patent Department, 191fi 17: Engineering Department, I!S: Department of Development and Research, 1919-. Mr. Carson's work hate been along theoretical lines and he has publishel several papers on theory of dectric circuits and clectric wave propagation.

(1)

(4)

(6)

(8)
品
\square
xathay

\pm
$291 \quad-\quad 3+1$

(10)

Index to Volumic IV

A

 Crases, page 112. Waves and Quanta, pake 2NB. The Lem Whofl, First Part, page 407: Seeond l'art, pase cht?

 (x).

B

Bailey . Iustm. Tranatlantic R.ulio Telephnue Transmisstun, page 450 Rukley. Olizer I The 1 natel sulmarine Telegraph cable, fage 355

C

Carrier Telephomy on thish loltage l'ower Lines, II: I: II olfe, page 152.
(arsm. John R. Flectrica) (irenit Theory and the Operational Calculns, page (s) 5.

Curson. John R. Selective (irents and Static Interierence, page 265 .
Carkir. Churles II'.. Ir.. Ciraphic Representation of the Impedance of Networks (ontaining Resistances and Two Reactances, page 387.
 215.
(Fircuit Theory, Flectric and the Operational ('alculus, Iohn R. Corsw, page心ち.
CHork. I R3. The Transmis-ion of Piotures Over Telephone Lines, pace 187.
conducture: The Vternating Current Kesistanee and Wave I'rupagation Ower l'arallel Tubular, Sallic P'err Mead, page 327.
Cuntempurary Adances in Physice, Some. Karl K. Darroze: Plectricity in ciaser, page 112. Wases ant Quanta. page 2ñ The Itwm-Mhelel, First l'art, page 417 Seeond part, page 64 ?
fost Sturlies, Finginecring, F. 1. Rhodes, pase 1.
(rundall. Iring B. The suunds oi Speech, page Sion,
Creusuting Plants fur Treating Chestuw Poles, Open Tank, \% i simith rase 235
Crissin, Geirge, Irregularities in Loaded Telephone Circuits, page 5bl.
Crissun, Georye: The Limitation of the Gain of Two-Way Telephone Repeaters by Imperlatece Irregularities, page 17.
Curlis, A. S., The Viliratury (haracteristics and Impelance of Telephone Recoters at Lan Power lintus, pace t1)?

D
Narroze, Karl K.. Sume Contemporary . Wances in Flysics Electricty in liases, page 112.
Waves and Quanta, page 280.
The itwom-Nhonel. Firse l'art, pace til): Second l'art, page $6+2$?

E

Eleetrieity in Gases, Karl K. Darrow, page 112.
Electric Waves, Propagation of, Over the Earth, H. 11. Nichols and J. C. Schelleng, page 215.
Engineering Cost Studies, F. L. Rhodes, page 1.
Engincering, General Problems of the Bell System, H. P. Charlestorth, page 515.
Engineering Planning for Manufacture, G. A. Pennock, page $5+2$.
Espenschied, Lloyd, Transatlantic Radio Telephone Transmission, page 459.
F
Fiiters, Mutual Inductance in, with an Introduction on Filter Design, K. S. Johnson and T. E. Sheca, page 52.
Fletcher, Harvey, Useful Numerical Constants of Speech and Hearing, page 375.

G
Gain of Two-Way Telephone Repeaters, the Limitation of, ly Impedanee Irregularities, George Crisson, page 55.
Gencral Enginecring Problems of the Bell System, H. P. Charlestorth, page 515. Gill, F., Oliver Heaviside, page 349.
(iraphic Representation of the Impedance of Networks Containing Resistances and Two Reactances, Chorles II. Carter, Jr., mage 387.

H

Horden, W. H., Practices in Telephone Transmission Maintenance Work, page 26.
Hearing, Useful Numerical Constants of Speech and, Harecy Flctcher, page 375. 1 Ieaviside, Oliver, F. Gill, page 349.
Horton. J. II., The Transmission of Pictures Over Telephone Lines, page 187.
I
Impedance and Vibratory Characteristics of Telephone Receivers at Low Power lnputs, A. S. Curtis, page toz.
Impedance, Irregularities in Loaded Telephone Circnits, George Crisson, page 561.
Impedance Irregularities, The Limitation of the Gain of Two-Way Telephone Repeaters by, George Crisson, page 15.
Impedance of Networks Containing Resistances and Two Reactances, Graphic Representation of, Charles W. Carter, Jr., page 387.
Interference, Selective Circuits and Static, John R. Carson, page 265.
Irregularities in Loaded Telephone Cirenits, George Crisson, page 561.
Iocs, II. F... The Transmission of Pictures Over Telephone Lines, page 187.
J

Johnson, K. S., and T. E. Shea, Mutual Inductance in Wave Filters with an Introduction on lifter Decign, pase 52.

L
I. rading:

The Loaded Sulmarine Telegraph Cahle, Oliver E. Buckley, page 355. Itregularities in Loaded Telephone Circuits, George Crisson, page 561.

M

Mantenance Work, I'ractices in Telephome Tramsmuswin, |1: |/. Ifarden page 2t,

Méol, Sallic Piro, W'ave I'ropagation Over l'arallel Tuhular Conducfors. The Ulternatang (urrent Resistance, pase 327.
Dutual Inductance in Wave Filters with an Inteductinn on Filter I)esign. K. S. folmson and T. E. Sheot. page 5?.

N

Vetworks Contoming Resistances and Two Reactances, Ciraphe Representation of the Impedance of, Charli's 11°. Carfir, Jr., page $3 \$ 7$.
Dïhols. 11. II'. Propagation of Electric W'aves Over the Farth, page 215.

O

Open Tank (reosoting I'lants for Treating Chestnut I'oles, I. C. Smith, page 235
Operational Caleulus. Flectrical Circuit Theury and the, John R. Carson, page が5

P

Parker. $R \quad D$.. The Transmission of Pictures Oier Telephone Lines, page 187. Pennock, G. A., Engineering I'lanning for Manuiacture, jage 542.
Physics, Some Contemporary Advances in. Karl K. Darroze; Electricity in Cases, page 112. Waves and Quanta, page 2e0. The Atom-Model, First I'art, No. 3, page to7. Second l'art, page (at2.
l'ictures Over Telephone lines, The Transmission of. II. E. Izes, J. II'. Horfin. R. D. Parker and A. R. Clark, page 187.
I'lanning for Manufacture, Engineering, G. A. P'untwik, page 54.
Poles. Open Tank Creosoting llants for Treating (hestnus, T. C. Smith, page 235.

Power Lines, Carrier Telephony on High Voltage, 11 . I'. W'olfi, page 152.
Preservation of Timier: Open Tank (reosroting Plants for Treating Chestnut Poles, T. C. Smith, page 235.
Propagation of Electric Waves Over the Varth, 11. II: Nichols and J. C. Sihelleng, page 215.
Projagation Over Parallel Tubular Conducturs. The Iliernating Current Reaistance (f, Sallie: I'er) Mead, jage 327

R

Radio: Propagation of Flectric Wisves Over the Farth. H. W. .Vishols and J. C. Schilling, nase 215.

Radio Telephone Transmission, Transatlantic, I.loyd Espinschied, C. V. Andersen and Austin Railey. pase 459.
Receivers, The V'ibratory (haracteristics and Impedance oi, at Low Power Inputs, A. S Curlis, page 402.
Repeaters. The Limitation of the Gain of Twn-Wiay Telephone by Impedance Irregularities, George Crisson, page 15.
Rhodes. F. I. Enginecring Cust Studies, prage 1.

S

Sacia. C. F., Speech l'ower and Energy, page 627.
Schelleng, J. C., Propagation of Electric Waves Over the Earth, page 215.
Selective Circuits and Static Interference, John R. Carson, page 265.
Shea. T. E. and K. S. Johnson, Mutual Inductance in Wiase Filters with an Introduction on Filter Design, page 52.
Smith, T. C., Gpen Tank Crosoting Plants for Treating Chestnut Poles, page 235.

Sound, the Sounds of Speech, Irving B. Crandall, page 586.
Speech and Hearing, Useful Numerical Constants of, I/arver I/letcher, page 375.

Speech Power and Energy; C. F. Sacia, page 627.
Speech, the Sounds of, Ireing B. Crandall, page 586.
Static Interference, Selective Circuits and, John R. Carson, yage 265.
Submarine Telegraph Cable. The Loaded, Olizer E. Buckley, page 355.

T

Technical Papers, Alistracts of Bell System Technical Papers not Appearing in This Journal, page $178,339,508,762$.
Telephotography; The Transmission of J'ictures Over Telephone Lines, II. E. Izes, J. W. IIorton, R. D. Parker and A. R. Clark, page 187.
Transmission Maintenance W'ork, Practices in Telephone, W. II. IIarden, page 26.

Transmission of J'ictures Over Telephone lines, H. E. IVe's, J. II. Horton, R. D. P'arke'r and A. B. Clark, page 187.

Transatlantic Radio Telephone Transmission, L.loyd Esponschied, C. N. Anderson and Iustin Railey, page 459.

W

Wave Filters, Nutual Inductance in, with an Introduction on Filter Design, K. S. Johnson and T. E. Shea, page 52.

Wave Propagation Over I'arallel Tubular Conductors: The Alternating Current Resistance of, Sallie Pero Mead, page 327.
Waves and Quanta, Karl K. Darrozi, page 280.
Waves, Propagation oi Electric, Over the Earth, II. II: Nichols and J. C. Schelling, page 215.
Wolfe, ${ }^{\prime}$. I^{\prime}., Carrier Telephony on High Voltage P'ower Lines, page 152.
\%

[^0]: ${ }^{1}$ Votes of a Talk given at the Bell System Educational Conference, . Iugust, 1924.

[^1]:

[^2]: ${ }^{2}$ F. H. Best, "Measuring Metherls for Maintainine the Tramsmission Efficiency of Telephone Circuits," Journal of the A. I. E. E., Febrnary; 1924. 1. 13. (Tark, "Telephone Transmission over l.ong Cable Circuits," Journal of the A. I. E. E., January, 1923.

[^3]: ${ }^{3}$ Craft, Morehouse and Charlesworth, "Machine Switching Tiekphone Sistem for Large Metropolitan Areas," Journal of the .1. I. E. E., April, 102.3.

[^4]:

[^5]: Fiol XXX, Part II, pp. 873 91m.
 The 7 and \% metwinh refierel to, aluene are womet times called star I) and defta (د)

[^6]: ${ }^{3}$ There is at present lack of common agreement as to the basis of defmition of this term, and it is often delined upon the hasis, not of open and short-circuit impedances, but of a uniform recurrent line sue i. I. F., t.. Standardization Rule 1205t, edition of 1922). The formulae derived by the two nuthorls are not equivament in the case of dissymmetrical networks.

[^7]:
 (cmpies Rendus, wo. 17, p, 159, 1503.

[^8]: four, Dos. 1922

[^9]: - When both Z_{1} and Z_{2} are finite and $Z_{1}=-4 Z_{2}$, the mid-series image impedance is zero and the mid-shunt image impedance is infinite.
 \dagger This condition gives a cut-off frequency.
 *T This condition results in infinitc attenuation.

[^10]:

[^11]: . Aso Billiograph 13. 1 ik. ?

[^12]: a Since the value of the transter f.et for, 0 , is depentent simply upon the ratio 6. 1/., it in evident Irom eyputum (11) that the transmissan less cansed by the insertoon of any nctiverk in a cirtual is depentent stmply upon impedance ratios. Con-
 .ill) |hasive nelwork

[^13]: 2t For a gencral bethol of prosing the equality of the image impe lanes of sections
 industance, refer to the Ampendix.

[^14]: 'While forming one's isleas it is preferable to think of the phetoelectric source, for :a variety of reasons; the chetron-stream is not wery dense, the electrons emerge with kinetir energies never in excess of a rertain sharply-marked limiting value, the metal is cold ind not likely to react chemically with whatever gas surrounds it. Alse sever,il of the clissiral fumblamental experiments were performed in the years from $1 \mathbf{5} 9$ sto 1916 , when the photerectric effect had become a reliable instrument of researelh and the thermionic effert had not. Nowadnys it is sometimes used in the hopw of surpassing the acturaty of cartier work, or in experiments on compound g.ases uhich the hot ware might derompese. Still the hon wire is so much e:bsier (1) msert and handle, its cemisuion se much more consenient and controllable, that it will no derubt be employed in the great majority of experiments in the future as in the past.

[^15]: - The modified methols are gencrally more accurate. Ramsauer's device, which 1 despribed in the first article of this series, is probathly the best. By a magnetic fiedd he swong a stream of dectrons around through a narrow curving channel, and those which ware deviated even through a few degrees struck the limiting partitions and were lost from the tram; he varied the mumber of atoms in the channel by varying the gas-pressure. In this way he discovered that A for argon atoms differs very greatly for different speeds of the clectrons; it was later found that other kinds of atoms have a variabsk. 1 , shough happily the variations are not great. This seemb strange at first, hout it is probably stranger that A should have nearly the same value for different specels of the oncoming clectrons, is for many atoms it does; and stranger yet that it slould hate the same value for an onconing atom as for an oncoming electron, as is often tacilly assumed, and not too incorrectly.

[^16]: - I bake the witurs for neon atod argen from Hertic latest pullication.

[^17]: - The sudden ugturn at $10 .+$ volts is the swift rise of current at the onset of ionization. The much less violent upturns at 4.9 and 6.7 volts are due to the elecirons expelled from the netal parts of the upparatus by the radiasion from the excited atoms. In the lower curve, by modlifying the apparatus, the latter upturns are translated into downturns to distinguish them from the upturn which denotes ionization. This distinction was not realized until 1917 , and in articles publisheal tetween 1913 and 1917 the lowest resonance-potentials of gases are given as their iomaing potentials. Enormous improvements in the methorls and technigue of measuring these critical petentials, and recognizing of which kind they are, have leen effected since then.

[^18]: - However, Foote and Mohler have obtained quite undeniable evidence of critical potentials, at which the loss of energy by the impinging electron is much greater than it is just below these potentials. The electron can transfer energy to (and receive energy from) a molecule in more different ways than to (from) an atom; such as by setting the molecule into rotation, or putting its constituent atoms into vibration relatively to one another. There is also the mysterious fact of "electron affinity" an electron may adhere firmly to a non-ionized molecule. Numerous measurements of the rate at which electrons progress through a gas (a field of research which I have not space to consiler here) indicate that at field strengths such as prevail in these experiments, adhesion of electrons to molecules is rare and iransient.

[^19]: , Since the number of free paths, out of a total number V_{0}, which exceed L in length is equal to $X_{0} \exp (-L \lambda)$; and since the potential-difference between the beginning and the end of the path of length L, if parallel to the lield, is $X L$. It may Ine objeeted that the electrons bounce in all directions from their imparts, while the language of this paragraph implies that they are always moving exactly in the direction of the fell. The rebuttal is, that if they do lose almost all of their energy in an impact, or all but an amount not much greater than the mean speed of thermal agitation, they will som he swerved around completety into the direction of the fiedd no matter in what direetion they start out.

 10 The ionizing-potential determines the distance from the cathote at which ionization commences: this is equal (1) $d_{0}=F_{0}, X$, and within this distance from the rathode there is no ionization and the theory does not apply; beyond this distance the ionization is controlleal entirely by the fied strength and by the number of inflowing electrons and the voltage between cathode and anode affects it only insofar as it affects theme.

[^20]: Townemel's whes of B lihew ime correprond to balues of the effective cross-
 of maxnitute as the d rectlv determmed values of . 1.

[^21]: ${ }^{12}$ If momentum is comarracel in the impar foetwern ion and atom, the ion must retain at large part of the kinctit eherge after the rallision, or cher the struck atom
 for the utriking particke to - homel nowly its entire conergy merely in liberating an
 tal on the atomit sale; lon of all the principles of chassit at dyamics, it is the one whech the reformers of physics moss hestate to hay violent hameds upon.

[^22]: ${ }^{13}$ The derivations of 61 and ($\overline{1}$) are as follows. Represent by $M(x)$ the mumber of electrons crossing the plane at x in unit time the cathote being at $x=0$ and the anorle at $x=d$; by $P(x)$ the number of positive ions crossing the plane at x in unit time; by $\mathcal{N i s}_{\text {s }}$ the number of electrons independently supplied at the cathode per unit time; which is not necessarily equal to the value of M at $x-0$ (hence the notation); by i the current, or rather the current-density, as all these reasonings refer to a currentthow across unit area. We have

 $$
 M e+P_{e}=i \text {, hence }
 $$

[^23]: ${ }^{24}$ Field-gradient is therefore, proportional to space-charge with sign reversed, and rice zersa. ['ositive field-gradient implies negative space-charge; negative field-

[^24]: It is inserntive to easmane mappings of libhtalistribution with this prisciple in mand, su h mappings, for ex.tmple, as ilhore in tig. I). The uniform field in a currentGorving wire mean- that prostive and whative charges ate thatributed everywhere in the metal with extuat denatty a comthaton one ninght forget, lout for these more seeneral cases.

[^25]: ${ }^{17}$. Adjacent to the eathorle a thin perfectly dark stratum can he distinguished especially in the picture on the right. The I?.1). across this thin black space is, as nearly as it can be guessed from the width of the space, of alvont the magnitude of the innizing-potential of the gas. In fact. Inton estimated it for helium (to which the pictures refer) as 30 volts, a good anticipation of the value 24.5 assigned years later to the ionizing potential. It seems therefore that the outer edge of the very dark space is at the level where the electrons coming from the cathole first acquire encrgy enough to ionize.

[^26]: 18 The divplaceme me of ewrain

 the perturs. Ior the origmal phate trom which Fig. 11 was matc 1 am indehted to 1r. 1 inser.

[^27]: ${ }^{1}$ Surge or charafteristic impedance may be defined as the measured impedance of a uniform line of infinite length or in the ease of a finite line it may lre expressed nuthematically as $\left.Z \quad \begin{array}{c}\%_{\text {open }} \\ \text { circuted }\end{array}\right) \neq \begin{gathered}\text { shore } \\ \text { crevited }\end{gathered}$

[^28]: ? Whenever the length of the line leromes equal to, or some multiple of, one quarter of the length of the ehertric watw of the corresponding frequency, it is referred to as a quarter wave length frequency, or, for short, a quarter wave length.

[^29]: ${ }^{6}$ Jour. Am. 'hem. Sox., Vinl. 15, pp. 2192 2196, 1924.
 ${ }^{6}$ Journal of the 1 ranklin Institute, Vol. 198, pp. 4.37 47t, 1924.
 ${ }^{7}$ Physical Resiew, Viol, 24, page 30f, 1924.

[^30]: 1 A comprehensive account of earlier work in Picture Transmission will be found in "Telegraphic Transmission of Pictures," T. Thorne Baker, Van Nostrand, 1910, and the "1landbuch der Phototelegraphie und Telautographie," Korn and Glatzel, l.eipzig, Nemnich, ${ }^{1911 .}$

[^31]: ${ }^{2}$ For a very full dessription of the standarl telephone repeater the rearler is referred to "Telephone Repeaters," (rherardi and Jewrlt, Irans. I. I. İ. Fi., Now., 1919, Vol. 38 , part 2, pp. 1237 1.315.

[^32]: ${ }^{3}$ A description of electrical communication by means of carrier currents will be found in "Carrier (urrent Telephony and Telegraphy:" Colpitts and Blackwell, Trans. A. I. E. E., 1921, Vol. 411, pp. 205300. A discussion of the relations between the several components of the signal wave empluyed in carrier is given in "Carrier and Sidebands in Radio Transmission," 1tartley, Proc. 1. K. E., Feb., 1923, Vol. 11, No. 1, pp. $34-55$.
 'A detailed description of the construction and operation of the impulse motor and its driving fork is given in "Printing Telegr.ıph Systems," Bell Trans. A. 1. F. F.., 1920, Vol. 39, Part 1, pp. 167-230.

[^33]: 6The vacuum tube oscillator as a source of carrier current is alescribed in Colpits and Blackwell, Loc. Cit. A general diecussion of the vacuum tube oscillator is given in the "Aution Uscillator," Ileising, Jour. . I. L. E. E.. . April and M.1y, 1020. A discussion of the arrangement of the particular oscillator used with the picture transmission "quipument is given in "Vacumm Pule Oscillator," Itorton, Bell System Tech. Jour. July, 192t, Vol. 3, No. 3, pi, 50s 52t.

 - The application of wave filters to multi-chamel communication systems is discussed in (olpilts and Blackwell, Loc. (it. Nore complete discussions are to Ire found in: "lhysical Theory of Electric Wave Filters," Cample ll, Bell System Tech. Jour. Nov., 1922, Vol. 1, No, 2, 111, 132.

[^34]: ${ }^{3}$ This frequency does not derend upon the direction of the tiedd, and is practically constant over the earth's surface.

 On March 7, after this paper had been written, the Vebruary 15 issne of the Proreedings of the lhysical sweiety of London arrived in New Jork. In this journal there was a discossion on ionization in the atmosphere in which I'rof. E. V. Appleton suggested, in an appendix, that the earli's magnetic fick acting upon electrons would change the velocity of a ware and produce rotation. I calculation of the critical frequency was given in which, however, only the horizontal component of the carth's field was used, resulting in an incorrect value for the critical frequency, namely less than half the actual value. If the complete equations are written down it is rvilent at once that the total fiedel is involved in the critical frequency, no matter what may be the direction of propagation.

[^35]: -It is here assumed that the mean time between collisions is large compared to $\frac{1}{n}$.

[^36]: - Preventel at the Innual Convention of the . 1. I. 1:. 1.., Elsewater Beach, Chicago, 111., June 23 27, 1924.

[^37]: 1 Transient Owillations in Flectric Wate Filters, Carson and \%obel, Brell System Technical Journal, July, 1923.

[^38]: ${ }^{2}$ The deraging procens with respect to the parameters t_{r}, and $t_{\text {s }}$, employed above logically applies to the swerage result in a very large number of epochs during which the system is exposerl (1) the same sel of disturbances with different but random time distributions. Otherwise stated, the averaging process gives the mean value corresponiling to all posible equally likely times of incidence of the elementary disturbances. The assumption is, therefore, that if the epoch is marle sutficiently large, the actual effect of the unrelated efementary disturbances will in the long run te the same as the average effect of all possible and equally likely distributions of the elementary disturlminces.

[^39]: ${ }^{3}$ Signal-to-Static-Interference Ratio in Radio Telephony, Proc. I. R. E. F., June, 1923.

[^40]: 'See L. S. Patent Sio. 1173079 to . Mexanderson.
 ${ }^{3}$ When the number of stages n is fairly large, the selective figure of merit beromes proportional to $/ n$ and the building-up time to n.

[^41]: ${ }^{1}$ Apparently the image of the elastic solisl was never quite perfected; one recalls the question as to whether its vibrations were in or normal to the plane of polarization of the light, which required one answer in order to agree with the phenomena of reflection, and another in order to agree with those of double refraction. Prohahly a modus tivendi could have been arranged if the whole idea hiad not been superseded.

[^42]: ${ }^{2}$ Notably, the trend of the dispersion-curves for certain transparent substances, recently extended by Bergen Davis and his collaborators to the range of X-ray frequencies; the normal Zeeman effect; Wien's observations on the exponential dyingdown of the luminosily of a canal-ray beam, interpreted as the exponential decline in the vibration-amplitudes of the bound electrons in the flying atoms; the dependence of \mathcal{N}-ray scattering on the number of electrons in the atom.

[^43]: ${ }^{3}$ The belief that the character of radiation within a cavity could not be explained without doing some violence to the "classical mechanics" had already been gaining ground for some years, by reason of extremcly recondite speculations of a statistical nature. It is very difficult to gauge the exact force and bearing of such considerations.

[^44]: '1 take the numerical values of the constant h scattered through this article from ferlach. The weighed mean of the experimental values, with due regare to the relative reliability of the various methots, is taken as 6.55 or $6.50 .10^{2 \pi}$. None of the individual values eited in these patges is definitely known to differ from this average by more than the experimental error.

[^45]: - One equivalent volt of energy = the energy acpuired by an electrom in passing across a potential-rise of one volt $=e 300$ ergs $=1.591 .10^{12} \mathrm{ergs}$. This unit is usually called simply a "volt of energy", or "vole", a barl usage but ineradicable. Also "speed" is used interchangeably with "energy" in speaking of cecetrons, aml une finds (and, what is worse, cannot avoid) such deplorable phrases as "s speed of 4.9 volts" ! ! !

[^46]: - Three simple curves of the intensity-distribution in the X-ray spectrum are shown in Figure 5. The abscissa is neither frequency or wavelength, but a variable which varics contimuously with either (it is attually are sin of a quantity proportional to wavelengith) so that the acute angle between each curve ant the axis of abscissae, at the puint where they mect, corresponds to and has much the same meanimg as the acute angles in Figure 2-not so conspicuously.

[^47]: "Cueliach regorels this ats the mose accurate of all the methods for determining h, at ghmon in whif probahly mat all wond concor. It has been maintained that the high-frequeres limit, like the waselenglh of maximam intensity in the X-ras spertrum, deferndis on the inelination of the X-rat leatm to the exciting dectronstream. I do mos know whether the experiments deduced in support of this chatm hase tween adequately confuted.

[^48]: *According 10 a very recent paper by $\mathfrak{C} .11$. Thomas, radiations from iron excited by electrons with as low an energy as some two or three equivalent volts have been detected.

[^49]: - It is difficult to put this statemont into a more precise form. Rayleigh was of the opinion that the hydrogen speetrum could not be regarded as the ensemble of natural frequencios of a medranical system, lecause it is the general rule for such systems that the second power of the fregnency conforms to simple algebraic formulac, while in the hydrogen speetrum it is the first power for which the algedratic expression is simple. Ile admited, however, that it was possible to find "exceptional" mechanical systems for which the first power of the frequency is given by a simple formula; which goes far to vitiate the conclusions. Another aspect of the formula (6) for

[^50]: the hyalrogen spectrum is this, that it specifers infinitely many freguencies within finite intervals enclosing certain critical values, such as $R, 4 \dot{K}, 9 R$, and so forth. l'oincare is said to have provert that the natural irequencies of ant clastic medium with a rigid loundary cannot clisplay this feature, so long as the displacements are governeal by the fantiliar equation $d^{2} \phi d t^{2}=k^{2} \Gamma^{n} \phi$. For a membrane this equation is tamamount to the statement that the restoring-fore anting upon an element of the membrane is propurtional to the curvature of the membrane at that element. Kitz was able to show that the natural freguencies of a square membrane woukd conform to the tormula 16), if the restoring-force upon each element of the membranc. instead of leing proportional to the curvature of the membrane at that clement, depended in an exeedingly involved and artificial manner upon the cursature of the membrane elsewhere. Ile apologized abundantly for the extraorlinary character of the properties with which he had leen obliged to endenw this membrane, in order to arrive at the desired formulat lut his prowedure might have proved unsuspertedly fruitful, if Bohr's interpretation hat not supplanted it.

[^51]: ${ }^{10}$ For the explanation of this rather confusing reversal, see my third article (page 278 ; or page 11 of the reprint).

[^52]: 1 The mathematieal experts who hive laboured over the theory of the heliam atoms (two clectrons and at maclens of charge $+2 e^{\circ}$) seem to have convinced themstres that the features which distinguish the permited orbits of the electrons in this atom, whaterer they may be, are definitely mot the same features as distinguish the permitted orbits of the electron in the hydrogen atom. This cannot be said with certainty for any other atom.

[^53]: ${ }^{12}$ If the reater prefers to use the famitiar expressions $\frac{1}{2} m v^{2}$ for the kinetic energy and m for the magnitude of the momentum of the electron, he will arrive at a formula for p^{\prime} which, while apparently dissimilar to (9) and not so elegant, is approsimately inlentical with it when r is not zoo large or, which comes practically io the same ahing, when hy is suall in comparison with mc^{2}; a condition which is realizet for all X-rats now being problucel

[^54]: ${ }^{13}$ The diagram in Fig. 6 is designed to illustrate the relations between the energy of the primary quantum (radius of the dotted semicircle), the energy of the rebounding quantum (ratlius of the upper continuous curve), and the energy of the recoiling electron (raclius of the lower continuous curse). Thus the two arrows marked with a 5 are proportional respectively 10 the energies of the secondary quantum and of the recoiling electron, when the encoumter has taken place in such a fashion that the angle θ is equal to the angle leetween the arrow 10 and the upper arrow 5. In the same case, the angle hetween arrow 10 and lower arrow 5 is equal to ϕ of the equations (9).
 "Is a matter of fact we have no indepembent means of knowing that the recoiling - Hectons are initially free, or that the sattered beam with the modified frequency originates from collisions of primary quanta with initially. free electrons; we know mily thin the frequency of the seattered quatat is such ats would be explected if litile or no conergy is sjemt in freeing the ceectrons, abal little or no momentum is transferrel ouherwise than to the electrons which, of course, is not quite the same

[^55]: ${ }^{16} 1$ sm indelted to Profeson C. T. R. Witom and to the Seremory of the Royal bociety for ferminsion to reprexlace these photographs.

[^56]: ${ }^{17}$ It was formorly contended that this explanation, while applicable to the behavior of free atomis which respond only to certain discrefe frequencies, would not abail for a solin subssance like sodium which delivers up electrons with energy $h v$, whatever the frepuency p maty be. This contention, however, is probably not forcible, as is can lu suppesed that the solid has a very great number of natural frequenties very chose together. This in fact was the inference from Epstein's theory of the photodectric effect.

[^57]: " (hne might, of course, inquire, why should a piece of the wavefront of a 'quantum, rut out of it by the edges of a slit, expand after passing through the slit when the quantum itself apparently rushes through space without expanding?
 ${ }^{12}$ It mighe be argued that these quanta from slars have come an enormously long way, and possibly have hat a better chance to expand than the quanta passing ateross a laboratory rom from an X-ray tube or a mercury are to a melal plate. However, since the photorlectric cell is used to measure the brightness of a star, they "vitembly protuce the same sort of photochectric effect is newborn quatat.

[^58]: 1"Proximity Effect in Wires and Thin T"ubes," Trans. .1. I. E. E., Vol. XLH 1923, [. 850.

[^59]: 2 I convenient table of these functions for arguments from 010 t0 at intervals of 0.1 is incorporated in Mr. Wwight's paper ". I'recise Methorl of Calculation of Skin Effect in Isolated Tuhes," J. 1. I. E. E., Aug., (9)23.

[^60]: ${ }^{1}$ Journal A. I. E. E... Vol. 44, 1. 213, 1925.
 : Presented at the mid-winter convention of the . I. I. F. F.., Fich., 1925.

[^61]: ${ }^{3}$ Journal A. I. E. E., Vol. 43, p. 223, 1925.

 - 1:lectrical Communications, Vol. 3, pp.127-133, 1924.

[^62]: - Journal of the Franklin Institute, Vol. 199, p. 99, 1925.
 © Journal A. I. E. E., Vol. 43, p. 1133, 1924.

[^63]: ${ }^{9}$ Aserophysical Journal, Vol. I.X. No. \&, Novemler, 192.t.
 ${ }^{10}$. Dstrophysical Journal, Vol. LX, No. A. Novemher, 1924.

[^64]: ${ }^{12}$ Flectrical Communications, July, 1924. London Electrician, January Io and 23. 1925.
 ${ }^{15}$ t'hysical Review, Vol. 24. p. 666, 1924.
 14 Divisson and Germer, Phys. Rev., 20, 300 (1922).

[^65]: ${ }^{1}$ The Elecirician, Vol. XCIV; p. 17t, by Sir Oliver Lolge, F.R.S., O.M. Vafure, tol. 115, p. 237, by Dr. Nex. Russell, F.R.K.
 ${ }^{2}$ Was he the youth with the frown in the library? He says he "ihen died," but also says "he was eaten up by lions." (E.M.T., Vol. III, pp. I and 135.)

[^66]: ${ }^{1}$ [reanted before the A I. F.. E., June 26, 1925.
 =Jour. Franklin Inst., Vol. 195, pp. 621 6.32, May 1923; B. S. T. J., Vol. 11, No. 3. p. 1111.

[^67]: ${ }^{3}$ The true initial permeabilisy is slighly higher. T's compuse it, account must be taken of the fact that, contrary to what hat Inen sometimes assumed, the magnetic lines of induction in the tape do not form closed loops around the wire but tend 10 follow the tape in a helical path. The piteh of the helical path of the lines of induction is slighly less than that of the permalloy tape with the result shat a line of induction lakes a number of turns around the conductor, then erosses an airgap telween two aljacent turns of tape amb continues along the tape to a point where it again slips latck arross an airgap. (). E. Buckley, British Patemt No. 206, 104,

[^68]: ${ }^{3}$ The iklea of improving the transmission of signals over a line by adding dist ributed inductance 10 is originated with oliver Heaviside in 1887 (Electrician, Vol XIX, p. 7^{9}, and Vilectromagnetic Theory; Vol. I, p. 441, 1893), who was the first io call attemtion to the part played by inductance in the transmission of current impulses over the cable. He suggested as a means for obtatining increased inductance the use of iron as a part of the conductor or of irm dust embedded in the gutta percha insulation. He alsos prop:osed inserting inductance coils at intervals in a long line. Other types of coil loating were proposed by. S. P'. Thompson (British Patent 22,304-1891, and 1 . S. t'atents 571,700 and 571,7197-1896), and by C. J. Recd (U. S. Patents 510,612 and $510,613-1893$). N. 1. Pupin (A. I. E. E. Trans., Vol. X\I, p. 93, 180), and Vol. X\11, p. 415, 1900) was the first to formulate the eriterion on the hasis of which coil loaded tedephone cables could be designed. Contimoous loading by means of a longitudinally discontinnous layer of iron covering the eombluctor was proposed by J. S. Stone in $18^{9} 97$ (IT. S. Patent 578,275). Breisig (E. T. Z., Nov. 30, 1890) suggested the use of an open helix of iron wire wound around the conductor and Kirarup (К. T. \%, April 17, 1902) proposed using a elosed spiral so that the adjacent turns were in contact. J. II. Cuntz (U.S. 1'atent 977,713 tiled March 29, 19011 proposed another form of continuous loading. Recent general disenssions of lomed telegroph cable prohtems have heen given by Malcolm (Theory of Submarime Telegraplo and tetcphone (able, Lomdon, 1017) and by K. W. Wagner (Flekir. Narhis. Terh., (1,1, 192)

[^69]: - Theory of the Submarine Telegraph and Telephone Cable, I.ondon, 1917.
 ${ }^{6}$ Trans. A. I. E. E., Vol. 38, p. 345, 1919.

[^70]: - For atemrate romputation of athonation the complete formula for a must be nserl.

[^71]: ${ }^{7}$ See Carson and tillert, Jour. Firanklin Inst., Vol. 192, p. 705, 1921: Electrician, Vol. 88, p. 499, 1922; B. S. T. J., Vol. I, No. 1, p. 88.

[^72]:

[^73]: ${ }^{10}$ Recent work of J. R. Carson (U. S. Patent $1,315,539-1919$) and R. C. Mathes (U. S. Patent 1,311,283-[919 has shown that with the combined use of vacuum tube amplifiers and distortion correcting networks, distortion in non-loaded cables can be compensated to any desired degree.

[^74]: ${ }^{1}$ The driving-point impedance of a network is the ratio of an impressed electromotive force at a point in a branch of the network to the resulting eurrent at the same point.

[^75]: ${ }^{3}$ G. A. Campbell discusses, in the paper cited, the theorem that if a single element of any network be made 10 traverse any circle whatsoever, the driving-point impedance of the network will also deseribe a circle.

[^76]: 4 Sce: A Reactance Theorem, R. M. Foster, Bell System Technical Journal, April, 1924, pages 259-267; also: Theory and IDesign of Iniform and Composite Electric Wave-Filters, O. J. Zobel, Bell System Technical Journul, January, 1923, pages $1-47$, especially pages $35-37$.

[^77]: - It may be mentioned that the inner and outer honmaries are impedance curves traced out when $Z_{2} Z_{32}=\frac{A_{13} A_{12}}{A_{12,33} \Lambda_{13.22}}$ and $\frac{Z_{2}}{Z_{2}}=\frac{\Lambda_{13} A_{12,28}}{\Lambda_{12} A_{12.22}}$, respectively.

[^78]: - When the sheets are numbered in this way, the point S falls on Sheet I or Sheet 11 according to the following table, in which k_{1} and k_{2} are the critical values for the proluct and quotient of Z_{2} and Z_{3}, respectively, given in Footnote 5:

 | $\left(Z_{2}, Z_{3}\right)$ | $(+,+)$ | $(+,-)$ | $(-,+)$ | $(-,-)$ |
 | :---: | :---: | :---: | :---: | :---: |
 | On Sheet 1, if | $Z_{3} Z_{2}<k_{2}$ | $Z_{3} Z_{2}>k_{1}$ | $Z_{3} Z_{3}<k_{1}$ | $Z_{2} / Z_{3}>k_{2}$ |
 | On Sheet II, if | $Z_{2} / Z_{2}>k_{2}$ | $Z_{3} Z_{3}<k_{1}$ | $Z_{2} Z_{3}>k_{1}$ | $Z_{2} / Z_{3}<k_{2}$ |

[^79]: ${ }^{1}$ This part, the first of two composing the article, is devoted chielly to the facts of observation which the favorite atom-model of the physicists of today-the atommodel known by the names of Rutherford and of Bohr-is designed to inlerpret. A brief description of this atom-model is included; but the detailed account of the peculiar features, of the strange and important limitations which are imposed upon it to adjust it to all the phenontena mentioned, is reserved for the second part. Owing to the great quantity of information which it is desirable to present, the article needs all the benefit it can derive from a careful and obvious organization, and 1 have sacrificed tluency to a quite formsal arrangement under hearlings and sub-headings.

[^80]: ${ }^{2}$ I should have put this passage even more strongly, but that Schuster tells that Kelvin himself inveighed on one ox-cision against the idea of subdividing atoms. He was answered by a young man who said, "There you sec the disadvantages of knowing Greck." This seens as good an answer as any.

[^81]: ${ }^{3}$ Now and when an article appears in a physical or chemical journal, in which an ofldly unconventional atom-morlel is proposed to interpret some such property of matter as the thermoelectric effects, or supra-conductivity, or valence, or some other with which the Rutherford Bohr atom-model has not as yet been matched. It is easy for a physicist to ignore such articles, on the ground that any model departing from that of Kutherford and Bohr must be wrong. This is ceriainly a mistaken policy: Any partially comperomt atom-moxdel deserves to be examined with care; its esmontial features must reappear in the eventhal morlet. But, of course, the essential feature is not always the conspicuons one.

[^82]: - This section is drastically curtailed, for the chief fiets alsout the electron should ly this time tre common knowledge. Willikan's trook "The Electron" (now in its second edition may be consulted.

[^83]: ${ }^{3}$ This is a short way of saying that, if the electron were a particle of smaller radius than $2.10^{-13} \mathrm{~cm} .$, more energy wouk have 10 be supplied 10 it to increase its speed than is actually required. For, in order to set an electrified particle into motion, energy must be supplied to build up the magnctic field which surrounds a moving electric charge; this energy U is additional to the kinetic energy $\frac{1}{2} m r^{2}$ required to set the mass m asseriated with the charge into motion with speed v, and it may he regarded as the kinetic energy associated with an extra "electromagnetic" mass $2 U^{\prime} / v^{2}$ which the particle possesses by virtue of its charge. This quantity $2 \ell^{\prime \prime} \vartheta^{2}$ can be caleulated, for a given size and shape of the electron; if we make the electron $f(x)$ small, $2 \ell^{\prime} r^{r^{2}}$ comes out larger than its observed mass, which is a reduction ad absurdum. This illustrates the rather surprising fact that we are not permitted 10) imagine the chectron as an infinitely small particle, a mere geometrical point foaded with an infinitely concentrated charge and mass. Spectations about its size and shape and the distribution of charge within it are not necessarily trivial; some may wen lo verifithle. We also meet with this dilemmat how does the electron, a piece of nogative electricity of which each part shoukl repel every other, keep) frotu explexling?

 - l'erhaps I ought to mention that F. Ehrenhaft of Vienna has been ardemby contending for about fifteen years that there is no suek thing ats an electron. He maimains that he can temonstrate negative charges much smaller in amount than

[^84]: - ('ommonly knewn as the Rutherford atom-model, after the playsicist who inwented in ame dimovered mos of the evibence for it ; ocasionally as Nagaoka's, after another folysicist who suggented it; orcasinnally ds the Salurnian moelel, as some hase suppeased that the electrons lie in flat rings aroumb the mucleus like the rings of Siturn around that plamet

[^85]: ? For the mathematical theory of these experiments, the second article of this series may be consulted.

[^86]: ${ }^{11}$ Except that he may and must alter the inverse-square law of force to just the extent that further and more relicate experiments of this type require. Thus Bieler (l.c. supra) concludes, from a study of dellections of alpha-particles passing close to the nuclei of aluminium atoms, that within about $10^{12} \mathrm{~cm}$. of the aluminium nucleus the inverse-square repulsion which it exerts upon an alpha-particle is supplementerl by an attractive force-perhaps an inverse-fourth-power attraction, just halancing the repulsion at a distance of $3.44 \cdot 10^{13} \mathrm{~cm}$. from the centre of the nucleus. Rutherford earlier found anomalie's in the encounters between hydrogen nuclei and alpha-particles, which suggested to Darwin that the latter might be considered as a disc-shaped hard particle, or an oblate spheroid of semi-axes $4.10^{\text {i3 }}$ and $8.10^{-13} \mathrm{~cm} . ;$ this would repel hydrogen nuclei according to the inverse-square law so long as it diel not actually strike them.

[^87]: ${ }^{12}$. Inyone who reads the physical literature of todey soon becomes familiar with the phrase "the electron is in the . . . orlin" used instad of "the atom is in the ...state." This phrase expresses theory rather than facts of ohservation, and dees not always express theory adequately; I have avoided it in this articte.

[^88]: ${ }^{13}$ This methox of locating stationary states by observing transiers of energy from chectrons at atoms is called the method of inehastic impacts; for the impacts of electrons aghinst atoms are clastic thy deftinition) sel long as there is no transfer of anorgy into the internal economy of the atom, and are indastic when such transfers oceur. Whon an atom returns into its normal state from an excitel state, it matally emits rathation: hence a methed for detecting the first commencement of radiation is ustally (purhaps not always) equivalent to a methoxl for detecting the first commenerment of indastic impacts. As it is generally easier to set up apparatus for detecting ratiation than to sek evidence for chastic impacts, direct observations upen these last are now so albundant ats they shoutr le. Nolsody really knows how many stationary states might l_{x} discovered by the method of inelastic impacts, athough Franck and Einsporn deteeted over a dozen for mercury (of which those given in Table 11 are some). In fart they deterted more than could conseniently her ascribeal to mercury atoms, st that if was necessary to athribute some of them (1) molecules.

[^89]: ${ }^{14}$ The reader may take this, for the time leing, simply as the name of a particular element.

[^90]: ${ }^{15}$. Is a matter of fact, the series-limit is not generally so obvious to the eye that it can the lecated at once; it is tetermined after and by means of a rareful choice of the most suitable form for the function $f i$). This is one of the difficulties of the spertroscopist's task.
 ${ }^{16}$ In the seventh article of this series (font note 9).

[^91]: 17 1isote, Meggers and Mohler observed a line corresponding to a change of two units in k (the line $(1,5)-(3, d)$, in the notation on be explained in sertion $E, 5$ under circumstances in which it seemed impossible to believe in an atmormally large electric field.

[^92]: ${ }^{18}$ The symbol b is sometimes used instead of f. For the columns following to the right of the f-column there are various notations, particularly $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ and g, h, i. See also footnote 21.

[^93]: ${ }^{10}$ The reater will recognize, in the initials of these names, the letters s, p, d, b, and f used to designate the several columes of tevels.

[^94]: ${ }^{20}$ It would be particularly interesting to melle beyond guestion whether the missing lines demand the selection-principle already explained in section Et, rather than the one to be explained in section lis. This is one of the reasons for wanting 10 produce and examine the spectrum of doubly-ionized lithium, in which the evidonce woud probably be much clearer.

[^95]: ${ }^{22}$ The defect of a maknetic field on resonance-rediation, discowered by Wood and billat, will be demribed in the Seomel fart.

[^96]: ${ }^{23}$ In fact the usoge is inverted. A series, in the optical spectrum, is a set of lines having the same final state in common; but the " k-series" is a group of lines having the same intial state in common, the L-suries a set of 3 groups corresponding to 3 initial states.

[^97]: ${ }^{1}$ ['resented Inefore the Institute of Radio Einginewrs, May 6, 1925.
 ${ }^{2}$ "Transatlantic Radio Telephony," Irnold and Espenschied, Journal of A.I.E.E., August, 1023. See also, "Power Implifiers in Transatlantic Telephony," Oswakl and shelleng, presented before the Institute of Radio Iingineers, May 7, 1924.

[^98]: ${ }^{3}$ Rarlin Transmission Measurements, Bown, Finglund, and Friis. Procerelings I R.E., April, 1923.

[^99]: "Sce also "Rarlio Extension of Telephone System to Ships at Sea," Nichols and Figuenschied, I'ruc. I. R. E.. June, 1923, pages 226-227.

[^100]: ${ }^{1}$ Bulletin National Research Council, Vol. 10, part 2, March, 1925, 203 pages.
 ${ }^{2}$ Journal A. I. E. E., Vol. 44, page 618, 1925.
 ${ }^{2}$ London Electrician, Vol. 04, page 562, 1925

[^101]: ${ }^{1}$ J. O. S. A. and R. S. 1. 9, 123-7 (August, 1924).

[^102]: - Journal Opt. Sor. of Am., Vol. N, No. 5. pp. 6019-611, May, 1925.
 s Proc. of I. R. E., Vol. 1.3, page 31.3, June, 1925.

[^103]: - I'roce of 1. R. I:.. Viol. 13, paige 291, 1925.
 ${ }^{7}$ J. (). S. . . and R.S. S. 10, 59t-8 (.)19y, 1925),

[^104]: 1 This cable has recently been completed.

[^105]: In this paper the term "regular" implies that a telephone line is free from dectrical irregularities.

[^106]: ${ }^{2}$ The "reprementative" deviation or current is an inclex of the magnitude of the deviation or current that may be expecteal in accordance with the laws of the distribution of errors. It corresponds to the root-man-square error. It must not be confused with the "effective" or r.m.s. value of a particular alternating current. The meaning of the term as used here is more completely explained in the paragraph following equation (2t).

[^107]: ${ }^{3}$ For a more complete description of this aperation, see ". Mvanced (balculus," 1,y F.. 13. Wibson, page 300 el sec.

[^108]: - In accordance with the practices of the Bell System, this notation indicates a phantom group of Nin . 19 B . d S . conductors in a cable with loarling coils spaced $6,00 n$ feet apart, the sife circuit coils having $17 t$ millihenrys inductance and the phantom coils 63 millihenrys.

[^109]: *This motation indicates a side circuit of No. $16 \mathrm{l3}$. \& S. conductors in a cable Inaterd with it millihenry coils spaced 6,000 feet apart.

[^110]: －The figures are＂fractional＂deviations．Percentage deviations which are sometnes used are tur）times as large．Care should be taken to avoid errors caused by failure to divide percentage deviations by 100 before finding the value of F_{F} ．

[^111]: ${ }^{2}$ "The science of Musical Sounds," New York, 1916. This contains a bibliography of 9) special references, some 12 of which relate specifically to speech.

 4 "A Contribution to the Mechamism of Articulate Speech," by S. IV. Carruthers. Edin. Med. Jonr. V'111 (New Series) (1900) pp. 236, 332, 426.
 s"The Psychology of Sound," by Ifenry J. Watt (Cambridge, England, 1917), contains a bibliography of 159 relerences. The work of C. E. Seashore is noteworthy in this field.
 *"Researches in Experimental Phonetics." Publication No. 44, Carnegie Institution, Washington, 1900.
 *"The I'hysical Characteristics of Speeeh Sound," by Mark 11. Iiddell. Bulletin No, 10, I'urdue L'niversity Engincering Lixperiment Station.
 ${ }^{8}$ S.e Lollowing papers, from the Rescarch Laboratories of the American Telephone and Telegraph (\% and Western Electric Co., Inc.:
 (a) 11. 1). Trmold and 1. 13, Crandall: The Thermophone as a Precision Source of Sound: Phys. Rev. 10, (1917), p. 22.
 (b) V. C. Niente: Condenser Transmitter for Measurement of Sound Intensity: Phys. Rev: 16 (1917), p. 39.
 (c) 1. 13. (randall: The Jir Damped Vibrating System: Phys. Rev: 11 (1918), 1. 419 .
 (d) 1. 13. Crandall: The Composition of Specelt: Phys, Rev. 10 (1917), p. 74.
 (c) R. I. Wigel: Theory of 'elephone Keceivers: J. A. I. E. E. 40 (1921).
 (f) K. C. Wente: Sensitivity and I'recision of the Electrostatic Transmitter: Phys Rev, 19 (1922), p. 498.
 (g) 1. 13. (rand,ll and 11. Mackenzic: Analysis of the Energy Distribution in Speerh: Ploys. Rev: 19 (1922), p. 221.
 (h) 11. Wetcher: The Niture of Speech and its Interpretation: J. Franklin Inst. 193 (1922), p. 729.
 (i) J. (). Stewirt: In Vilectrical Inalogne of the Vocal Organs: Nature, Sept. 2, 1922.

[^112]: ${ }^{13}$ J. R. Carson: Phys. Rev. 犬゙, 1917, p. 217, "On a Ceneral Expansion Theorem for the Transient Uscillations of a Connected System."
 ${ }^{11}$ T. C. Fry, Phys. Rev. XIV; 1919, p. 117. "The Solution of Circuit Droblems."
 12 Thanks are due to Messrs. C. F. Saciat and C. J. Beck for the skill and care with which they assembled and calibrated the recording apparatus, and made the complete set of records. The writer is alsn under obligation to Mr. Sacia for aid in choosing the sounds to be recorded, and syst ematizing the collection: Mr. Sacia also developed and applied the photomechanical methos of analyzing records, the results of which are given in Figs. 13 and 1.1 of this paper.

[^113]: ${ }^{1}$ It is practicable, however, to ohtain valuable rlata as to the formation of the vowel sounds by analyzing reparately the steressive cycles at the beginning of a typical sowel reoord. Istudy of this kind, based on these records, is being carried out by Messes. . . R. French and 11 : Koenig of the Imerican Telepbone and Tele. graph Company.

[^114]: ${ }^{2}$ In Fig. 1, data have been given showing the actual distribution of energy in average speech. The tremendous concentration of energy in the lower frequencies is somewhat misleading unless account is also taken of the much reduced sensitivity of the ear in this region.

 4 See Bell System Tech. Journal, Vol. H, No. 4, Detoleer, 1923. The paper on Audition, by 11. Fletcher, shows a graph of the "Thresholel of . Iudibitity" curve from which these data were obtained. The ear sensitivity factors used, of course, relate to the lower intensity levels; but it is thought that no essential inaccuracy is thereby introduced, as the position of the characteristic frepuencies of a given vowel is subject to some variation with different speakers, and moderate variations in the height of these maxima in the energy spectra are not significant, except when taken from cycle to cycle in the case of an individual sound.

[^115]: A preliminary report has been made on the properties of these sounds, and their relation to the general vowel cliagram. (I'hys. Rev. 23, 1924, p. 309.)

[^116]: ${ }^{1}$ Varying and findly approximating a characteristic region of resonance of the associated vowed.
 ${ }^{2}$ Varying with the associated vowed.

[^117]: -

 Corte (i- - Ponsibly due in some cases to the a souml

[^118]: ${ }^{1}$ The power due to any periodic force, containing only odd harmonics, fluctuates with double the frequency of the fundamental; but in the ease of any periodic force contaning even harmonics also, the power lluctastions have the same fundamental irequency as the force. Athough speech sounds are not periodic an analogous relation exists for them.

[^119]: = hee, for example, Rayleigh: Theory of Sound, Vol. 2, page 16.

[^120]: Note: The average ration of the total cime in the silent gaps to that consumed by the syllables is 0.55 ; the syllables a verage 0.16 sec.
 ${ }^{3}$ Crandall and Mackenzie gave an estimate of 12.5 ; B. S. T. J., Vol. 1, No. I; Phys. Rev., Mar. 1922.

[^121]: - This arrangement is based upon the well known vowel triangle of Vietor.

[^122]: 'I Ievoted 10 Bubr's atom model for hydrogen and ionized helium. The models for other atoms, as well as some gencral considerations, are reserved for the Third Part.

[^123]: = This is not quite a proof of the fact. Is . Aston cleverly remarked, when a pistol is fired, smoke and a bullet come out of it: we wre quite justitied in inferring that the bullet was originally within the pistol, hut not the snoke?
 ${ }^{3}$ This energy, which I called the energy of the "state of the isnized afom" in the First l'art, is truly the energy of the systent comp csed of the atom minus its electron, and the free electron.
 4. Although not in stable equilibrium.

[^124]: ${ }^{5}$. part from such deviations in the inmediate neighborhood of the nucleus as the most delicate experiments of this sort reveal; which cannot be supposed to extend to the region where the electrons are.

 - To indicate how much this neglect of the radiation from the revolving electron amounts 10, I cite the results of a calculation given by Wien in his lecture Leber Filcktronen, and doubless clsewhere. Imagine an dectron distant hy ten Angstrom units from a hydrugen nucleus, and moving with such a velocity that, but for the rathation, it would revolve in a circle about the nueleus. In a single circuit, it should ratliate about one ten-millionth part of the kinet ic energy it initially possesses. Hemee the single circtut will differ very little indeed from a perfect circle; and in this atome, the rathation is truly negligible: But the single circuit is described in less than $10^{\text {zo }}$ scyond; hence, in any time-interval long enough to be measured by the most chelisate of physical apparatus, the dissipation of energy by radiation is far too great to |n- neglecteal with impunity.

[^125]: * If any reaber cotn alsolish these defeets, a mult itude of chemists will he glad to hear from him. (hemists want atom-models with stationary electrons.

[^126]: - Consult for instance the article by Angerer, ZS. f. Physik, 1\&, 1p. 113 ff.

[^127]: ${ }^{2}$ The allowance to lo mate for the motion of the melens never differs perceptibly from that alrealy marle hy introlucing μ into equation (to), and the magnetio fields arising from the motions of the electron and of the nueleus are without perceptible eflect (: (; 1), arwin, Phil, Mag. 39, 10. 53;-55t: 1921). The correction which would lee required if the nuelens or the electron were oxddly shaped, if the nuthens were a maknet, or it there were entrainment of the potential energy of the-- item lny the muving eletron, have been evaluated by various people; comsult 1. 1: Ruark, Atroph. J1. 58, pp. 4(258 (1023).

 The ambiguity ei sign which arises in the comren of the development nay toe realved by thinking of the limiting case of the circle $\epsilon=$ ().

[^128]: 1 This rosette is degenerated into a circle; the precession amounts effertively to an additional term in the expression for the angular velocity of the chectron.

[^129]: ${ }^{12}$ For the experimental results and the comparison of data with predictions see P'aschen's greal paper (. 1 mn . d. Phys. 50, pp, 901-941); 1915) which however is anything lat casy to reacl, so that Sommerfedl's presentation will probably be preferral: likenise Birge's articke (Phys. Kee. 17, pp. 5s9 f. 1921) to which the same words upply. The agreements are impressive. ()n the other hand I note that Lau 11. 1. supra) conchudes from the same data that there is a disagreement between dato and predietions, in the sume sense and of about the same magnitude as the disagreement whidh he claims to ofeur in the hydrogen spectum.

[^130]: ${ }^{13}$ Se4 Epstein's article (.1nn. d. Phys, 50, pp), 489-520; 1916), or the more perspicuous account by sommerfeld, in which it is stald that the pattern of the components into which the first four lines of the Balmer series are reshlyed by the electric fied agrees with the predictions so far an the number and relative spacings of the components are concerned; while to attain agreement in regaril to the absolute spacings, it is necessary only to assume that Stark's estimate of the field was 3^{\prime}, in error, which is yuite casy to accept.

[^131]: "I nlike rome of the precerling derivations, this theory is not essentially limited (1) the rase of an atom-mustel consisting of a nuclets and one electron. If there are several electrons deseribing closed orbits, the larmor precession , the ts them identicalty, or, otherwse put, the- magnctic fiedt treats the atoms as a unit having .tn angular momentum and it magnetic moment exwal respertively to the vectortal sums of the angular momenta and the magnetir moments of the individual ele troms. In fat the hest verifuation of 7.3 is obtained from the lines inelonging to the -inglet
 whirh thes theory is adapted. With anomalou- Zeeman effect, dgetinst wher this theory is prowerless, we are nos now conecrned. In the catse of hydrogen, the effer i is complicaterl by the tine structure of the lines. With small magnetac fredels it in
 of which the energy-valuen are kiven i, 0,2 and 16.5 is replaced hy fwe or more, conforming in 73 .

[^132]: ${ }^{1}$ For at re narkably concise and en anplete disenssion of 1 he exponential solution ley aid of the theory of Ileternthathts, see (isoidal (bseillations, Trans, A. I. E. E., 1911, by 6. 1. Calipitell.

[^133]: ${ }^{2}$ Exceptions to this relation exist where the network contains sources of energy such as a mplifiers. These need not engate vur attention here.

[^134]: ${ }^{3}$ In integral egnation is one in which the unknown function appears under the sign of integration. (29) is an integral equation of the Laplace type. If $Z(p)$ is specified. $f(t)$ is uniquely determined. Methods for solving the integral equations are considered in detail hater, in connection with the exposition of the Operational Calculus. The phrase "all positive values of p " will be understood as meaning all values of p in the right hand half of the complex plane.

[^135]: ' Vide a remark of his to the effect that some matbematicians took refuge in a definite integral and called that a solution.
 ${ }^{3}$ This terminology is due to lleaviside. A more appropriate and physically significant expression would be "The Solation in terms of normal or charateristic vibrations."

[^136]: - For a proof of this important theorem the reader is referred to Borel, "Lecons sur les Siries Divergentes" (t001), p. 104; to Bromwich, "Theory of Infinite Series," frr. 280 281: or to Forel, "Sturlies on Divergent Series and Summability," Pp, 93-94 Ineing Vol. II of the Michigan University Science Series, published by Macmillan). The prox d depends on Jacolits iransformation of a double integral:see lidward's "Integral Calculus," 1922, Vol. 11, pp. 14-15.

[^137]: *The derivation of the formulas in this problem is left as an exercise for the

[^138]: : White this series is incorrect as an asymptotic expatasion of the current it has important significance, as we shall see, in connection with the buikling up of alternating currents.

[^139]: - Physical Review, Vol. 25, No. 0, page 893, June, 1925.
 s Jour. A. I. E. E., Vol. XLI', No. 6, page 618, June, 1925.

[^140]: - 1'rex, of I. K. E., V'ul. 1.3, No. 4, page 413, August, 1925.
 l'hysical Keview, V'ol. 25, No. 0, page 795, June, 1925.

[^141]: ${ }^{3}$ Jour. Sor of Automotive Engineers, Vol. Nill, So. 1, page $115, ~ J u l, 1925$.

