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Summary

The electric impedance of a loudspeaker depends upon the acoustical
load and may be used for measuring this load. The relation between the
clectric impedance of an electrodynamic loudspeaker and the acoustic
impedancé in front 6f the loudspealker is given and discussed in detail.
The consequences of the flexibility of the cone are studied. Simple for-
mulas and graphs are given, connecting the electrical behaviour and the
absorption coéfficient corresponding to the load on the loudspeaker.
The method seems to permit absorption measurements at low frequencies
(e.g. 50-500 Hz).

§ 1. Introduction. In general the electrical alternating current
resistance (impedance) of a sound source (telephone, electrodynamic
loudspeaker, quartz oscillator etc.) depends more or less on the
acoustical load, i.e. on the acoustit impedance of the radiating sur-
face. This is a well-known fact 1). Whether or not this dependence
may be used for computing the acoustic impedance from measure-
ments of the electric impedance of the source, depends again upon
the simplicity of the relation between the electric and the acoustic
impedance and upon the relative magnitude of this acoustical
reaction. The relation between both impedances referred to is in all
cases a simple inverse one (see below) and the decisive question
is that of the relative magnitude of the effect. The reaction on a
telephone in resonance is large. This apparatus, therefore, can be
cused with advantage 2). The telephone is, however, only sensitive
in resonance. Hence, in order to enable us to measure at various
frequencies a telephone with adjustable resonance frequency or a
set of telephones with various resonance frequencies must be used.
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This is no doubt a serious drawback of using a telephone. It would
take us too far to discuss here the features of all possible systems.
We confine ourselves to the mere statement that the electrostatic
reaction (in principle the change in the impedance of a condensor
loudspeaker, caused by acoustical load) is of a much too small order
to be of much use, and to the description in the following §§ of the
method based on the reaction on a normal moving coil electrody-
namic loudspeaker.

It will be hardly necessary to stress here the practical importance
of the measurement of the acoustic impedance. On the one hand the
acoustic impedance z is connected by a simple formula 3) with the
absorption coéfficient a, viz.
z—oc [*

Z + pc

where ¢ = density of air, ¢ = sound velocity in air. Therefore, when
z is known, @ may bé computed or read directly from a graph.
On the other hand the way in which z depends upon frequency
gives us some information about the absorption mechanism to
which the absorption of the material under test is due.

The way in which the investigations are carried out is in principle
that of an ordinary interferometer. Loudspeaker and absorbing
sample are placed at the two ends of an iron tube. Only normally
incident sound is involved, so the use of the computed absorption
coéfficient is confined to cases of normal incidence.

The method can 'only be used with rather low frequencies. The
mechanical impedance of the loudspeaker cone itself above resonan-
ce (50 a 100 Hz) increases approximately proportional to frequency
(jem). At high fréquencies (say above 1000 Hz) this impedance of
the cone will in general be high in comparison with ordinary acousti-
cal loads, resulting in a relative low sensitivity to acoustical load
variations at high frequencies. As a rule ordinary loudspeakers seem
to allow measurements with sufficient accuracy up to 700 & 1000 Hz.

a=1—

§ 2. Relation between electrical and acoustical impedange. Let
¢ = the complex a.c. tension at the terminals of the coil,
¢ = the complex alternating current through the coil,
Z = complex electric impedance of the coil when it is not allowed
to vibrate (loudspeaker with fixed cone),
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Z,, = idem with vibrating coil,
B — magnetic induction (= uH) in the airspace of the (per-
manent) magnet,
] — total length of the thread which forms the coil,
v = complex “a.c.” velocity of the coil,

Z,., = complex mechanical impedance of the coil due to the
stiffness, mass and losses in the cone material as well as
to the total acoustic load on the cone (dimension: force/
velocity).

Then two equations may be obtained, an electrical and a me-
chanical one, namely
¢ =17 + Blv, (1)

0—=—Bli+Z,,,v " (2

In (1) Blv stands for the e.m.f. of induction in the coil due to the
velocity v of the coil. The term Bl in (2) is the Lorentz force on the
coil due to the current 7.
Eliminating v from (1) and (2) and replacing e/i by the total im-
pedance Z,,, we obtain
(Bl

Dy =,
tot +Z

: (3)
mech U ~
According to this well-known relation the total impedance consists
of two parts, the normal impedance Z to which is added a part due
to the motion. Indeed this second part vanishes when Z,,,, is in-
creased to infinity. This part, therefore, is generally called the mo-
tional tmpedance.

The motional impedance may be found as a function of frequency
by measuring both Z,, and Z as a function of frequency and sub-
tracting Z from Z,,. At any frequency Z,,,, can be calculated by
dividing the motional impedance by the constant (BI)? and inver-
ting finally. Assuming that the cone moves as a whole with the same
velocity, we may write

! 1
Zpoen = oM + ¥ + — + Sz = Zcone -+ Sz.
jwe

The terms jowm, » and 1 /jwc form together the mechanical impedance
of the cone itself. The term Sz would be easily understandable if
the vibrating surface were a plane piston of surface S, loaded with
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an acoustic impedance 2, constant over the surface S. The conse-
quences of the fact that the behaviour of the loudspeaker in ex-
periment differs widely from that of a piston will be considered
later on.

We conclude that the specific acoustic 1mpedance z can be cal-
culated from the electric impedance Z,,, provided Z, (BY*Z
and (BIl)*/S are known. :

These constants of the apparatus can be measured once for all by
carrying out measurements with the cone: a) absolutely fixed,
b) absolutely free (acoustical load zero), ¢) loaded with a known
acoustical load, e.g. the wave resistance gc of air (1009, absorbing
sample). It will be understood that we ought to know the constants
as functions of the frequency. The constants will be slightly depen-
dent on temperature, humidity and other quantities: exact data
concerning these points have not yet been obtained, but it seems
that a slight dependence is not a serious objection.

§ 3. The codrdinates in the acoustical z-plane. Let p, and p, re-
spectively be the complex sound pressure of the incident and re-
flected plane wave. Then

I ﬁr g Z—Qc 5
= Il =i ==

v & +v ec

Replacing the complex quantity z by x -+ jy and keeping a
constant, this equation yields the analytic expression of the line in
the z-plane, each point of which'will correspond to the same a-value.
These lines @ = constant are circles, forming together a set of circles
(see fig. 1). Orthogonal to these circles other circles can be found,
also forming a set and having a simple physical meaning. They are
circles .of constant phase difference 4 between 2—gc and z--gc or
between p, and p; (see fig. 1). 4 pc and — pc are points of all A-cir-
cles, the basic points of the set.

When x and y are given, @ and 4 may be computed. The reverse
is also true. a and 4 may be used as cobrdinates in the z-plane as well
as x and y; and, since 4 and 4 have a simple physical meaning, they
are often to be preferred. An obvious example is the interferometer.
Let the impedance of the sample be z2(= /v at the surface of the
sample). At a distance / before the sample the value of the acoustic
impedance generally will be different. It is evident at once, however,

:1—

.\
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that the absorptioncoéfficient of the sample is independent of 7, i.e.
on proceeding from the sample inwarids in the tube, z will describe
a circle @ = constant in the z-plane. It even is not at all difficult
to find the connection between / and the corresponding point of

f a=20%

7 G aconst
{ 40%
4=const. - -

60 %
> S i

Fig. 1. Circles ¢ = constant and 4 = constant in the complex z-plane.

the circle, for on proceeding inwards the phase of p; and p, respec-
tively increases (or decreases) linearly with /, 180° for each half
wave length 4/2. The argument 4 of p,/p; hence varies proportional
to 1, 360° for each half wave length. Proceeding over /2 means tra-
velling along a complete a-circle of the z-plane.

§ 4. The velation between motional and acoustical impedance. This
relation in an analytical form is

(Bl)®
Zmot 5= W e e
Zcone =i )

In order to avoid numerical 'complex calculations, which are very
- troublesome, it is worth while to study this relation. Since the
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loudspeaker is often used above resonance, Z,,,, is chosen in fig. 2
with a positive imaginary part. At resonance this part equals zero,
beneath resonance it will be negative. To Z,,,, must be added zS,
as is symbolised by the circle diagram with ocS as a basic point. Now
inverting Z,,,, + 2zS with an arbitrary unit of inversion it is easily
seen that the circle with diameter OA, being the inversion of the
0%-line of the acoustical plane, encloses the inversion points of all

0% 20%40% 60%

Fig. 2. Zyeen = Zoone + 2S, whereas Z,,,, is proportional to the
inversion of Z,,..;.

possible values of Z,,,, - 25, since all values are lying to the right
of the 0%-line. Furthermore the two orthogonal sets of circles of the
acoustical plane are inverted into identical orthogonal sets *); for,
the basis points of the A-circles after inversion remain points of the

*) I am indebted to Mr. D. H. Bekkering for this suggestion.
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inverted A-circles. This A-set, therefore, remains unaltered, aside
from a translation, rotation over a certain angle and magnification
with an adequate factor. Moreover, circles with larger diameter
than OA are absent.

Now a stage is reached, where experimental control is very easy,
since circles @ = constant in the z-plane can be obtained by varying
the column of air between loudspeaker and sample. The electrical
impedance will hence also describe circles, due to the variation in
Z,,.,» namely the inverse a-circles of the z—plane.ﬁ For different samp-
les different circles will be found, the circle OA corresponding to 0%,
the point gc’ to 1009, absorption. The point of inversion O can be
found as the point of the largest electrical absorption circle situated
to the extreme left. It must be borne in mind that Z,,, cannot be
measured directly. We measure Z,,,, from which quantity the impe-
dance with fixed cone Z must be substracted (see fig. 3). With va-
rious samples we find therefore various circles of fig. 3, the point

Lot
thot.

Flg 35 Ztot = % + Zmot-

at the extreme. left of the larggst being the inversion centre (im-
pedance Z). This point corresponds to the point z = oo in the z-
plane. This can be effected by fixing the cone rigidly to the magnet.
‘Another method is to actually make the acoustical load infinite,
i.e. the length of the column of air equal to 4/2 or a multiple of it,
and closing the interferometer with a perfectly reflecting sample.
Now, since the moving cone is not plane, it needs to be explained
what is meant by ,,the length of the column of air”’. Aslong as the
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wave length 2 is very large in comparison with the diameter of the
tube, the air in front and in the neighbourhood of the cone can be
treated as an incompressible fluid, the sound pressure being in-
dependent of the details of the sound source, but only dependent on
the total volume of air between sample and source and the volume:
‘displacement of the source. Therefore, it must be assumed that the
cone is acoustically fixed if the volume between the rigid end of the
tube and the cone be 1/2 times the cross sectional surface of the tube.
Now it turned out that the electrical impedance with acoustically
fixed cone does not yield the-point at the extreme left of the largest
cirgle but a point near B in fig. 3. This was predicted and can easily .»
be explained from the fact that the loudspeaker does not fit in an 7
airtight manner into the tube (because it must be movable), or even
if it did so, from the fact that the relative velocity distribution along
the conic surface depends upon the acoustical load. To what point
the inversion point is shifted by these effects cannot be predicted,
since all quantitative data are lacking. The shift can be computed
from the volume of air between sample and source (see below),
but no doubt errors enter the problem and the question arises,
whether the numerical results depend much on the choice of the
inversion point or not. First we shall show that indeed the shift of
the inversion point must be expected, secondly it will be shown that
the computed absorption coéfficients are independent of the inversion
point, which provides us with an easy means of measuring absorp-
tion coéfficients.

§ 5. The shifting of the inversion centre due to the compliance of the
cone and aiy leakage. Up to now the sound source was treated as a
piston with uniform velocity over the whole surface, moving in an .
airtight manner in the tube. We want now to get rid of these
restrictions. The equation

e = Zi1 -+ Bl

remains valid with a normal loudspeaker, provided that with v is
meant the velocity of the coil. The equation

0= — Bli + 9(Z,,,, + 25)

must be reconsidered. It is the equation of motion of the cone.
Blz is the correct expression for the Lorentz force. If Z,,,, be defined
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as the ratio of the force at the coil and the coil velocity in the case of
no acoustical load in front of the loudspeaker, vZ,,, denotes the
force needed to maintain the velocity » in the absence of {rontal
acoustical load. vzS should be the expression for the extra force
necessary to overcome (counteract) the acoustical load. It remains
a question, however, what must be taken for » and S since the ve-
locity varies along the surface of the cone, and the vibrating surface
S is such a vague quantity. We proceed now to give an expression
for this extra force, complying with the features of the cone. It will
be assumed that the wave length 2> diameter of the tube, so that
$ may be taken constant over the surface of the cone. Using polar
coordinates g,  to denote a poiﬁt on the cone, we can write for the
velocity of the cone at g, 0

vp,t? =7v. E(Q» 0) _P g 77(@! 0)’

where & and 7 are, if necessary, complex functions of ¢ and 6, &
being dimensionless, # having the dimension of an acoustical ad-
mittance. _

According to this equation the velocity at any point v,5 is
assumed to be a linear function of the coil velocity v and the acousti-
cal counterpressure . Terms in 2%, $?, vp etc. may be omitted at
first as terms of second order. The meaning of the linear terms in v
or pisevident. v. &(p, 6) is the velocity of the point g, 6 of the cone in
the absence of acoustical load (p = 0). This partial velocity will be
proportional to ». In quite a similar way # . 5(g, 6) is the velocity of
the point g, 6 of the cone with v = 0, i.e. the velocity at o, 6 with
fixed coil under the influence of the pressure $ in front of the cone.
This second partial velocity, therefore, is a measure of the com-
pliance of the cone with fixed coil against the sound pressure. Aver-
aging over the cross-sectional surface of the tube we get

6 = ‘UE._ i)ﬁ;

in which £ and % have to be looked upon as constants of the loud-
speaker. Now U = p/z, because 1> the diameter of the tube and,
therefore, only the average velocity over the surface is of importance
for determining p. Combining these equations there results
E .
1) =V —=——"—"". (4)
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The total sound force transmitted over the whole cross-section is p
times the cross-section. Only part of this force, however, will be
felt by the coil. In this connection the cone may be compared with
a plate, supported at the circumference and the centre, which is
loaded homogeneously. In this case the centre is loaded by one
third of the total load. Whether in our case this fraction equals also
1/3 or not does not matter. In any case, however, this force will be
proportional to 4. The equation of motion of the cone therefore may
be written in the form

0= —Bh +<Zwm, = = + l/z)
where 4 is an unknown complex constant. Combining this equation
of motion with the electrical equation yields

A
Zlot : Z + (Bl)z/[zama += +l]/zJ
an expression differing essentially from the corresponding previous
one. Introducing new complex, constants 4,, this latter equation
may be changed into

Zin=Z + Ay + (Bl Aoz + Ay) = A5 + Ag/(z + 4;)  (5)

Conclusions: a) the inverse relation between Z,, and z remains
valid ;

b) the real constant (B/)? becomes complex, i.e. the motional
impedance graph is rotated over an unknown angle ;

¢) the inversion centre is no longer the point at the extreme left
of the largest circle of the electrical impedance diagram, but is
that point that corresponds with z = co. Therefore, and this con-
clusion is most important, the centre of inversion cannot be obtained
be fixing the coil rigidly to the magnet, but only by making the
acoustical load infinite. Acoustical fixing does not mean v = zero:
on the contrary, the velocity » of the coil, when the acoustical load
is infinite, can be computed from equation (4) by taking z = co,

d) the derivation is quite general and includes leakage through
narrow slits between loudspeaker and interferometer tube,

§6. The absorption coéfficient independent of the inversion centre.
Let the circles 1’, 2" and pc¢’ in fig. 4 be obtained in the electrical

~
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impedance plane (Z,,) with sanrples of resp. 0%, 4% and 1009,
absorption. The inversion point (corresponding to z = co) will be
unknown, but in any case will be a point of circle 1’. 17, 2" and gc’ are
three circles of a set; the centres of all circles of this.set are lying

on the straight line gc¢’ . M, . M. In order to carry out the inver-
sion we choose an arbitrary point O on 1’ as the centre of inversion

and take as unit of inversion the distance O .pc’. The motional
impedance is to be taken on the turned system OXY, thus taking
into account the argument of the complex constant 4, of equation
(8). The inverted point of g¢” has a positive ordinate y, because the
arguments of p¢” and its inversion are opposite in sign. For reasons
of simplicity this inversion of the sign of all arguments is omitted,
so each point lies on the same straight line through O with its own
inverted point, g¢’ even being identical with its inversion oc.

M,

Fig. 4. Circles of 0%, a% and 100% absorption in the
electrical Z,,-plane and the proof that a is independent
of the centre of inversion O on circle [’.

The inversion of circle 1’ is a straight line 1 parallel to the
Y-axis, which line is not shown in fig. 4. gc (= g¢’) and 1 de-
termine together the new sef, of circles, the line of centres of the
a-circles being the line @_T(f perpendicular to 1. E.g. the centre of
the inverted circle 2’, called 2, must be M,, since this centre lies on
oc . C and on OM;, (for reasons of symmetry). (M, is the centre of
the inver‘l circle 2, but not the inverted centre of the circle 2’
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(M;)). Therefore, 2 will be that circle of the new set of which the
centre is M,. Now it is easily seen that the distance gc .M, is in-
dependent of the choise of O, for

oc. M, : oc’ . M, = OM; : MyM, (6)

in which equation the last three quantities are independent of O and
therefore, the first must be so too. Along the same lines it can be

shown that the distance — gc . g¢ is independent of O, for — oc
will be the point of intersection of the lines O . — g¢” and gc . C, and

—oc.oc: OM]{ = —oc' . oc' : —oc' . My, (7)

in which equation again all quantities must be independent of O,
because the last three are so.

Fig. 5. Dependence of a upon the double ratio of M:’Z and — g¢’
with respect to g¢’ and My. 1/a = 1 — L /lyls.

The absorption coéfficient belonging to 2, and therefore to 2/,
may be computed with the aid of the equation of § 1, from which
the following remarkably simple relation may be derived:

lja =—pgc.M,: —opc.opc.

This relation again, together with (6) and (7), yields

ec’ M,  —pc'. gc’

! l/ﬂ: +1.

MM, —ec .M "
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None of these quantities which determine a depend upon the chosen
point O. The inversion, even with respect to an arbitrary chosen
centre of inversion, can be omitted, for in the last equation only
quantities of the electrical impedance diagram enter.
@ depends upon the double ratio of M, and — g¢’ with respect
to oc’ and M. In simplified notation (see fig. 5)
1 L 4

i s g S,

a ol

the minus sign arising from the fact that all distances are counted
positive from the left to the right in fig. 5, negative in opposite di-
rection. This relation can be represented by fig. 6. Since /, is essen-
tially larger than — /;, only values of — /,//, smaller than unity have
a physical meaning.

4
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Fig. 6. Graphical representation of
the relation between a and the ratios
I/l and I3/l,.

Iig. 7. Dependence of a upon the
ratios D/l and d/D in the electrical
impedancediagram (see fig. 8).

Fig. 6 can only be used when the point — p¢’ iri the electrical

impedance diagram has been constructed. It seems more practical /

to represent 4 as a function of the ratios d/D and D/I (see fig. 7).







